
Concentrations Determined from Titrations 

Table I. Mole Fraction Equilibrium Constants for Al,Cl,- Ion 
Formation in AlCl,-MCl" Melts from Potentiometric Data 

system K,b  temp, "C ref 

AlC1,-NaCl 

AlC1,-LiC1 
AlC1,-NaCl 

AlC1,-NaCl 

AlC1,-KCl 
AlC1,-csc1 

AlC1,-CSCl 
AlC1,-RbCl 

<3.8 x 10-13 
<5.7 x 10-'2 
<3.6 X 
<1.2 x 10-8 

8.00 X lo-' 
7.77 x 10- 
1.33 X lo-' 

1.06 x 10-7 

1.6 x 10-4 
L O X  10-5 

5.78 x 10-7 

7.58 x 10-7 

1.6 X 
4.0 X lo-* 

2.87 X lo-' 

30 this work 
6 0  this work 

120 this work 
175 this work 
175 6 
175 7 
175 10 
175 9 
400 11 
400 11 
400 11 
400 11 
A50 8 
450 8 
450 8 

a M represents a cationic species. Dissociation constant for 
2Alc1,- t j A l , a 7 -  + c1-. 

more stable with decreasing cationic polarizability. ' ' The value 
of K3 obtained with the relatively large, organic l-butyl- 
pyridinium cation is consistent with this general trend. 

The major effect of temperature variation, from 30 to 175 
OC, is consistent with a change in the reaction equilibrium, 
according to the relation 

AGO = -RT In K3 

On the basis of the equilibrium constants obtained from the 
potentiometric curves for this system (Table I), the free energy 
remains approximately constant throughout the 145 OC 
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temperature span at (7.1 f 0.3) X lo4 J mol-'. Unfortunately, 
precise thermodynamic data is precluded because of the 
corrosion process which occurs in the basic A1C13-l-butyl- 
pyridinium chloride systems. One practical consequence of 
the increased A12C17- ion formation and the lower activity of 
free A12C16 in these molten mixtures, relative to the Al- 
Cl,-NaCl system, is that sublimation losses of A12C16 are 
minimal even at 175 OC. They may be also useful solvent 
systems for stabilizing unusually low valence metallic ion 
species. 
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Free Metal and Free Ligand Concentrations Determined from Titrations Using Only a 
pH Electrode. Partial Derivatives in Equilibrium Studies 
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In the studies of metal complex equilibria in aqueous solutions, the variation techniques presented by Osterberg, Sarkar, 
Kruck, and McBryde allow one to calculate free metal and free. (unassociated) ligand concentrations from titration experiments 
using only a pH electrode. The method makes no assumptions about the associated species present in solution and is thus 
model independent. We present an alternate general derivation of the expressions and attempt to clarify the technique. 
Although the approach described below is applicable to any number of components (metals, ligands), in a manner analogous 
to Hedstrom's treatment of two-component systems we treat the three-component system by introducing six Jacobian unit 
determinants for the six variables ( M ,  L,  H ,  m, I ,  h ) ,  that is, the three total and three free concentrations of the metal, 
ligand, and hydrogen respectively: 

M ,  In m, In h '( In I ,  L, In h ) = 
M ,  In m, H '( In 1, L, H ) = 

.( L, In 1, In m ) = 
In h, H ,  In m 

.( H ,  ~n h, 1n 1 ) = 
In m, M ,  In 1 

.( L, In 1, M )  = 
In h, H ,  M 

'( H ,  In h, L ) = 
In m, M ,  L 

These Jacobians are very useful in deriving numerous variational expressions. Using computer-generated data, we test 
the techniques under a variety of conditions. A useful Fortran computer program is discussed. A simple technique for 
analytically evaluating implicit functions such as ( a ~ H l a M ) ~  or (apH/aL), is presented. This enables one to avoid the 
use of numerical methods in the least-squares refinement of formation constants, thus leading to substantial reduction in 
the computational effort. 

