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The consequences of sharing a central-atom orbital by two or more ligand orbitals is examined in general by using a simple 
perturbation approach. If only the ML bonding partner of this interaction is occupied, then sharing of the central-atom 
orbital is not favored. If only the ML antibonding partner is occupied, then the reverse is true. The results are applied 
to an analysis of trans-L(MX,)L systems where L is a single-faced a donor or acceptor (e.g., Mo(diphos),(C,H,),). When 
applied to an octahedrally based series of low-spin d6 M(CO), species, the ML a-bond stabilization energy, C(a), fits 
a simple equation: C(a) = A - [nns + 2fltranr]B. Here ncis and q,,,, are the number of CO ligands cis and trans, respectively, 
to the one being considered ( A  and B are constants). This equation shows why CO-stretching force constants increase 
on increasing substitution and that trans ligands are more effective than cis ligands. Timney's equation, an experimentally 
derived relationship between CO force constants and structure, is of the same form. When applied to two different ligands, 
trans to each other in a metal complex, it quantifies previous ideas concerning the trans influence of ligands. It is shown 
that this need not be the only mechanism operating in these systems. Another effect is discussed wherein unoccupied orbitals 
of nonequivalent symmetry are allowed to mix into the occupied ones as the symmetry of the complex is lowered. This 
creates a bond weakening or strengthening in the M-L bond trans to the site of perturbation. 

Of great interest to inorganic, especially transition-metal, 
chemists for many years has been the effect on a molecular 
property when one coordinated ligand is replaced by another. 
In some cases the result is dramatic if the molecular symmetry 
is reduced and spectroscopic transitions (e.g., IR or UV-vis 
absorptions) become allowed or vibrations, degenerate in the 
parent, split apart in energy. Equally obvious, however, are 
the observations that MX bond properties (length, vibrational 
force constant, and magnetic resonance parameters of X) are 
often very sensitive to the nature and number of other ligands 
coordinated to the metaL2 For example, the ligand lying trans 
to X often exerts a large effect in square-planar d8 and oc- 
tahedral d6 complexes (trans influence), usually much larger 
than any influence of the cis  ligand^.^-^ As the number of 
ligands L coordinated to a central metal atom increases, the 
M-L vibrational force constants tend to become ~ m a l l e r . ~  In 
transition-metal carbonyls a similar effect shows up in thefco 
constants as the number of coordinated carbonyls increases. 
Here, trans CO groups contribute a much larger effect than 
cis CO groups.6 In the carbonyl case there is a larger amount 
of experimental data relevant to this problem, and a recent 
study shows the effect to be additive to a remarkable degree.7 
In hypervalent molecules* such as ClF3 and ClF, the bonds 
trans to each other are longer than those trans to a vacancy. 
In PF, the axial bonds are longer than the equatorial ones. 
Some of these observations have been rationalized over the 
years in qualitative terms which contain certain recurring 
themes. W e  have recast these ideas as three related points. 
(i) I t  is energetically unfavorable for two or more ligands to 
share the same central-atom orbital for T or u bonding. If 
it is possible for the geometry to adjust in some manner to 
share two different orbitals, then this alternative is lower in 
energy. (ii) If some of the ligands must share the same orbital, 
then the strongest M-L bonds are for the symmetry-equivalent 
set of linkages for which the ratio, number of central-atom 
orbitals shared by these ligands/number of ligands, is largest. 
(iii) If two different ligands must share the same orbital, then 
an ill-defined (theoretically) differential bond-weaking process 
occurs. In this paper, using the angular overlap method, we 
shall show in simple molecular orbital terms how each of these 
points may be understood. Our model specifically excludes 
mixing of central-atom orbitals but concentrates on the 
consequences of central-atom orbital sharing. In the second 
part of the paper we relax this restriction and show from 
first-order perturbation theory how mixing of unoccupied 
orbitals can serve to increase or decrease trans M-L bond 
lengths. 

Perturbation Approach to Orbital Interactions 
Consider two interacting orbitals (or symmetry-adapted 

orbital sets) q+ and q5i whose energies before interaction are 
respectively. The interaction energy of the two 

(eq 1) is simply given by the even powers of perturbation 
and 

theory where vl., = HIJ - SIJ-e," and k = i or j .  In the extended 
Huckel formalism if is identified with HI,  and HIJ is es- 
timated by using the arithmetic mean Wolfsberg-Helmholz 
relationship HI] = ' / 2KSl , (Hl ,  + HJJ) with K = 2 ,  then the 
stabilization energy, E, of the lower component is given by eq 
2 where k = HJJ and AcIJ = HI, - HI]. The use of the first term 

ps,* - ysij4 
in this expression to describe many of the salient features of 
the transition metal-ligand interaction has been called the 
angular-overlap model9 = d orbital, = ligand u or i~ 

orbital). It has been used mainly to describe magnetic and 
spectral properties of complexes but in our hands has been 
applied to many structural and kinetic problems in both 
main-group and transition-metal chemistry. The first term 
may be calculated either by evaluation of the overlap integral 
between the central-atom orbital and a symmetry-adapted 
ligand combination (S,? involving the n ligands such that E@) 
= I@Sll'2/AclJ or by use of the ligand additivity scheme. Here 
(eq 3) S, is the overlap integral between a ligand u orbital 

(3) 

located on a single-atom and a central-atom orbital. For the 
case where all of the ligands are identical, these two approaches 
are equivalent. For the quartic term with equivalent ligands 
we may not sum the SI: terms. Here we need to evaluate 
(S,')4 or (C1=1nS,2)2. Of tremendous value has been the ability 
to write S, as a simple function (eq 4) of the molecular ge- 

= s ~ [ f l J ( e ~ ~ ) l  (4) 

ometry (e,@) where SA (A = 0, a, 6) depends only on the nature 
of M, L, and the M-L distance. We then have a simple 
method to evaluate orbital-interaction energies, and these can 
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be expressed in the parameterized form of eq 5 .  The two 

( 5 )  

parameters of the model are the products PASXz and yXSt. p 
is a readily calculable number which is geometry dependent. 

