Table I. Vibrational Spectra of Methyltrioxorhenium^a

			infrared ^b		
Raman			gas	Ar	
solid	soln ^c	soln ^c	(70 °C)	matrix	assignt
999 s ^d	999 s, p ^e	999 w	1003 w 985	1000 ms 970 vs	ReO ₃ sym str
964 m		960 s	975 vs 962	966 m	ReO_3 antisym str
			743 mw		CH, rock
530 m			574 w	566 w	Re-C
330 m 242 m			324 w		ReO_3 def

^a Reported range 1100-250 cm⁻¹ (gas and matrix infrared) or to 100 cm⁻¹ (solid Raman). ^b A hexachlorobutadiene mull of the solid showed weak IR bands at 2895 and 2980 cm⁻¹ (C-H stretching modes); in addition, there was a further slightly stronger band at 1360 cm⁻¹ (C-H deformation). Corresponding bands were seen in the matrix infrared spectrum. ^c Solutions (in CS₂) were examined only in the region of 1000 cm⁻¹. ^d s = strong, m = medium, w = weak, v = very. ^e p = polarized.

routes could lead to Me_2WO_2 , $MeReS_3$, and possibly $HReO_3$ for example. We do not propose to attempt these syntheses.

Acknowledgment. We thank Dr. J. Evans and Mr. S. Jenny for help with the mass spectrometric and matrix-isolation studies, respectively.

Registry No. MeReO₃, 70197-13-6; Me₄ReO, 53022-70-1; Me₃ReO₂, 56090-01-8.

References and Notes

- Mertis, K.; Wilkinson, G. J. Chem. Soc., Dalton Trans. 1976, 1488.
 Mertis, K.; Williamson, D. H.; Wilkinson, G. J. Chem. Soc., Dalton Trans.
- 1975, 607. (3) Van Schalkwyk, G. J. Ph.D. Thesis, Southampton University, 1975.
- (4) Beattie, I. R.; Crocombe, R. A.; Ogden, J. S. J. Chem. Soc., Dalton Trans. 1977, 1481.
- (5) Rouschias, G. Chem. Rev. 1974, 74, 531.
- (6) Schmidt, M.; Schmidbauer, H. Inorg. Synth. 1967, 9, 149.

Contribution from the Anorganisch-Chemisches Institut der Universität, Göttingen, West Germany

Fluoride Ion Induced Cyclization of Trifluoroacetonitrile with Oxygen- and Sulfur(II)-Containing Nucleophiles

O. Glemser and Jean'ne M. Shreeve*1

Received March 28, 1979

The high susceptibility of perfluoroalkyl nitriles to attack by nucleophiles, such as ammonia,²⁻⁴ hydrazine,⁵ hydrogen sulfide,^{3,6-8} alcohols,⁹⁻¹¹ hydroxylamines,^{10,12} thiols,¹³ and amines,^{3,14,15} results from the strong electron-withdrawing effect of the perfluoroalkyl group which enhances the electrophilicity of the nitrile carbon. For example

$$CF_{3}CN + ROH \xrightarrow{R_{3}N} CF_{3}C(=NH)OR^{10}$$

$$CF_{3}CN + RSH \xrightarrow{K_{2}CO_{3}} CF_{3}C(=NH)SR^{13}$$
15

 $CF_3CN + R_2NH - CF_3C(== NH)NR_2^{T}$ $CF_3CN + H_2N(CH_2)_XNH_2 - CF_3C(== NH)NR_2^{T}$

$$ECF_{3}C(=NH)NH(CH_{2})_{X}NH_{2}J^{14} \rightarrow HN \xrightarrow{(CH_{2})_{X}}N + NH_{3}$$

CF3C(=NH)NH(CH2)+HN(HN=)CCF3

In this paper, we wish to report a route to a 1,3-dioxolane, a 1,3-oxathiolane, and a 1,3-dithiolane in which fluoride ion catalyzes the cyclization reactions of CF_3CN with 1,2ethanediol, 2-mercaptoethanol, and 1,2-ethanedithiol. While these syntheses may not be surprising, we believe this is a facile way to these interesting compound types which heretofore has not been explored. In addition, a seven-member heterocycle is also obtained.