Introduction 
Osterberg' and, later, Sarkar and Kruck2 and McBryde) 

introduced an extremely valuable technique for evaluating the 
free metal and free ligand concentrations in multicomponent 

equilibria by the use of pH titration data alone. That is, one 
could indirectly measure pM (-log [MI,  [MI = free metal 
concentration) and pL ([L] = free (unassociated) ligand 
concentration) values by using only a pH electrode. The 
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Table I. Glossary of Terms 

H 

K W ’  
L 
1 
In h ,  In I ,  

M 

N 
NH 
NH’ 

In m, In x 

m 

PH, PL, 

PM, 
PL, 

PXO 
PXV 
X 

4 

PM, PX 

X 

6 

Alex Avdeef and Kenneth N. Raymond 

concentration of the j t h  associated species: = MemjLe l jHehj  = pjmemjleUhehj 

stoichiometric coefficient, referring to  the number of kth type of atoms in the j t h  associated species (For example, for 

total hydrogen concentration, defined by A - B + NH’L, where A = [HCl] and B = [KOH] or any other monoprotic 

free hydrogen ion concentration, [H’] 

t he j th  species [Th(cat),(OH)]- (cat = dianionic ligand), e,j = 1, elj = 2, eh j  =-1. The value of ehj  is negative to  
signify a hydroxide. Positive values refer to  hydrogen ions.) 

mineral acid and base 

( a v l a u ) , ,  (aU/au)u,w (auiaw),,, 
( a v i a u ) , ,  (avlav),,, (a viaw),,, 
( a w i a u ) , ,  (awiav),,, ( a  Waw),,, 

Jacobian determinant of the variation of functions U ,  V ,  W with respect to  the independent variables u ,  u ,  w 

Jacobian matrix, having elements of the above determinant 

[H+l [OH-] 
total concentration of the ligand, in all of its forms 
concentration of the unassociated (free) ligand 
logarithm, base e ,  of the concentration of the unassociated (free) reactants 

total concentration of the metal, in all of its forms 
concentration of the free metal 
number of associated species under consideration 
maximum number of dissociable hydrogens on the ligand 
number of dissociable hydrogens on the ligand, in the form i t  was introduced to  the solution (For example, if the ligand 

negative of the logarithm, base 10, of  the free concentrations (X refers to M or L.) 

=-log M if pH, is sufficiently low so no metal-ligand complexation occurs 
=-log [L/(l t ~ i = ~ ~ ~ B i ~ h ~ ) ] i f  pH, is sufficiently low so no metal-ligand complexation occurs (Here, OiH refers to the 

cumulative proton-ligand equilibrium quotient, [ LHi] / [  L] [HI *.) 
“true” pX values, those calculated from a correct equilibrium model 
pX values calculated by the model-independent variation technique 
general designation for M or L 
general designation for m or  1 
cumulative formation constant for the j t h  associated species Oj  = Cj/memilel jheU,  referring to the equilibrium emjM t 

pXo - pXv, the difference between the “true” pX values and those calculated by the variation technique 

were the acetate ion and if it were introduced as the potassium salt, then NH = 1 but  NH’ = 0.) 

el jL + eh jH  f M e m j L e l j H e h j  (=species Cj) 

technique is an extension of earlier work of Hedstrom4 and 
Sill511.~ It is based on partial differential relations arising from 
the mass balance equations (vide infra) and requires several 
titrations, per reactant, performed in a special way. Sur- 
prisingly, the method is not widely known, judging by the near 
absence of its reported use. Sarkar and c o - w o r k e r ~ ~ - ~  have 
experimentally applied it to rather complicated equilibria, 
involving the determination of as many as three different 
nonhydrogen reactants. The technique has been very im- 
portant in our studies of the equilibria involving Th4+, U4+, 
and Pu4+ complexes with catechol and hydroxamate ligands, 
where evidence for mixed-ligand and polynuclear species is 
abundant.1° 

W e  feel that the past presentation of the technique (which 
can be called the “variation” method-especially as it applied 
to determining several different reactant concentrations) needs 
additional clarification, which is the primary purpose of this 
paper. Also, we wish to introduce some general differential 
relations of which the above-mentioned technique is a special 
case. The general relations will be presented in the form of 
unit Jacobians of third and higher order in exactly the same 
form as that presented by Hedstrom for two-component 
systcms. A very simple method for analytically evaluating 
partial derivatives of implicit functions, such as ( a ~ H l a M ) ~  
or (apH/aL),, will be presented. Such derivatives are used 
by least-squares refinement of equilibrium constants and in 
the past have been evaluated numerically rather than 
analytically-a process requiring considerably more com- 
putational effort. Finally, we wish to introduce some relevant 
aspects of a new computer program, STBLTY,~’ which was used 
for all the calculations and most of the drawings presented 
here. 