For n identical ligands containing mX orbitals a very useful 
sum rulega applies (eq 6) to the first term in eq 2.  The sum 

E = PPXSA2 - P2YXSX4 

of all interaction energies of ligand X orbitals with a cen- 
tral-atom orbital, over all orbitals of that type (e.g., with all 
three 2p or all five 3d orbitals), is a constant. A similar rule 
does not hold for the second term in eq 2, and it is here where 
most of our discussion will lie. 
Tendency of Two Ligands to Avoid Sharing the Same 
Orbital 

In complexes of the type indicated in 1 where there are two 

p-,Mo-P N - M O - N  
N 4 u  

P I  - I \  
0 -0 

Mo(d iphos),(C,H,), 

1 
Mo(porp)(Op), 

trans ligands bearing a single a-type orbital (relative to the 
central atom), the staggered arrangement of these ligands is 
found."J2 Although the geometry is rather (Jahn-Teller) 
distorted, the trigonal-bipyramidal structure of Cr111Ph52- 
containsI3 staggered trans axial phenyl groups. Ab initio 
ca lc~la t ions '~  on the molecules in 1 show that the staggered 
arrangement is most stable (by about 15 kcal/mol for la). 
Extended Huckel calc~lat ions '~ on bis(ethy1ene)nickel also 
show that the D2h, eclipsed geometry, 2, is less stable than the 
DZd, staggered conformation, 3. The geometries of the 

Y _I - 
I 
I I 

M M 
I I - - - _. 

' 2 ,  2d 
2 3 

matrix-synthesized molecules M(C2H4)2 (M = CuI6, Nil7) are 
unknown. The general c o n c l ~ s i o n ' ~ ~ ' ~  is that the stabilization 
of metal d orbitals with ethylene n* orbitals produced by the 
two interactions in 4 is greater than that associated with 5; 

i.e., the ligand a* systems avoid sharing the same central-atom 
orbital. Another series of calculations'* on trans-bis(carbene) 
Cr(O) molecules also show a preference for the staggered 
arrangement. A related example from organic chemistry is 
the DZd geometry of the allene molecule 6,  where the two 

c-c-c--- \ 

' 6  
\ 

planes of the CHI groups attached to the central carbon atom 
are perpendicular. The Si2NBeNSi2 skeleton of the isoelectric 
(Me3Si)2NBeN(SiMe,)2 molecule has the same s t r u ~ t u r e . ' ~  
Although there are, in principle, steric reasons for favoring 
the staggered geometry, the trans ligand-ligand distances are 
large enough in these systems to clearly point to an electronic 
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;;c-c-c--- \ /c-c-cG- 
E= 2.8P E=  4 p  

Figure 1. Hiickel orbitals for eclipsed (D2) and staggered (Dzd) allene. 

1- b3u 

a =  * -- h- 
C(rC)= 4 prCs; -sy,s4, C(Td=4P,S;-4y,s; 

Figure 2. Molecular orbitals of eclipsed and staggered allene-type 
molecules using the angular overlap method (see ref. 24). 

stabilization force of the sort described in 4 and 5 above. By 
way of contrast, these structural results must be compared with 
those for the diphenylmercury(I1) species, related perhalo 
derivatives, and complexes containing these units. Here the 
eclipsed form, 7, is almost universally found.21J2 An exception 

7 

is the (C6F5)zHg moleculez3 where the two phenyl groups are 
twisted by about 5 5 O ,  supposedly to relieve F-.F replusions. 

We will illustrate the molecular-orbital origin of these 
structural effects by applying two different approaches to the 
allene molecule: the well-known classical one which uses 
simple Hiickel theory for the n-type orbitals and a more widely 
applicable method which uses the perturbation approach we 
described above. 

Figure 1 gives the energies of planar (Dzh) and twisted (DW) 
allene species in terms of the Hiickel a,P parameters (not to 
be confused with PX of eq 5). Figure 2 shows the energies of 
the orbitals by using the perturbation formalism. We arrive 
at these results in the following way. For the planar geometry 
the central atom p, orbitals transform as b2u + b3u and the 
"ligand" p,, orbitals as b2 + bju. There are, therefore, two 
nonbonding orbitals (we Lave disregarded the methylene u 
orbitals of a symmetry). The ligand bk combination is of the 
form of eq 7, and its overlap integral with the central carbon 

atom px orbital is just 21/2S,, where S,  is the overlap integral 
of the central-atom px orbital with a single ligand px orbital. 
The second-order perturbation term is 2P+9,2, and the fourth 
order term is 4732. Similar algebra allows derivation of the 
orbital energies for the Dzd conformati~n.~~ This method neatly 
shows then in a general way why the two ligands avoid sharing 
the same orbital. Since all the bonding orbitals are doubly 
occupied and the antibonding ones are empty, the sum rule 
of eq 6 holds for the quadratic contribution to the total 
stabilization energy of the system, and it is independent of 

= (1/2"z)(Pxl + PxZ) (7) 
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angular geometry. However, the fourth-order term (quartic 
in S,) included with a negative sign (representing a desta- 
bilizing effect) is geometry dependent. The greater the 
second-order stabilization energy of an orbital, the larger the 
corresponding quartic correction (see eq 5). The overall effect 
is that the ligands prefer to use the maximum number of 
central-atom orbitals of a given type since this will give rise 
to the smallest quartic destabilization. This result is a perfectly 
general one and may be shown25 by using a well-known 
mathematical inequality. 