Previously, unfluorinated nitriles (RCN; R = Ph, n-C₇H₁₅, o-, m-, p-tolyl, p-NO₂C₆H₄) when refluxed at length with 1,2-ethanediol produced hydroxyalkyl esters, RC(O)O-(CH₂)₂OH.¹⁶ However, 2-oxazolines result when amino alcohols H₂N(CH₂)_nCHROH (R = H, CH₃; n = 1 or 2) are reacted with a wide range of alkyl and aryl nitriles in the presence of catalytic amounts of metal salts, e.g., ZnSO₄, ZnCl₂, or (CH₃C(O)O)₂Cd.¹⁷ With excess base, (CH₃)₃N, a 2-oxazoline is also formed in the reaction of trifluoroacetonitrile and 2-chloroethanol.¹¹

With cyanogen, a variety of interesting bicyclic compounds are obtained when the reactants are diamines¹⁸ or amino mercaptans.¹⁹ However, cyclization does not occur with amino alcohols²⁰ or with diols.²¹ Cyanogen with H₂NCH₂CH₂OH gives [HOCH₂CH₂N(H)C(=NH)]₂ or [H₂NCH₂CH₂O-C(=NH)]₂ (depending on the base catalyst used), and with HO(CH₂)_xOCH and HCl, oxaldiimidate dihydrochlorides, [HO(CH₂)_xOCNH₂Cl]₂, result.

Results and Discussion

While there are large numbers of 1,3-oxathiolanes, C₃OS, 1,3-dithiolanes, C₃S₂, and 1,3-dioxolanes, C₃O₂, described in the literature,²² these are usually synthesized from 2-mercapto alcohols with ketones or aldehydes or methyl vinyl ethers in the presence of an acid catalyst, from aldehydes or ketones and 1,2-alkanethiols with anhydrous HCl, or from aldehydes or ketones or acetylene and 1,2-glycols or ethylene oxides. The ring closure reactions of CF₃CN in the literature are limited to those with diamines, e.g., H₂NCH₂CH₂NH₂, with concomitant loss of ammonia¹⁴ and with 2-chloroethanol¹¹ with loss of hydrogen chloride as (CH₃)₃N·HCl. In these cases, the cyclic products are an imidoazoline and an oxazoline; that is, each contains an imido (>C=N-) grouping. This is true also for the bicyclic compounds formed between cyanogen and diamines¹⁸ or amino mercaptans.¹⁹

However, in the reactions examined in this study, with sodium fluoride as the base, cyclization to form a substituted 1,3-dioxolane, a 1,3-oxathiolane, and a 1,3-dithiolane (II) occurs readily at room temperature when an excess of CF_3CN is used.

These compounds (II) are slightly volatile, colorless liquids which can be manipulated by using standard vacuum line techniques and are neither air nor moisture sensitive. The

0020-1669/79/1318-2319\$01.00/0 © 1979 American Chemical Society

sulfur-containing compounds have an unpleasant odor.

The formation of 2-amino-2-(trifluoromethyl)-substituted compounds must result from nucleophilic attack (enhanced by the fluorine ion) at the nitrile carbon to form the unisolable intermediate I which undergoes further nucleophilic attack with concomitant ring closure, viz.

No reaction occurs under the conditions used if NaF is not present. The yields range between 98% for E = O and E' = S and 30% for E = E' = S.

Although in no case is I or III isolated in these systems, it is interesting to note that in the reaction of a large excess of CF_3CN with $HOCH_2CH_2OH$ (NaF) it seems reasonable to suggest that III may be an intermediate since the product obtained in addition to II could result from an intramolecular condensation.

This compound is not formed under the conditions used, where CF_3CN was added in small aliquots until it was in excess relative to $HOCH_2CH_2OH$. However, when the CF_3CN was added in excess initially, the white, sublimable solid was also formed in about 20% yield with an accompanying reduction in the quantity of the 1,3-dioxolane.