For solutions containing one type of metal and one type of 

ligand as reactants, along with hydrogen and hydroxide ions, 
the species present in solution may be represented by equilibria 
of the sort 

e,M + elL + ehH MemLe,He, (=species C,) (1) 

The stability constant of thej th  associated species is given by 

0, = CJ/mewlebhrhi ( 2 )  

where ek, is the stoichiometric coefficient of the kth reagent, 
C, is the concentration of the j t h  associated species, and m, 
I ,  and h are the free (unassociated) concentrations of metal, 
ligand, and hydrogen. (See Table I for a more complete 
definition of terms used in this presentation.) Usually only 
h (in addition to the total concentrations) is known from a 
simple pH titration. In refinement programs such as S C O G S ’ ~ ~  
and MINI QUAD^^^ unknown values of pM and pL are calculated 
only after a model is assumed along with the corresponding 

values. Thus such values of pM and pL can be model-biased. 
Osterberg’s’ proposal is the model-independent “variation” 
relation 

ApL(M,,L,) = pL2 - pL, = [ S”’( ”> d p H ]  
LO aL Mo,h 

DH7 

where M ,  L, and H a r e  the total metal, ligand, and hydrogen 
concentrations. The relation states that for given values of 
M and L (Mol Lo) the change in pL (from some known value 
pL,, which can be determined in a number of ways‘-’ as for 
example in Table I) corresponding to a change in pH is related 
to the extent the variation of L affects H. One thus needs a t  
least two titrations where L is the only varied nonhydrogen 
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Figure 1. Titration curves for copper(I1) diglycyl-L-histidine, calculated from the constants determined by Lau, Kruck, and Sarkar.8 The 
total ligand concentration is the same in each of the three curves, while the total metal concentration is varied. EQV refers to moles of base 
added per mole of ligand. 

total concentration. A plot of H vs. L at constant pH17 shows 
curves that are ordinarily nearly straight lines. Since the slopes 
(aH/aL) are dependent on L, so must be ApL in eq 3, a subtle 
but very important point which McBryde3 notes (his eq 11 and 
17) but which Sarkar and Kruck2 apparently do not. However, 
in the description of their calculation procedure, Sarkar and 
Kruck propose the evaluation of the partial derivatives at the 
“midpoint” of a series of curves. Presumably, “midpoint” 
refers to the concentration of the curve nearest the mean 
concentration of the varied reagent. 

Using a procedure that bears some resemblance to the one 
proposed earlier by Sillen (eq 49, ref 5 ) ,  Sarkar and Kruck2 
extended Osterberg’s relation to the calculation of any ApX 
for any general multicomponent equilibria, using relations like 
eq 3 for each reactant. Thus each reactant would require a 
separate series of variation titrations. 

In eq 3, any Lo within the ligand variation range may be 
chosen for the integration to produce pL values as a function 
of pH. In the series M is kept constant (Mo). However, when 
the variation is extended to metal components as well, the 
choice of Mo and Lo is no longer arbitrary only when one 
complete data set of pM, pL, and pH values is to be con- 
structed. That is, in the first series, L is varied ( M  = Mo) to 
produce pL values with integration performed a t  Lo (eq 3). 
In the subsequent series, M is varied to determine pM values. 
In this series L must be fixed at the Lo of the first series and 
the integration must be performed at the same Mo value fixed 
in the preceding ligand series. The intersection of the two 
series is a t  (Mo, &), the “common point”. Since the plots of 
H vs. M or L appear nearly linear, the above qualification 
apparently was not appreciated. An uncritical reader may still 
infer from the presentations of the variation technique that 
ApM and ApL are only functions of pH! We hope to show 
to what extent this is not true. 
Analysis of the Variation Technique 

How much can the results be affected if one were to dis- 
regard the “common point” requirement mentioned above? 
An examination of past  application^^-^ of the technique to 
multireactant determinations suggests that perhaps the minor 
qualification was not always appreciated.*s9 In the deter- 
mination of the formation constants of copper(I1) diglycyl- 
L-histidine8 the “midpoint” values (Mo, Lo) in the metal and 
ligand variation series are different. (We must point out that 
in their other applications of the technique6*’ it appears that 
the “midpoints” are also the “common points”.) We proceeded 
to test the reported results. Figure 1 shows the calculated 
titration curveslO using the reported constants and  condition^,'^ 

I ” ,  , , , , , , 1 1  

E Q V  
- E  -L  -1 - 3  - 2  - I  0 I 2 

Figure 2. Calculated titration curves for copper a~e ty lace tona te , ’~  
as a function of the variation of the total metal concentration. EQV 
refers to moles of base added per mole of copper. 