The analysis of the staggered arrangement in transition- 
metal systems, where all of the M-L n-bonding orbitals are 
occupied and the antibonding ones empty, follows along similar 
lines. For the case where there are two ethylene molecules 
as in la, the ML n-bonding orbitals which are filled are mainly 
the metal d orbitals (8). In this particular case, d6, all three 

x2. y L  

22 

4g 
Mo(diphos), (cZ H4 )2 

0 

“octahedral” d, orbitals are doubly occupied. In the dioxygen 
complex, lb, (do) the ML n-bonding orbitals are ligand located 
(9). In the CrPhs3- molecule the ML n-bonding orbitals 

x2. y‘- 

xz yz q= - 
* /=“* 

Mo(por p) W Z  

similarly are ligand located, but the ML .Ir-antibonding orbitals 
are half occupied (high-spin d3). This is also the case for 
Ph2Cr(bpy)2fI- which contains three mutually orthogonal pairs 
of n-type interactions (10). We emphasize that the results 

10 
U 

hold only for systems where the quadratic term is angularly 
independent, and we need to resort to quartic terms to find 
differential angular effects. There are some other rather 
interesting cases where our theory applies. We can easily show 
the preference for the tetrahedral rather than square-planar 
geometry for saturated carbon atoms or isoelectronic species 
(e.g., AlCl,). In the tetrahedral configuration three p orbitals 
are shared by the four ligand cr orbitals, but in the energetically 
unfavorable square-planar geometry two p orbitals are shared 
by the four ligand cr orbitals. In the latter case the out-of-plane 
pz orbital cannot take part in the ML u interaction. 

The H202 and 0 2 F 2  molecules adopt a twisted nonplanar 
geometry, 11, where each H or F atom is able to interact with 
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Figure 3. Qualitative molecular orbital scheme for bending linear 
AzXz molecules. Adapted from ref 47. 

unit. By way of contrast, N2F2 with two less electrons exists 
in a planar geometry (cis and trans) where each F atom 
interacts with the same r,, component, 12. N2H2 probably 

has a similar structure. Figure 3 shows a qualitative orbital 
diagram for such A2X2 species as a function of bending. For 
N2X2 with the configuration . . . ( l ~ , , ) ~  the planar geometry is 
clearly favored. For 0 2 X 2  with the configuration ...( lrJ4, 
from the structural observation that the skewed form is found, 
we again see that the preferred geometry is the one where two 
orbitals are stabilized rather than one, i.e., the X ligands avoid 
sharing the same A2 orbitals. 

Similar arguments may be used to rationalize the eclipsed 
conformation in HgPh2 systems. Here in this d’O species both 
M-L n-bonding (mainly ligand) and M-L n-antibonding 
(mainly metal d) orbitals are occupied. In our previous 
discussionsI0 of systems containing n donors we have found 
it convenient to allow the stabilization energy of the occupied 
M-L n-bonding set to cancel the destabilization of the M-L 
n* set when viewing the more energetic u interactions. Here, 
where the angular geometry is controlled by n bonding, we 
focus on the destabilization energy of these n* orbitals, since 
energetically this is strictly larger than the corresponding 
stabilization energy of their bonding counterparts. From both 
the Hiickel scheme of Figure 1 and the perturbation analysis 
in Figure 2 we can readily see that the eclipsed form is more 
stable for this electronic configuration. The same factor that 
gave the smallest stabilization energy now gives this geometry 
the smallest destabilization energy with the antibonding or- 
bitals occupied. Thus, in cases where both M-L n-bonding 
and -antibonding orbitals are occupied, sharing of orbitals is 
a favorable situation. A similar orbital-sharing arrangement 
is found in low-spin, d8, square-planar systems typified by 13.26 

a different component of the A, orbital derived from the O2 

R=Me R‘=Ph 

13 

In addition to electronic effects there is, of course, a steric 
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reason for the 90° dihedral angle between the plane defined 
by the X-Ni-X atoms and the planes of the phenyl rings. 

In all of these examples the system has the capability of 
adjusting from an unfavorable angular geometry. But what 
about those systems where the angular disposition of ligands 
is fixed? We may divide them into two types: those species 
where there are two different types of ligands (e.g., axial and 
equatorial in the trigonal bipyramid; A and B sites in the 
dodecahedron) and those molecules where two chemically 
different ligands share the same central-atom orbital. Ex- 
amples of this will be discussed in the next sections. 
Systems with Two Different Ligand Sets 

We have looked at this situation before when rationalizing 
computed bond-overlap populations and observed relative bond 
lengths in do five-, seven-, and eight-coordinate geornetrie~.’~ 
In general, the quartic stabilization energy term of eq 2 for 
each bonding orbital contains (nl,n2) from the two different 
sets of symmetry-unrelated ligands (eq 8). Here nl and n2 

(8) 

are numbers, not necessarily integers, which are calculable 
from the explicit form of thef(6,$) of eq 4. Thus, the quartic 
term may be written as eq 9. We may then split up this term 

into a contribution (n12 + nln2)7$7x4 associated with the ligand 
set 1 and (nz + nlnz)yASA4 with set 2. Division of each term 
by the number of ligands in each set leads to the quartic 
destabilization energy per M-L bond. Therefore, the sta- 
bilization energy associated with the axial ligands in a Dnh 
complex of the above type depends in general upon the number 
of equatorial ligands present (and vice versa) in a very simple 
fashion via the cross term, nln2 above. In these molecules this 
is true for metal d-ligand Q interactions, but the corresponding 
energies for interaction with the metal p orbitals show that 
since axial and equatorial interactions are separable (axial - 
pz only, equatorial - px, p,, only) the axial bond stabilization 
energies from this source remain constant throughout the 
series: trigonal bipyramid (TB), octahedron (OCT), pen- 
tagonal bipyramid (PB), and hexagonal bipyramid (HB). In 
contrast, however, the equatorial bonds become progressively 
weakened such that, as a general rule, rax/req > 1 for TB but 
rm/r < 1 for PB and HB. We have rationalized along similar 
lines% the relative bond lengths in simple main-group systems 
(e.g., ClF,, SF4, BrF5, PF5, and IF7) by dividing up the quartic 
destabilization term in the obvious way between two different 
ligand sets. 
Change of Coordination Number 