Spectral data were very useful in assigning the correct structures for these new heterocycles. For the 2-amino-2-(trifluoromethyl)-1,3-dioxo(oxathio, dithio)lanes, ν_{NH_2} occurred between 3415 and 3315 cm⁻¹ and δ_{NH_2} as a broadened band at about 1610 cm⁻¹. No strong, sharp bands were observed in the 1675-cm⁻¹ region where $\nu_{C=N}$ should appear. Molecular ions were found for the dithio and the oxathio compounds with $M - NH_2^+$ ($M - O^+$?) the largest m/e for the dioxo compound. Other fragments are as expected for the proposed structures. Fluorine NMR spectra show CF₃ at ϕ -84.8, -81.7, and -77.4 as oxygen is replaced stepwise by sulfur in the ring. In the case of the proton spectra not only do the chemical shifts for CH₂O, CH₂S, and NH₂ occur in the appropriate region but the area ratios are invariably 1:1:1. The elemental analyses are in excellent agreement with theoretical values.

In the case of CF₃C(NH₂)N=C(CF₃)OCH₂CH₂O, elemental analyses confirm the empirical formula only. However, from the infrared spectrum, bands can be assigned to $\nu_{\rm NH_2}$, $\delta_{\rm NH_2}$, and $\nu_{\rm C=N}$ (1675 cm⁻¹). In the ¹⁹F spectrum, two resonances of equal area at ϕ -74.7 and -83.6 can be attributed to CF₃ groups in different chemical environments. That is, ϕ -83.6 agrees with our assignment of the resonance at ϕ -84.8 in CF₃C(NH₂)OCH₂CH₂O above and ϕ -74.7 with that of ϕ -74.4 for CF₃C=NSCH₂CH₂O where CF₃ is bonded to the imido carbon.²³ The NH₂ resonance occurs at δ 6.0 and the

and at 192 to $(M - C_2H_4O)^+$ [or $(M - C_2H_6N)^+$] and at 192 to $(M - C_2H_4O)^+$ [or $(M - C_2H_6N)^+$] are possible for the proposed cycle but impossible for the acyclic molecule $(CF_3C(NH)OCH_2)_2$.

Experimental Section

Starting Materials. Trifluoroacetonitrile was prepared by a standard literature method. The other reagents were standard shelf reagents and were used after drying over molecular sieves in the case of liquids and at 150 °C for NaF.

Reactions were carried out by using standard vacuum line techniques. Compounds were purified by sublimation, trap-to-trap separation, or prolonged exposure to dynamic vacuum. Infrared spectra were obtained by using a liquid film between KBr plates or solids as KBr disks. The ¹⁹F and ¹H NMR spectra were measured at 60 MHz with CCl₃F or (CH₃)₄Si as internal references. Mass spectra were obtained at 70 eV. Elemental analyses were completed by Beller Mikroanalytisches Laboratorium, Göttingen.

General Procedure. To a 50-mL Pyrex glass vessel equipped with a Teflon stopcock and containing 30–40 mmol of anhydrous NaF was added 5–15 mmol of the diol, mercaptoethanol, or dithiol and then CF₃CN was introduced in 1–2-mmol aliquots over a period of several hours. This mixture was warmed to 20 °C and was stirred for several hours. More of the CF₃CN was added until a 1 or 2 mmol excess was in the reaction vessel. The rate of reaction was moderate at room temperature as indicated by a slow decrease in the pressure of CF₃CN in the vessel. The product was removed with difficulty under dynamic vacuum (10⁻² torr) and easily separated from the excess CF₃CN by fractional condensation.

In a typical reaction, to $HSCH_2CH_2SH$ (8.6 mmol) and NaF (35 mmol) was added CF_3CN (11 mmol). After 1 or 2 days at ambient temperature, the very slightly volatile of $CF_3C(NH_2)SCH_2CH_2S$ was removed after extended exposure to dynamic vacuum (30% yield). No reaction occurred under the same conditions without NaF.

New Compounds. CF₃C(NH₂)OCH₂CH₂O. An 85% yield was found when 15 mmol of HOCH₂CH₂OH was reacted with 18 mmol of CF₃CN (excess NaF). The colorless slightly volatile liquid was purified by removing the product under dynamic vacuum at 0 °C after the excess CF₃CN was pulled off at -78 °C. IR (capillary film): 3420 (w), 3350 (w), 3000 (w), 2918 (w), 1687 (vw), 1610 (w), 1480 (vw), 1250 (sh), 1170 (s), 1060 (s), 1030 (m), 1013 (m), 955 (w), 780 (w), 718 (w), 627 (w), 572 (vw), 538 (vw), 440 (w) cm⁻¹. Mass spectrum: M - NH₂⁺, 141; M - OCH₂⁺, M - NH₂CH₂⁺, 127; CF₃CO⁺, 97; M - CF₃⁺, 88; CF₃⁺, 69; CH₂CH₂O⁺, 44. NMR: ϕ (CF₃) -84.8, δ (CH₂) 4.10 (mult), δ (NH₂) 2.42 (br). Anal. Calcd: C, 30.84; H, 3.87; N, 9.08; F, 36.7. Found: C, 30.57; H, 3.82; N, 8.92; F, 36.3.