0 rnb E ’ .tGEhO 
corn 

o m @  , 
n a b  

2a m 
O d  m 

I 1  I 

li Q V 
- E  - 5  -Q - 3  -2 - I  0 1 2 3 

Figure 3. Calculated titration curves for copper ace ty lace t~nate , ’~  
as a function of the variation of the total ligand concentration. EQV 
refers to moles of base added per moles of copper. 

which should be compared to the observed curves in the upper 
part of Figure 2 in ref 8. Two minor differences are noted. 
There is a clearly discernible equivalence point around pH 6.2 
in the observed titration curve, which is not substantiated by 
the constants. Also, the calculated curves nearly coalesce a t  
pH 11, whereas the observed curves do not.I4 We could not 
conclude with certainty that the “common point” requirement 
was the source of these discrepancies. 

In order to test the “common point” requirement more 
reliably, we next proceeded entirely with computer-generated 
data.18 For our purpose, we chose to use a relatively simple 
system, that of copper(I1) acetylacetonate, whose formation 
constants are reliably known.15 Table I1 lists the conditions 
of variation. Figures 2 and 3 show typical titration curves for 
metal and ligand variation series, respectively. 

The conditions we proceeded to test involved variation of 
metal and ligand over a small interval about a common point, 
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Table 11. Synthetic Data for Copper Acetylacetonate Complexesa 

series A series B series cd 
calcn M, L ,  calcn M ,  I,, calcn M, L ,  
no. mM mM variation no. mM mM variation no. mM mM variation 

M-1 0.75 3.00 metal variation with M-6C 0.25 20.0 metal variation with M-9 0.25 2.00 metal variation 
M-2 0.90 3.00 small interval M-7 0.50 20.0 large ligand excess M-10 0.50 2.00 
M-3& 1.00 3.00 M-8 0.75 20.0 M-11 0.75 2.00 
M-4 1.10 3.00 M-12 1.00 2.00 
M-5 1.25 3.00 

L-1 1.00 2.75 ligand variation with L-13c 0.25 20.0 L-15 0.25 1.00 

L-11 0.25 10.0 ligand variation with 
L-12 0.25 15.0 large ligand excess L-14 0.25 0.50 ligand variation 

L-2 1.00 2.90 smallinterval L-16 0.25 1.50 
L-3& 1.00 3.00 L-17 0.25 2.00 
L-4 1.00 3.10 
L-5 1.00 3.25 

L-6 1.00 2.00 ligand variation with 
L-7b 1.00 3.00 large interval 
L-8 1.00 4.00 
L-9 1.00 6.00 
L-10 1.00 8.00 

* The synthetic titration curves were calculated for solution volumes of 30 mL, using base titrant concentration of 1 M, 25 “C, 0.1 M ionic 
and [ML,]/[ML] [L] = 106.60.  All calculations were 

Common point 
In series A and B, H vs. M o r  L was fitted with a parabola, while in series C, a linear fit was used. 

strength, using the reported  constant^'^ [LH]/[L]  [HI = 
performed with the computer program STBLTY.” 
for series B (2.5 X 

[ML]/[M] [L]  = 
b Common point for series A: (Mo, L o )  = (1 x M, 3 x l o T 3  M). 

M, 2 X l oF2  M). 

Table 111. Slopes 

calcn no. pH 3 PH 4 PH 5 
M- 1 
M-2 
M-3 
M-4 
M-5 
M-6 
M-7 
M-8 

-0.382 
-0.368 
-0.358 
-0.349 
-0.334 
-0.923 
-0.919 
-0.916 

-0.782 
-0.802 
-0.816 
-0.829 
-0.850 
-1.173 
-1.362 
-1.552 

-1.404 
-1.300 
-1.231 
-1.161 
-1.057 
-1.848 
-1.979 
-2.111 

L- 1 
L- 2 
L- 3 
L-4 
L- 5 
L- 6 
L-7 
L- 8 
L-9 
L-10 
L-11 
L-12 
L-13 

0.917 
0.921 
0.923 
0.925 
0.929 
0.910 
0.920 
0.929 
0.948 
0.968 
0.994 
0.996 
0.998 

0.890 
0.878 
0.871 
0.863 
0.852 
0.884 
0.899 
0.914 
0.944 
0.974 
1.005 
0.979 
0.952 

0.825 
0.819 
0.815 
0.811 
0.805 
0.813 
0.846 
0.879 
0.946 
1.012 
0.977 
0.992 
1.007 

with only a slight excess of ligand over the amount of metal 
present (series A). The plots of H vs. M o r  L a t  constant p H  
were fitted quadratically to obtain the slopes (Table 111). The 
other series (series B) contained a very large ligand excess. 
The slopes were fitted both linearly and quadratically in this 
category. Finally we tested the effects of linearly fitting the 
slopes under conditions of only slight ligand excess (series C). 