One of the most remarkable discoveries in the field of 
transition-metal carbonyls has been the formulation by 
Timney7 of a simple master equation which predicts fre- 
quency-factored force field (F4) ‘‘COY’-stretching force 
constants,fco, very accurately (eq 10). HerefMCo is the F4 

(10) 
force constant for the isoelectronic monocarbonyl (e.g., CrCO 
for Cr(C0)6 and Mn(C0)5Br), q is the formal charge on the 
complex, and nB is the number of CO groups at  an angle 6 to 
the one being considered. Thus for Cr(CO)6fco =fCrCO + 
f,,,,,(CO) + 4jJCO). This expression can be extended to 
includefe(X) when other groups (X = PPh,, PF,, halide, NO, 
etc.) are also coordinated to the carbonyl (eq 11). Re- 

markably, thefs(X) for a given value of 0 andf’ are inde- 
pendent of the metal, the charge, or the composition of the 
complex. For the CO ligand some values offe(C0) are given 
in Table I. We may derive an equation very similar to eq 

PAS;’ = PA(nlSA2 + nZSA2) 

YAS~~’~ = yA(n12 + 2nln2 + nz2)SA4 (9) 

f C 0  = fMCO + xnafe(CO) + fl 

f C 0  = f M C O  + x n @ ( c o ) f e ( c o )  + Cn@(X)fs(X) + elf' (1 1) 

Table 1. Values of Timney fe Values’ and the Corresponding 
Sensitivity Parameters (&a)  Calculated by Using Our Simple Model 

f e (CO) ,  fe(N2), 
N m - ’  N m - ’  be 

octahedral 
cis 33.5 14.0 2 
trans 126.1 52.0 4 

tetrahedrala 37.3 5.7 1.43 
trigonal bipyramidalblc 

ax-ax 126.1 4 
ax-eq 25.5 2 
eq-eq 51.4 1 

a For a d’O system. For a low-spin d8 system. There is an 
ambiguity in the determination of these three values; the ax-ax 
parameter has been fixed a t  the value for the octahedral (trans) 
parameter. The other two then follow from the experimental 
data. The same comment applies to  the be values. 

10 by using our approach. By looking at  the u or n manifold, 
we will obtain equations of the form of eq 12 (here shown 

specifically for the n case) which describes the Q- or n-bond 
stabilization energy in a similar additive way in terms of 
angular constants, bo(CO). 

Let us look first at  the n-stabilization energy afforded a 
low-spin d6 M(CO), system which has one of the geometries 
based on the octahedron shown in 14. In this geometry Q and 

Cco(a) = a - Cnsbe(C0) (12) 

14 

a interactions are separable because of the orthogonal ar- 
rangement of the ligands. In each case we see three n-type 
orbitals, derived from the t2g trio at  low energy. The a- 
stabilization energy of these orbitals after interaction with the 
ligand a* orbitals may be written in the form of eq 5 by using 
the simple approach we have shown previously for the allene 
system. S,  is now the overlap integral between one component 
of the n* orbital of a CO ligand lying along the z axis with 
dxz. 15 shows the results for the octahedral case and 16 for 

\zz - 3pns;-9y,s; 

x y  4P,Si - lSv,Si 

16 

a square pyramid where the axial/basal angle is set at 90’ for 
simplicity. For the octahedron the total n-stabilization energy 
(low-spin, d6) is C(a) = 24PJT2 - 96yJT4, and, therefore, 
the K stabilization per M-CO linkage is Cco(n)  = 4&S: - 
1672:. For the square pyramid a similar analysis gives C(a) 
= 20PJ,Z - 68732. In order to calculate Cco(a) we need 
to partition the quartic terms of 16 between the axial (set 1) 
and basal (set 2) ligands. This is readily done by following 
the prescription outlined in the previous section. The xy orbital 
is entirely involved in basal bonding (nl = 0, n2 = 4), but xz 
and yz  have a 2PJ,’ contribution from basal (nl = 2) and 
a PJ,’ (n2 = 1) contribution from axial ligands. This par- 
titions the quartic term into 6yJT4 (from basal) and 3 ~ 3 , ~  
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(from axial) ligands (9y+!3,4 total). Thus E,,(..) = 4PJ2 
- 12y+!3,4 and E&(..) = 4PJ2 - 14yJ:. We may calculate 
the relevant values for all of the bonds in the structures of 14. 
They fit a simple equation given by eq 13. Here A = 4PJ2 

- 4yJ; and B = 27+ST4. Thus, the sensitivity parameters 
of eq 12 are b9,. = bcis = 1 and blEo0 = b,,,,, = 2.  There is 
good evidence that the CO-stretching force constant is 
dominatedz9 by changes in R bonding between metal and CO, 
and this equation is then immediately comparable with eq 10 
without the charge term. It represents a decreasing M-CO 
stabilization energy on increasing coordination number, which 
is reflected in a correspondingly higher CO-stretching force 
constant. Tetrahedral and trigonal-bipyramidal molecules may 
be included in the scheme30 and the results are given in Table 
I. The results of the present analysis are in general qualitative 
agreement with the Timneyfs values. From Smith’s EHMO 
 calculation^^^ on octahedrally based M(CO),X6, systems we 
may readily derive eq 14 which describes pretty well the M-C 

M-C x bond order = 2.000 - 0.1029n,,ans - 0.05314nC,, 
(14) 

x bond order in structures of this type. Interestingly, the ratio 
of the two sensitivity parameters here (1.94) is close to our 
value of 2 in eq 13. What, of course, our approach does not 
shed any light on is the rather remarkable fact that thefs 
values are independent of the nature of M (at least for the 
Cr-Ni series that have been most extensivly studied) or its 
oxidation state. A priori, one would have anticipated that the 
P,, y,, and S, parameters would have been sensitive to such 
changes. 