CF₃C(NH₂)N=C(CF₃)OCH₂CH₂O. When CF₃CN was added in excess in one aliquot to HOCH₂CH₂OH (excess NaF), in addition to the cyclic compound II, CF₃C(NH₂)N=C(CF₃)OCH₂CH₂O was formed in 20–25% yield. This colorless sublimable solid melts at 72 °C. IR (KBr disk): 3450 (m), 3315 (w), 3270 (w), 3180 (m), 3015 (w), 2920 (w), 1675 (s), 1610 (vw), 1475 (vw), 1433 (m), 1205 (s), 1150 (s), 1165 (s), 1177 (s), 1110 (m), 1050 (m), 1025 (m), 985 (m), 943 (m), 810 (w), 730 (w), 718 (w), 640 (w), 568 (w), 557 (w), 540 (w) cm⁻¹. Mass spectrum: M − C₂H₄O⁺, 208; M − C₂H₄O₂⁺, 192; M − CF₃⁺, 183; CF₃COCH₂CH₂O⁺, 141; CF₃CNOCH₂CH₂⁺, 139; CF₃CO⁺, 97. NMR: ϕ (CF₃) − 74.7, −83.6; δ (CH₂) 4.10; δ (NH) 6.0 (br). Anal. Calcd: C, 28.40; H, 2.55; N, 11.00; F, 45.3. Found: C, 28.57; H, 2.38; N, 11.11; F, 45.2.

CF₃C(NH₂)OCH₂CH₂S. A nearly quantitative yield (>98%) was obtained when 6 mmol of HOCH₂CH₂SH (excess NaF) was reacted with 7.5 mmol of CF₃CN. The slightly volatile liquid was purified by fractional condensation. IR (capillary film): 3415 (m), 3340 (m), 2960 (m), 2895 (m), 1745 (w), 1613 (m, br), 1472 (w), 1440 (w), 1362 (m), 1343 (m), 1275 (m), 1175 (sh), 1150 (vs), 1048 (s), 1028 (s), 978 (s), 938 (m), 895 (s), 856 (s), 728 (s), 610 (m), 593 (m), 560 (w), 540 (w), 482 (w). Mass spectrum: M⁺, 173; M − CH₂NH₂⁺, M − CH₂O⁺, 143; M − CH₂CH₂S⁺, 113; CH₂CH₂S, 60; CH₂CH₂O⁺, 44. NMR: ϕ (CF₃) −81.7 pentet (J_{H−F} = 0.7 Hz), δ (NH₂) 2.53 (br), δ (CH₂O) 4.28 (tr of mult), δ (CH₂O) 3.10 (tr of mult) (J_{SCH₂−OCH₂ = 6 Hz). Anal. Calcd: C, 27.55; H, 3.56; N, 8.03; S, 18.29. Found: C, 27.75; H, 3.45; N, 8.09; S, 18.50.}

CF₃C(NH₂)SCH₂CH₂S. A 30% yield was obtained when an excess of CF₃CN was reacted with 8.6 mmol of HSCH₂CH₂SH (excess NaF). The colorless viscous liquid was purified by holding the reaction vessel at -15 °C, removing all volatile materials, and then at 22 °C removing the product by extended pumping. IR (capillary film): 3390 (w), 3315 (w), 2930 (w), 1610 (w, br), 1425 (w), 1310 (m), 1273 Notes

(w), 1248 (w), 1215 (sh), 1165 (sh), 1148 (vs), 1108 (sh), 953 (w), 890 (m), 855 (m), 828 (m), 770 (w, br), 705 (m), 680 (w), 581 (w), 480 (w) cm⁻¹. Mass spectrum: M⁺, 189; M – C₂H₄⁺, 161; M – CF₃⁺, 120; CH₂CH₂S⁺, 60. NMR: ϕ (CF₃) –77.4 (pentet, $J_{F-CH} \simeq 1$ Hz); $\delta(\text{NH}_2)$ 2.47; $\delta(\text{CH}_2\text{S})$ 3.45 ($J_{\text{NH-CH}} \simeq 1$ Hz). Anal. Calcd: C, 25.49; H, 3.15; N, 7.37; S, 33.96. Found: C, 25.40; H, 3.17; N, 7.41; S, 33.86.