Figure 4 shows the kind of “variation errors” 6 in pX we 
observed for the above three cases. The errors were defined 
to be the difference between pXo calculated in the usual 
model-dependent mannerIZ (using mass balance constraints) 
assuming the model to be absolutely correct and the pX’ 
calculated from the variation technique: 6 = pXo - pXv. In 
each of the 6 plots in Figure 4 we calculated slopes a t  the 
“common point” and applied the resultant ApX values to all 
other non-common-point data sets, using the appropriately 
different starting values pX1. Figures 5 and 6 show plots of 

f 0 . 4  r r c 

\ M 5  I I \  
- 0 , 4  t 

SERIES A SERIES B SERIES C 

i - /  
L /5 

‘ L / 7  

- o s 2 k  \;; 1- - t 
Figure 4. Variation errors (see text) for the copper acetylacetonate 
system. The calculation conditions are  identified in Table I. The 
dashed curves refer to the “common point” errors. 

H vs. A4 and H vs. L, respectively. Table I11 shows a selection 
of (aH/aX) values under a variety of conditions. 

The error trends can be summarized in the following ob- 
servations. There are two kinds of errors present. One kind 
is related to 6’s associated with the common-point curves, 
which should ideally have no errors. These amount to only 
0.05 pX unit at  p H  6, under the chosen conditions. W e  relate 
these 6’s to the accumulation of systematic, principally 
round-off, errors in the variation method, where we used a 
simple Simpson’s integration procedure with an interval of 0.2 
p H  and where we used a quadratic fitting function for ( H ,  X) 
slopes. The errors observed amount to a loss of approximately 
0.002 pX unit/integration interval. This should emphasize 
the need for extremely accurate data over a sufficiently broad 
region of total concentrations in order to apply the technique 
successfully to real systems. 
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Figure 6. H vs. L isohydric plots for copper acetylacetonate. Table 
I identifies conditions. Table I1 contains selected values of (aH/aL)M,h. 

The other types of errors, the dispersion about the common 
point curve, is more interesting, In general, these errors are 
larger than the integration errors-up to 0.6 pX unit. (One 
may note that an error of this magnitude in pH in a buffer 
region such as pH 12 can cause the refinement of constants 
sensitive to that region to diverge.) In general, the pL errors 
are slightly smaller than pM errors (compare 6 curves, Figure 
4c vs. 40.  The higher the ligand excess, the smaller the errors 
(Figure 4b,e). Finally, the largest errors occur when one 
linearly fits H vs. X ,  as in series C. Whether or not one linearly 

fits the curves under conditions of a large ligand excess (series 
B) makes practically no difference on the errors. These 
observations are related to the extent curves in ( H ,  X) plots, 
such as in Figures 5 and 6, deviate from linearity. The de- 
viation becomes larger when the pH is higher and when the 
L/M ratio is small. 

In summary, the need to evaluate a complex set of pX values 
a t  a common point becomes apparent from the above ob- 
servations. At this point we proceed to a more general 
presentation of the variation technique. 
General Variational Relations 

For each point, the equilibrium concentrations of the species 
present in solution, including polynuclear and mixed lig- 
and-hydroxy species, are defined by the three mass balance 
equations 

N 
M(m,l,h) = m + Ce,C, 

L(m,l,h) = 1 + Ce& 

H(m,l,h) = h + CehJC, - K,’/h 

0‘ is an index over all the N associated species). 