A similar analysis may be carried out for the u manifold 
of the molecules in 14. We find an exactly similar expression 
(eq 15). Here A ’ =  2PJ; - 272: and B’= 273: for all 

Cco(a )  = A - [nus + fntransIB (13) 

Eco(0) = A ’ -  [Ydncis + ntransIB’ (15) 
molecules except the T-shaped one. In this case two d orbitals 
mix together and complicate the situation. 

Both eq 13 and 15 indicate that for these systems the 
geometry with the maximum number of cis ligands is most 
stable. In each case addition of a cis ligand causes a smaller 
destabilization of the system than addition of a trans one. We 
have seen32 this result in the u manifold before, and for this 
particular electronic configuration (low-spin, d6) Cr(C0)4  
prefers the octahedral cis divacant geometry rather than the 
square plane.33 We now see that here u and a effects work 
in the same direction. This equation also provides a neat 
rationale for observation that the M-L vibrational frequencies 
and force constants in general decrease as the coordination 
number of the metal increases. Adams’ extensive listing4 shows 
many examples. 

Note again that these arguments based on the quartic term 
hold only for those cases where the larger quadratic term is 
independent of geometry. Although this is true for the low-spin 
d6 systems under consideration, for low-spin ds molecules, 
square-planar (e.g., Ni(CN)?-) and T-shaped (Rh(PPh3)3+ 34) 
geometries are found for three- and four-coordinate molecules. 
These structures are set by operation of the angular-dependent 
quadratic u term. 

Structural studies of transition-metal carbonyls and their 
derivatives suggest that in addition to the trend shown by the 
force constant data above, the M-CO bond shortens with 
increasing substitution by ligands, X, which are usually poorer 
a acceptors than CO. Importantly, M-CO bonds which are 
trans to a X substituent in an octahedrally based low-spin d6 
system are significantly shorter (Table 11) than CO bonds 
which are trans to other CO ligands. This is in agreement with 
our scheme above and, of course, the Timney equation. In 
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Table 11. M-C Bond Lengths in M(CO),X,_, Compounds 

M-C dist, A 

molecule 

Cr(CO), 
Cr(CO), PPh, 

Cr(CO), P(OPh), 

W(CO) tmtcs 
Cr(CO),dppef 
Mo(CO),dppe 
trans-Cr(CO),[P(OPh),], 
fac-Cr(CO), (PPh,) , 
cis-Cr(CO), (Ph,), 
(CO), Cr(triphos)Mn(CO) , Br 

trans to CO 

1.909 (3) 
1.867 (4)- 

1.892 (5)- 
1.894 (4) 

1.904 (6) 
1.95 (2) 
1.884 (7) 
2.04 
1.88 (1) 

c is to  co ref 

a 
1.845 (4) b 

1.861 (4) b 

2.05 (3) e 
1.831 (7) g 
1.93 h 

i 
1.838 (7) j 
1.817 k 

1.70 (5) l  
1.61 (5)- o 

(CO), Cr( triphos)Mn(CO) , Br 1.7 1 (5 ) -  1.96m9n o 

a A. Whitaker and J.  W. Jeffrey, Acta Crystallogr., Sect. B ,  23,  

tmt  = thiomorpholine-3-thione. 
Similar results are found in a variety of related species: e.g., M. 

1.88 ( 5 ) m f n  
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addition to Cr(CO), and Cr(C0)4 having C3, and Cz, ge- 
ometries, respectively, there is a much larger number of cis 
and fac di- and trisubstituted carbonyls than trans and mer 
species. Also in low-spin d8 trigonal-bipyramidal molecules, 
carbonyl groups prefer equatorial positions where they receive 
a smaller quartic R destabilization term (bo = 1 from Table 
I) than in the axial positions (b,  = 4). The overall energies 
of attachment of the extra ligand are, of course, a stabilization 
via the (angle-independent) quadratic term. This site pref- 
erence is in contrast to the preference of u donors for the axial 
positions. Both of these conclusions may also be reached by 
rather different molecular orbital arguments.35 

If other ligands are coordinated to the metal in addition to 
CO, then we may formally include them in our perturbation 
scheme (see later for exact details). The general result is in 
eq 16 where C is a product term containing both X and CO 
Cc0(r) = A - [nciS(‘O) + 2ntrans(Co)]B - 

[ncis(x) + 2ntrans(X)] C (1 6) 

AOM parameters. Table I shows that the three available 
values for N2 are qualitatively in the same order as the bo 
values. 
The Case of Different Ligands 

We consider here a simple, linear, triatomic trans LML’ 
system where the central M atom contains a single orbital (d,z, 
pz, or s) which may interact with the u orbitals on the two 
ligands L and L’. Three cases may immediately be described 
within the language of the extended Huckel method. (i) The 
ligands L and L’ are identical, and the u orbitals have equal 
values of Hii and S ,  (orbital energy and overlap integral with 
the central-atom orbital, respectively). (ii) The ligands are 
different with different S, but have the same values of Hii. 
(iii) Both Hii and S, are different. Cases (i) and (ii) are easily 
solved by solution of the secular determinant. If lHjjl C (Hiil, 
then the three molecular orbitals that result are shown in 17. 

