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Acidity of Zinc Chloride Solutions 

Sir: 
In a recent issue of Inorganic Chemistry the Hammet t  

acidity function, Ho, was reported for a series of zinc chloride 
solutions, and it was concluded that “highly concentrated 
solutions of certain metal salts must be regarded as strong 
protonic acids”.] This conclusion was arrived at  by comparing 
the Ho of ZnC12 solutions with that of other acids a t  the same 
(high) molarities. It is the purpose of this correspondence to 
point out that comparisons of Ho for the purpose of providing 
orders of acid strength should be made a t  the same water 
a c t i ~ i t y . ~ - ~  Figure 1 displays the Ho values as a function of 
water activity for the zinc chloride solutions, as  well as for 
several strong acids and phosphoric acid (pK, = 2.15). The 
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Figure 1. Ho values of some mineral acid solutions and zinc chloride 
solutions vs. water activity of the solutionsP8 

curve for nitric acid5 is similar to that for the strong acids down 
to a water activity of 0.6. 

From Figure 1 we may conclude that the acidity of the 
aquozinc ion is less than that of phosphoric acid even at high 
concentration. More quantitative treatments of acidity from 
Ho and CZH~O da ta  a re  available,6 but in view of the unknown 
salting-out effect7 of concentrated ZnClz solutions on the 
neutral indicator, no attempt has been made to apply them. 
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