J =  1 

derivative relations deduced from these’equations 

(4) 

( 5 )  

( 6 )  

The partial 

(aM/a In l)m,h = (aL/a In m)r,h = CemjerjCj ( 7 )  

(aM/a In h),,/ = (aH/a In m>h,l = CemjehjCj (8) 

(a&/a In h),,/ = (aH/a In = CeljehjCj (9) 

are easily demonstrated with the aid of eq 2. Note that 
(aM/d),,h # (aL/aw~)[,~, etc. By choosing as variables the 
logarithms of the free reactants, the Jacobian matrix (see Table 
I), J [ ( M ,  L, H)/(ln m, In I ,  In h ) ] ,  becomes symmetric. One 
consequence of this is that there exists an exact differential16 
of the form M d In m + L d In I + H d In h. Sill&n’s5 eq 49 
deals with this in greater detail. Again, any number of metal 
or ligand components can be treated by corresponding ad- 
ditional mass balance equations. In a manner proposed by 
Hedstrom4 for a two-component system, we can convert eq 
7-9 into the form of unit Jacobian determinants16 as 

M ,  In m, In h ’( In I ,  L, In h ) = 

L, In I ,  In m 
’(In h, H ,  In m )  = 

H ,  In h, In 1 
J( In m, M ,  In I ) = 1  

The explicit expression for eq 10 is matrix 10’. One notes 

that h in ( lo) ,  m in ( l l ) ,  and 1 in (12) are held constant. It 
should be apparent that Hedstrom’s unit Jacobian is valid for 
any number of components, provided that no more than two 
components are effectively independent. Adding constant 
variables does not alter the determinant from unity. Thus 
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1 = J( X ,  -) In x = J( X ,  In x, A ) = 

l n y ,  y In y, Y,  A 
X ,  In x, A ,  B 

J( ) = ... (13) 
In Y,  Y,  A ,  B 

where the added variables A and B are held constant. This 
is essentially the basis of Osterberg’s application of Hedstrom’s 
equation to a three-component system, to obtain from the 
Jacobian the relation 

(E) a In h M,L =-(!!E)M,h 
which reduces to eq 3. Thus using (1 3) we can increase the 
number of unit Jacobians to six, which is the number of 
variables ( M ,  L, H ,  In m, In I ,  In h ) ,  both dependent and 
independent, which we consider in (4)-(6): 

The proof for (10)-(12) has its basis in the relations (7)-(9). 
The proof for (1 5)-( 17) can be procured from SillCn’s5 eq 49. 

Hedstrom showed that such unit Jacobians are extremely 
useful in deriving new partial derivative expressions, especially 
of (implicit) functions such as m(M,  L ,  H )  or the like, which 
cannot in general be stated explicitly. To illustrate this, we 
shall derive the corresponding equation for ApM (Mo,L9)h 
analogous to (3). By utilizing the chain rule for Jacobians, 
we can restate (17) in terms of any three independent variables 
x, Y, z as 

H ,  In h, L In m, M ,  L J( x, y, z ) = J( x, y, 2 ) (18) 

By choosing the variables M ,  L, In h, we have 

[ Ip”( aM ”) L,h d p H ]  MO (20) 
PH2 

This is McBryde’s3 eq 17. Other useful relations can be 
obtained similarly. For the six variables M ,  L, H ,  rn, 1, and 
h there are 20 choices for three independent variables x, y, 
and z .  Some of these choices, when combined with the unit 
Jacobians (eq 10-12 and 15-17), lead to redundant results. 
The particular choice is dictated by what one can experi- 

Alex Avdeef and Kenneth N. Raymond 

mentally measure. Once a useful triplet can be decided on, 
any one of the unit Jacobians ( I  0)-( 12), (1 5)-( 17) can be 
rearranged in the form of (18). Thus equations similar to (3) 
and (20) can be obtained. 
Applications of the Jacobian Matrix to Equilibrium 
Calculations 

One least-squares procedure” for the refinement of for- 
mation constants /?, calls for minimization of the differences 
between observed pHs and those calculated from an assumed 
set of constants. In the normal equations, partial derivatives 
(apH/a log /?,) are  required. These can be calculated nu- 
merically but such a procedure requires a considerable 
computational effort. If one recognizes that p H  is also a 
function of the total concentrations, one can state (s,) 

The partial derivatives of the explicit functions on the right 
side of eq 21 are  easily evaluated. For example, (aL/a log 
/?,)pk#, = 2.303e,C,. The evaluation of the implicit function 
derivatives (apH/aX) is less direct. 

One needs to set up the Jacobian matrix J[(M, L, H)/(ln 
m, In I ,  In h ) ]  (see Table I) which linearly relates dX to d In 
x (q 22). This matrix is symmetric and its elements are easily 

evaluated, as shown in (24). In fact, this matrix is used to 
calculate pM and pL values by the nonvariational methods.”J2 
In the process, its inverse is computed. 