H. S. Preston, J.  M. 
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The M-L,L' bonding orbital lies to lower energy than Hi, and 
the antibonding orbital to higher energy than H,]. A non- 
bonding orbital lies at  Hli .  Case (iii) is more complex; the 
secular determinant reduces to a cubic. The nonbonding level 
lies somewhere between the Hii values of L and L'. 

First, we compare cases (i) and (ii) using the perturbation 
formalism described above. The stabilization energy of the 
bonding orbital in case (ii) is given by eq 17. For case (i) 

k2(S,2 + Sal2) k4(S,Z + Si2)2 
(17) - t =  

A €  At3 
S, = S,'. If the stabilization energy is now distributed between 
the M-L and M-L' bonds, by dividing the cross terms in the 
quartic portion equally, then in our shorthand notation (since 
both ligand u orbitals have the same value of Hii) with two 
electrons in the bonding orbital the stabilization energies of 
each ML bond may be written as in eq 18. Note that the 

CML(a) = W,+SS,Z - 2y,(S,4 + S:S,,'*) 

c,,(~) = 2p+y - 2y,(s:4 + s;~s:) (18) 

nonbonding orbital which may also be occupied receives no 
stabilization energy and does not figure in these  expression^.^^ 
These equations immediately give us a trans influence. The 
stabilization energy of the ML bond depends upon the 
properties of the ligand sharing the same orbital. In the 
symmetric ML2 complex the stabilization energy of each ML 
bond is 2P,+S: - 4y,+S$. Thus the difference in ML stabi- 
lization energy on changing the nature of the other ligands 
is given by eq 19. If the ligand L' has a larger overlap with 

AML = 2y,,Ss,Z(S,2 - S,' 2, (19) 

the central atom than does L ( S i  > S,), then the ML bond 
is weakened. If S,' < S,, then the ML bond is strengthened. 
A plot of S?(S,2 - SJ2) against the relevant change in ML 
bond-overlap population from an EHMO calculation on a test 
MH2 molecule in which S, and S,' were varied by changing 
the ML and ML' distances gave a smooth curve which en- 
courages our qualitative use of this simple function. 

Case (iii), in general, gives rather complex expressions for 
the orbital energies on direct solution of the secular deter- 
minant, but here let us use the concept of ligand additivity (eq 
3) which seems to be valid in the limited number of cases 
where it can be tested. This puts the second-order stabilization 
energy of the bonding orbital in MLL' equal to the sum of 
that due to ML and ML' (eq 20). In this case the quartic 

term is simply given by eq 21. The analogous equation to 

eq 19 representing the bond weakeningfstrengthening com- 
pared to that in ML2 is then eq 22.37 This is tremendously 
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important in understanding the trans influence in octahedral 
and square-planar complexes. 

McWeeney, Mason, and T o ~ l ~ ~  decided that a good 
function with which to view the trans influence of ligands in 
square-planar complexes was the function S2/Ae since from 
perturbation theory this represented the size of the ML in- 
teraction. S was the ligand u-metal 5p overlap integral and 
At their orbital energy separation. This, of course, is exactly 
the parameter occurring in the brackets of eq 22. Increasing 
Pt-C1 bond length in trans PtClX2R complexes was well 
correlated experimentally with decreasing orbital electro- 
negativity of the R g r o ~ p . ~ , ~ *  This is precisely what we find 
from eq 22 also. The ML stabilization energy decreases (and 
thus we expect the ML bond length to increase) with in- 
creasing l / A d  or decreasing Ad. Since the H,, value remains 
fixed, decreasing A d  represents decreasing orbital electro- 
negativity. Langford and Gray4 based their theory of the trans 
influence on the magnitude of M-L and M-L' overlap in- 
tegrals only. If the a orbital of the ligand L has a greater 
overlap with the metal pa orbital than does that of L', then 
the ML bond is strengthened at the expense of the ML' bond. 
This is clearly a restatement of eq 19. The overlap calculations 
of Gray and Langford have been extended38 to a series of 
metals and a number of ligands. For example, in Pt(I1) 
complexes these a-overlap integrals have the same qualitative 
trends as the bond lengths in the PtClX2R series. 

P e a r ~ o n ~ ~  introduced the concept of antisymbiosis by his 
conclusion that the ligands which produced the largest effect 
in the bonds trans to themselves were also the ones which were 
most susceptible to bond-length variations by changes in the 
nature of the trans ligand. Equation 22 describes this effect 
perfectly (it is also observed in the relative overlap populations 
in our hypothetical MH2 molecule). A large change in ML 
stabilization energy is to be expected if S,'2/Ac for the trans 
ligand L' is very different from S:/Ac for L. In addition, a 
large effect is to be seen in the ML bond if S,2/At,  the term 
outside the parentheses, is large itself. 
a Donors 

The systems which have generally been studied in rela- 
tionship to the trans influence have been low-spin d6 and d8 
complexes containing a-donor ligands where all ML a- and 
a-bonding orbitals are filled, 18, and all ML a-antibonding 

d6 

& t2g 
metal LLeQ d 

18 

ones as well. As before, when considering the angular ge- 
ometry of two planar ligands around a central metal atom 
where the antibonding orbitals are filled (e.g., HgPh2), we need 
to focus on the destabilization energy of the ML antibonding 
a orbitals. The energetics are described by eq 23 and 24 which 

M-L destabilization = 2 6 3 2  - 2y,(S,4 + S2S,'2) (23) 

AML = 2yTS2(S,' (24) - 5'2) 
are exactly analogous to eq 18 and 19. The difference in 
stabilization energy for MLL' is given in eq 24 and implies 
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that the stronger the ML’ IT interaction becomes the stronger 
the ML bond becomes. Since we are concerned here with 
occupied M L  antibonding orbitals, the weakening/ 
strengthening process is opposite to that for the ir-acceptor 
or a-donor cases we described above. It is unfortunately 
difficult to find data which either support or oppose the 
implications of eq 24. 