Acknowledgment. J.M.S. is grateful to the Alexander von Humboldt Stiftung for a U.S. Senior Scientist Award.

Registry No.	CF ₃ C(NH ₂)O	CH ₂ CH ₂ O, 7024	7-62-0; CF ₃ C-
$(NH_2)N = C(CF_3)$	OCH ₂ CH ₂ O,	70247-63-1;	CF ₃ C(NH ₂)-
OCH ₂ CH ₂ S, 702	47-64-2; CF ₃ C	(NH ₂)SCH ₂ CH ₂	S, 70247-65-3;

HOCH₂CH₂OH, 107-21-1; HOCH₂CH₂SH, 60-24-2; HSCH₂C-H₂SH, 540-63-6; CF₃CN, 353-85-5; NaF, 7681-49-4.

References and Notes

- (1) To whom correspondence should be addressed at the Department of Chemistry, University of Idaho, Moscow, Idaho 83843.
- (2)D. R. Husted, U.S. Patent 2676 985 (1954); Chem. Abstr., 49, 5511b.
- W. L. Reilly and H. C. Brown, J. Am. Chem. Soc., 78, 6032 (1956).
- (4) H. C. Brown and P. D. Schuman, J. Org. Chem., 28, 1122 (1963).
 (5) H. C. Brown and D. Pilipovich, J. Am. Chem. Soc., 82, 4700 (1960).

- H. C. Brown and R. Pater, J. Org. Chem., 30, 3739 (1965). E. E. Gilbert, E. J. Rumanowski, and P. E. Newallis, J. Chem. Eng. Data, 13, 130 (1968)

- 13, 130 (1966).
 (8) P. L. Campagnon and M. Miocque, Ann. Chim. (Paris), 5, 11 (1970).
 (9) P. L. Campagnon and M. Miocque, Ann. Chim. (Paris), 5, 23 (1970).
 (10) H. C. Brown and C. R. Wetzel, J. Org. Chem., 30, 3724 (1965).
 (11) H. C. Brown and C. R. Wetzel, J. Org. Chem., 30, 3729 (1965).
 (12) H. C. Brown and C. R. Wetzel, J. Org. Chem., 30, 3734 (1965).
 (13) H. C. Brown and R. Pater, J. Org. Chem., 27, 2858 (1962).
 (14) R. M. Johnson and H. M. Woodburn, J. Org. Chem., 27, 3958 (1962).
 (15) C. S. Kamper and H. M. Woodburn, J. Chem. Eng. Data 8, 231 (1963).
- C. S. Kamper and H. M. Woodburn, J. Chem. Eng. Data, 8, 231 (1963). (15)

- C. S. Kamper and H. M. Woodourn, J. Chem. Eng. Data, 6, 251 (1963).
 B. Robinson, J. Chem. Soc., 2417 (1963).
 H. Witte and W. Seeliger, Justus Liebigs Ann. Chem., 996 (1974).
 H. M. Woodburn and R. C. O'Gee, J. Org. Chem., 17, 1235 (1952).
 H. M. Woodburn and B. G. Pautler, J. Org. Chem., 19, 863 (1954).
 H. M. Woodburn and E. L. Graminski, J. Org. Chem., 23, 819 (1958).
 H. M. Woodburn, A. B. Whitehouse, and B. G. Pautler, J. Org. Chem., 23, 819 (1958). 24, 210 (1959).
- (22) D. S. Breslow and H. Skolnik in "Multisulfur and Sulfur and Oxygen Five- and Six-Membered Heterocycles", A. Weissberger, Ed., Interscience, New York, 1966, Part 1, Chapters 4 and 5.
- (23) O. Glemser and J. M. Shreeve, Inorg. Chem., 18, 213 (1979).