It is a remarkable fact that the elements of the inverse 
matrix are precisely the partial derivatives of the implicit 
functions that we need to compute (apH/a log 0,) and are given 
by (23)-(25). 

a l n h  a l n h  a l n h  



Further Evidence for a Ligand Field Effect 

That is, for K = J-* 

(;%)=If;) 

A more general statement of eq 21 thus becomes 

This simple relationship proves to be extremely useful and is 
a substantial shortcut in the least-squares refinement of 
equilibrium data. 
Conclusion 

The variation techniques presented by Osterberg,' Sarkar 
and Kruck,2 and McBryde3 are powerful extensions of the pH 
titration experiment, particularly for equilibria involving 
polymeric species. We have presented a completely general 
mathematical basis for these techniques to multicomponent 
systems. Very useful relationships involving partial derivatives 
were used in the process. One of the relations derived allows 
for the first time the use of analytical derivatives in the re- 
finement of equilibrium constants. However, the most im- 
portant task remains the acquisition of data of sufficient 
accuracy so that these techniques can be successfully applied.I8 
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Crystals of the isostructural title compounds, Na4[M(02C6H4)4].21H20 (M = Hf, Ce), have been obtained from basic 
aqueous solutions and examined by X-ray diffraction, by using counter data. Previously a small structural distortion of 
the analogous uranium complex was observed which leads to a difference in metal-oxygen bond lengths of the A and B 
sites of the coordination polyhedron (trigonal-faced dodecahedron, D2d molecular symmetry) formed by the catechol ligands. 
The present results on the undistorted cerium complex, in conjunction with previous results on the thorium compound (which 
is also undistorted), eliminate explanations based on differences in metal ionic radius since that of U(IV) is between those 
of Th(IV) and Ce(1V). The results reported here thus support earlier suggestions that the distortion observed for the uranium 
complex is attributable to a small ligand field effect of the two 5f electrons of U(IV). Ionic radius considerations alone 
do not lead to structural distortion until M = Hf, which has the smallest ionic radius of the four metals examined. Examination 
of the remarkably stable cerium complex, which is deep red (A,,, 517 nm; e 2350), has shown this complex to be diamagnetic, 
militating against a cerium(II1)-(semiquinone)tris(catecholato) formulation and in favor of a cerium(1V)-tetrakis(catecho1ato) 
description. The Ce(IV) complex is found by cyclic voltammetry to undergo a quasi-reversible one-electron reduction (in 
strongly basic solution with excess catechol) with E f  = -692 mV vs. SCE. The observed formal potential of the Ce1v/11'(cat)4 
couple, taken with the corresponding Ce(IV)/Ce(III) standard potential, implies that the tetrakis formation constants (Le., 
K for Mnt + 4cat2- = [M(~a t )~ ] " -* )  for Ce(IV) and Ce(II1) differ by a factor of Both the colorless Hf and the red 
Ce complexes have 4 site symmetry in the space group I 4 ,  Z = 2 (with a = 14.486 (1) A, c = 9.984 (1) A for Hf; a = 
14.649 (2) A, c = 9.976 (1)  A for Ce). For Hf the 4549 independent data with F: > 3c(F:) converged to unweighted 
and weighted R factors of 3.3 and 4.5%, respectively, upon full-matrix least-squares refinement with anisotropic thermal 
parameters for all nonhydrogen atoms. The corresponding R factors for the Ce complex are 4.3 and 5.3%, respectively, 
on the basis of 3106 independent data. Ring 0-M-0 angles of 71.5 (1)' for Hf and 68.3 (1)' for C e  are found, with 
M - 0  bond lengths of 2.194 (3) and 2.220 (3) 8, for Hf, compared with 2.357 (4) and 2.362 (4) 8, for Ce. 

Introduction 
Although the presence of ligand field effects has been 

suggested for actinide complexes, definitive recognition of such 
effects has been hampered by the complex interplay of 5f, 6d, 
and 7 s  orbitals for the actinides and the lack of a suitable 

isostructural series to preclude changes in crystal packing 
forces. 

Previous investigations for actinide-specific chelators 
analogous to microbial iron transport chelates led us to ex- 
amine the structures of the tetrakis(catecho1ato) complexes 

0020-1669/79/1318-161 l$Ol .OO/O 0 1979 American Chemical Society 