Systems where a a donor (L) and a T acceptor (L’) share 
the same central-atom orbital constitute an interesting var- 
iation. For the case where this ML a-antibonding-ML’ 
r-bonding orbital is filled, reworking the above arithmetic (but 
with a sign change for AE’, converting it from a ir donor to 
an acceptor) shows that the u acceptor will weaken the ML 
bond but the T donor strengthens the ML’ bond. At face value 
this prediction does not seem to hold. CO and C2H4 are not 
particularily good trans-influence ligands, even though they 
are good T acceptors. Recall, however, that the size of the 
effect also relies on how good a ir donor the trans ligand is 
(27$,2 term in eq 24) via the antisymbiotic effect. Unless 
L is a good ir donor, it will not be significantly affected by 
the ir-acceptor properties, however good they are, of the L’ 
ligand. 
Polarization by Virtual Orbitals and the Trans Influence 

Although our scheme gives results which are in good accord 
with experiment and quantifies the three points noted in the 
Introduction, there is another factor which in some cases may 
be of equal or perhaps greater importance. This mechanism 
involves two orbitals on the central atom (each of different 
parity), whereas in the method previously developed only one 
orbital on the central atom was considered. The mixing of 
these two orbital types as the symmetry of the molecule is 
lowered gives rise to a trans- or mutual-ligand influence. We 
shall show how this mechanism operates in some detail for 
octahedral ML6, square-planar ML4, and trigonal-bipyramidal 
ML, complexes where L is a u donor. 

On the left side of Figure 4 are the well-known valence 
orbitals of an octahedral ML6 molecule. The ligand orbitals 
are illustrated here as s orbitals for convenience; sp-hybridized 
donor functions could equally well be utilized with the same 
result. The perturbation to be initially considered consists of 
increasing the electronegativity of one of the ligands, L’, as 
illustrated in 19 - 20. The orbitals of 19, shown on the left 

I; L 

L L 
19 20 

of Figure 4, will respond by mixing together to produce a new 
set orbitals which describe the perturbed system. It is not, 
however, necessary to trace the evolution of all of the orbitals 
in 20 from 19. There are three factors which simplify the 
analysis for our purposes. (i) Only those orbitals which 
transmit the perturbation need to be considered. In other 
words, all crucial orbitals in 19 must have atomic coefficients 
on what will become the perturbed ligand and the trans one. 
(ii) Only mixing of virtual orbitals into occupied ones will 
produce a M-L overlap population differential between the 
cis and trans ligands. The intermixing of occupied sets will 
serve to redistribute electron density within each molecular 
orbital; however, the overlap population between each atom 
is a sum over all occupied orbitals. Therefore, the effect of 
this intermixing on the overlap population cancels. (iii) The 
mixing coefficient of orbital j into orbital i is given by eq 25 

(to first order). Equation 25 indicates that the most important 
mixings will occur between orbitals with the smallest energy 

Jeremy K. Burdett and Thomas A. Albright 

Figure 4. The important valence orbitals and approximate ordering 
of energies for ML6 (on the left side of this figure) and SH6 (on the 
right side) molecules. 

gap (HOMO-LUMO interactions) and/or the largest nu- 
merator in the above expression. With these simplifications 
in mind let us return to the 19 -+ 20 transformation. From 
inspection of Figure 4 it is clear that one component of the 
t,, set, 21 and one component of eg, 22, are the occupied and 

21 22 23 

unoccupied orbitals, respectively, which form the dominant 
contribution to the trans influence. Recall that L’ is more 
electronegative than L; thus, 22 mixes into 21 with the phase 
shown, increasing the electron density on the more electro- 
negative ligand. The shape of the resultant orbital, 23, il- 
lustrates the increase in overlap population for the trans M-L 
bond and also points to a small weakening of the cis M-L 
bonds. We contend that this increase in overlap population 
will be reflected in a shorter M-L bond. The concept of 
mixing an antibonding level into the ground state to produce 
a stronger bond may seem a little unsettling at first. The 
overlap population in 23 can be derived from contributions 
from 21 and 22 (which will lead to only a small difference 
between the cis and trans overlap populations a t  reasonable 
values of the mixing coefficient) plus a “cross term”, 24. This 

24 
cross term which contains the largest atomic coefficients in 
21 and 22 dominates the overlap-population differential. An 
EHMO calculation on a model d6 MH6 molecule40 showed a 
direct relationship between the cis and trans M-H overlap- 
population difference and the first-order mixing coefficient 
of 22 into 21 as a function of changing the Hii on one of the 
hydride ligands. A similar effect is obtained if the overlap 
integral of the u orbital on L’ with the metal p orbital on M 



Trans Influence and Mutual Influence of Ligands 

decreases by changing the orbital exponent on L’. An analysis 
of ds square-planar ML4 perturbations, 25, and d8 trigonal- 
bipyramidal ones, 26, can readily be deduced. The dominant 

25 26 

mixing, shown by 27 and 28, is a natural extension to the ML6 

os.i;.t+-+ 
27 

+ t + -  
28 

case. Thus in each system this model predicts that the 
substitution of a more electronegative ligand will strengthen 
the trans M-L bond which is in accord with experimental 
data.2 

However, the reverse trend has often been found in 
main-group compounds, depending upon the oxidation state 
of the central metal and electronegativity of the ligands.2 Let 
us consider the perturbation on going from SH6 to SHsX 
where X is more electronegative than H.  This is diagramed 
in 29 -+ 30. The important valence orbitals of SH6 are 

H X 
I /H I H  

H’I 
H 

H-S-H __c H-CH 
H‘A 

29 30 

sketched on the right side of Figure 4. It is found the the 
mixing of alg, 31, into one component of eg, 32, forms the major 