Contribution from the Department of Chemistry, Indiana University, Bloomington, Indiana 47405

Addition of Dimethylcyanamide to Hexakis(alkoxy)dimolybdenum Compounds

Malcolm H. Chisholm* and Raymond L. Kelly

Received March 5, 1979

Prior work has established that the triple bond (M = M) in $Cp_2Mo_2(CO)_4$ forms 1:1 adducts with a number of unsaturated molecules. The latter act as four electron donor ligands and span the Mo-Mo bonds in the manner shown schematically in Figure 1. The Mo-to-Mo distance increases from 2.448 (1) Å in $Cp_2Mo_2(CO)_4$ (M=M)¹ to 2.974 (1), 3.015 (1), and 3.117 (1) Å in the adducts $Cp_2Mo_2(CO)_4$ (un), when un = $HC = CH^2$, Me_2NCN^3 , and $CH_2 = C = CH^2$, respectively. This is tantamount to a M-M triple to single bond transformation⁵ and is in keeping with the maintenance of an 18-valence-shell electron count per molybdenum atom.

The compounds Mo_2X_6 ,⁶ where X = R (alkyl), NR_2 , and OR, also contain Mo-to-Mo triple bonds. However, in these compounds the molybdenum atoms do not attain 18-valence-shell configurations and have been shown to be capable of undergoing reactions which lead to a net donation of four electrons to the central $(M \equiv M)^{6+}$ moiety without disruption of the M-M multiple bond. The previously reported prep-

Figure 1. Schematic representations of the Cp₂Mo₂(CO)₄·un molecules (A, un = RC=CR; B, un = allene; C, un = Me_2NCN) emphasizing the coordination of the central Mo₂un group.

arations of $Mo_2(OSiMe_3)_6$ ·2HNMe₂⁷ and $Mo_2(OBu-t)_4$ - $(O_2COBu-t)_2^8$ from Mo₂(OR)₆ compounds provide two examples of structurally characterized compounds having triple bonds (M=M) between four-coordinated molybdenum atoms.⁹ We are currently extending our studies of the reactions of $Mo_2(OR)_6$ compounds to include reactions involving small unsaturated molecules of the type known to form adducts with Cp₂Mo₂(CO)₄ and report here studies involving dimethylcyanamide, Me₂NCN.

Results and Discussion

Hydrocarbon solutions of $Mo_2(OR)_6$ compounds (R = Bu-t and Pr-i react with Me₂NCN to give intense purple solutions from which dark crystals can be obtained by careful crystallizations. (Regrettably no crystals have proved suitable for detailed X-ray studies thus far.¹⁰) The dark, air- and moisture-sensitive crystals are formulated as 1:1 adducts $Mo_2(OR)_6$ ·NCNMe₂ on the basis of analytical and spectroscopic data (vide supra).

Formation of these adducts is reversible and, the Me₂NCN ligand is readily lost when these compounds are heated in vacuo: only Mo₂(OR)₆ compounds sublime. However, in the mass spectrometer weak molecular ions are observed, Mo2-(OR)6. NCNMe2⁺, followed by loss of Me2NCN to give $Mo_2(OR)_6^+$ which are the most intense ions in the spectra. In solution $Mo_2(OBu-t)_6$ NCNMe₂ exists in equilibrium with $Mo_2(OBu-t)_6$ and the free cyanamide whereas $Mo_2(OPr$ $i)_{6}$ NCNMe₂ appears stable with respect to this type of ligand loss. This difference we attribute to the greater steric bulk of the tert-butyl group and parallels previous observations on the formation of amine adducts of $Mo_2(OR)_6$ compounds.¹¹

In the IR spectrum of $Mo_2(OPr-i)_6$ ·NCNMe₂ there is an intense band at 1582 cm⁻¹ assignable to a stretching mode of the coordinated Me₂NCN molecule. This is reduced from a free ligand value for $\nu(C \equiv N)$ of 2205 cm⁻¹. There is also a strong broad asymmetric band at 634 cm⁻¹ which we assign to ν (Mo-O) of terminal Mo-OPr-*i* ligands. We find no evidence in the IR spectrum for bridging OPr-i ligands.