31 32 33 34 

contribution to the S-H overlap-population changes. The 
resultant orbital, 33, indicates a weakening of the trans S-H 
bond and a strengthening of the cis ones. One might have 
thought, using energy-gap arguments, that one component of 
2tl,, 34, would mix into 31 more than 32. This tends to 
strengthen the trans S-H bond and has no effect on the cis 
ones. However, the mixing coefficient of 32 into 31 is over 
twice as large as that for 34 into 31 from our extended Hiickel 
 calculation^.^^ This is a consequence of a much larger nu- 
merator in eq 25 (via the H,, term) for the former interaction 
compared with the latter. In actual fact, both interactions 
occur so that the trans S-H overlap population diminishes 
slightly while the cis ones increase.42 An extension to other 
main-group compounds with alternative geometries (e.g., PHS, 
etc.) leads to analogous results. This sort of mechanism which 
we have outlined in this section has been viewed, and similar 
results have been obtained by using an umbrella perturbation 
method by S h u s t o r ~ v i c h . ~ ~  Another approach which leads to 
the same resultant orbitals as the procedure we have used 
considers the valence orbitals of a trans L’-.L fragment and 
their interaction with the valence orbitals of the ML,-2 
fragment. Thus SH6 is constructed from SH4*+ and H-.H2-. 
The orbital-interaction diagram is then modified by perturbing 
the H-H2- fragment to an X-H2- one. A recent example of 
this method as applied to bond length variations has been given 
by The rehybridization (as the nature of the trans 
ligand changes) model was suggested many years ago by 
S ~ r k i n . ~ ~  

Clearly then, there is more than one effect predicted to 
operate here. In some cases such as the underwriting of 
Timney’s equation (eq 10) the orbital-sharing ideas are the 

. 
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only way to describe the problem. In other cases, notably the 
trans influence, both effects may be important. In none of 
our examples in this paper do we find any cases where the two 
approaches give opposite results. By way of contrast,& in our 
discussion of bond length/bond angle correlations in small 
molecules, we found one case where orbital-sharing ideas gave 
an answer in agreement with the observed structural trends 
and virtual orbital mixing gave the opposite and incorrect 
result. We also found cases where the reverse was true- 
virtual orbital mixing dominated. Thus, rather than proposing 
an alternative way to look at the structural features in these 
molecules we hope that we have drawn attention to two of the 
simple molecular orbital effects which may be important. 
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Equilibrium constants for the reaction PM-OH2 + PM-OH (KOH) are reported where P = tetraphenylporphyrinsulfonate 
or hematoporphyrin and M = Cr(III), Mn(III), Fe(III), Co(III), or Rh(II1). The observed trends in the binding constants 
may be explained by a simple electrostatic (ligand field) model. For a tetragonal field, the calculated effective charge 
along the z axis is shown to correlate with the binding constant of axial OH-. Similar trends are observed for imidazole 
binding to metalloporphyrins. It is found that the magnitude of the equilibrium constants is surprisingly independent of 
the nature of the porphyrin substituents. Finally, the relationship between these trends in axial bonding and heme protein 
conformational energy is briefly discussed. 

Introduction 
The reactions of ligands with metalloporphyrins have long 

been of active interest to both biochemists and coordination 
chemists.’ However, this interest has not yet translated into 
a general understanding of the factors which control metal- 
loporphyrin-ligand equilibria (and kinetics).2 

To understand the general trends in such bonding, two 
limiting approaches might be taken. The first treats me- 
talloporphyrins by using a tetragonally distorted ligand field 
model, so that some molecular orbitals may be designated as 
clearly metal centered. The occupancy of these orbitals would 
thereby influence the strength of metal-ligand interaction. In 
this approach, porphyrins are treated much the same as other 
ligands (e.g., simple amines) and constructs of formal metal 
oxidation states retain some significance (e.g., [ C O T P P S ~ ] ~ - ~ ~  
may be treated as a “d6 Co(II1)” complex). 

By contrast, it is often argued in the extensive porphyrin 
literature that metal-ligand orbital mixing is so extensive that 
the concept of metal centered MO’s loses For 
example it has been noted that there is a “necessity to choose 
a strongly delocalized model of electronic configuration of the 
complex compared to the usual metal centered description”.6 
Others have argued in a similar vein that orbital mixing is so 
complete in metalloporphyrins that assignment of electrons 

to metal-centered orbitals and concurrent assignment of formal 
oxidations states is i n ~ a l i d . ~ , ~  Previous investigations of ligand 
equilibria of metalloporphyrins have been limited to a single 
metal with a single type of p ~ r p h y r i n . ~ - ~  Thus cross com- 
parisons could not apparently be made between, e.g., CoTPPS 
and FeHMP. In this case, trends in metalloporphyrin ligand 
equilibria would not be easily discerned. 

In order to test these limiting models, we have determined 
ligation (hydrolysis) equilibria constants 

KOH 
MPOHz MPOH + H+ 

for a series of metalloporphyrins M P  where M = Cr(III), 
Mn(III), Fe(III), Co(III), or Rh(II1) and P = tetraphenyl- 
porphinesulfonate (TPPS) or hematoporphyrin (HMP). More 
limited data for metal-imidazole binding are also reported. 
The results are shown to be semiquantitatively explained by 
a simple electrostatic model. Finally, the implications of these 
results for heme protein chemistry are briefly discussed. 
Experimental Section 

Materials. Ligands. Hematoporphyrin free base was purchased 
from Sigma Chemicals. TPP and TPPS2’ were synthesized and 
purified by standard procedures.’,’6 All metal salts and metal carbonyls 
were reagent grade, purchased from Alfa. Water was doubly distilled 
and deionized. 
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