

Figure 1. Structure of the monocation of 2. The mean esd for the bond lengths shown is 0.004 Å. Bond angles (deg) in the coordination sphere (mean esd 0.2°) defined by pairs of donor atoms are N(1),N(2) = 74.3, N(1),N(4) = 123.4, N(1),N(5) = 121.4, N(1),N(7) = 76.0, N(1),O(21) = 126.5, N(2),N(4) = 71.5, N(2),N(5) = 146.6,N(2),N(7) = 141.1, N(2),O(21) = 88.1, N(4),N(5) = 76.1, N(4),N(7) = 147.7, N(4),O(21) = 95.5, N(5),N(7) = 71.6,N(5),O(21) = 101.1, and $N(7),O(21) = 89.9^{\circ}$.

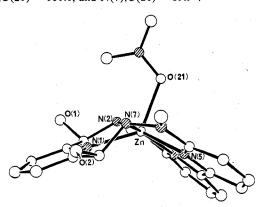


Figure 2. The "folding" of the macrocycle about a line through the carbinolamine nitrogen atoms N(2) and N(7).

The structure determination confirmed the presence of a quinquedenate macrocyclic ligand, in which the expected nitrogen atoms are coordinated to the zinc(II) ion (Figure 1), and showed that the carbinolamine C-O and N-H bonds are all displaced to the same side of the macrocycle. Such a meso arrangement allows the macrocycle to fold about a line through the carbinolamine nitrogen atoms so that the N(1), N(2), N(7)plane is inclined at 64° to the coordination plane defined by the bipyridyl unit (Figure 2).

The isolation of 2 suggests that the formation of 1a-c (and possibly other complexes of planar conjugated macrocycles) may proceed by formation of a dicarbinolamine before any elimination of water occurs. This might be expected when the ligand precursors are both relatively rigid, because the cyclization step becomes less favorable once one imine bond has formed, since the approach of the second amine nitrogen atom on a line perpendicular to the carbonyl group becomes less probable. Molecular models show that such an effect will be particularly significant when the macrocyclic product has an unstrained planar inner great ring.

In only one case previously⁷ has an X-ray structure been reported for a metal complex of a carbinolamine ligand, although such complexes are implicated⁸ in a number of metal-catalyzed and enzymatic reactions. Closely related compounds which contain α -amino ether groups are more common.⁹ The stability of 2 can be ascribed partly to the extensive inter- and intramolecular H bonding between hydroxyl groups and nitrate ions and partly to the ability of zinc(II) ions to form strong bonds to nitrogen and oxygen

donors even in very irregular coordination polyhedra (see Figure 1). Such properties are assumed to be important in a number of other reactions¹⁰ which are promoted by zinc(II) ions.

Acknowledgment. We thank the S.R.C. for grants for diffractometer equipment, computing facilities, and support (to Z.P.H.).

Registry No. 2, 71171-43-2.

Supplementary Material Available: A listing of structure factor amplitudes for 2 (19 pages). Ordering information is given on any current masthead page.

References and Notes

- (1) D. St. C. Black and A. J. Hartshorn, Coord. Chem. Rev., 9, 219 (1973); D. St. C. Black and A. J. Hallsholl, *Coord. Chem. Rev.*, 9, 1973), E. Ochiai, *ibid.*, 3, 49 (1968); L. F. Lindoy, *Chem. Soc. Rev.*, 421 (1975); L. F. Lindoy and D. H. Busch, *Prep. Inorg. React.*, 6, 1 (1970).
 L. F. Lindoy, *Q. Rev., Chem. Soc.*, 25, 379 (1971).
 Z. P. Haque, D. C. Liles, M. McPartlin, and P. A. Tasker, *Inorg. Chim.*
- Acta, 23, L21 (1977)
- (4) Z. P. Haque, J. Lewis, T. O'Donoghue, and P. A. Tasker, to be submitted for publication
- (5) Compounds 1a and 2 have the same molecular formula $ZnC_{19}H_{21}N_9O_8$. Satisfactory C, H, N, and Zn analyses were obtained.
- (6) The "SHELX System": G. M. Sheldrick, University Chemical Laboratory, Cambridge, CB2 1EW, United Kingdon
- (7) J. D. Bell, A. R. Gainsford, B. T. Golding, A. J. Herlt, and A. M. Sargeson, J. Chem. Soc., Chem. Commun., 890 (1974).
- (8) D. H. Busch and J. C. Bailar, J. Am. Chem. Soc., 78, 1137 (1956); R. D. Gillard and R. Wootton, J. Chem. Soc. B, 364 (1970); R. W. Hay and K. B. Nolan, J. Chem. Soc., Dalton Trans., 548 (1976), and references therein
- (9) B. F. Hoskins and F. P. Whillans, Chem. Commun., 798 (1966); L. T. Taylor, F. L. Urbach, and D. H. Busch, J. Am. Chem. Soc., 91, 1072 (1969); V. Katovic, L. T. Taylor, and D. H. Busch, Inorg. Chem., 10, 458 (1971); C. M. Harris and E. D. McKenzie, J. Chem. Soc. A, 748 (1969); M. Cressey, E. D. McKenzie, and S. Yate, *ibid.*, 2677 (1971);
 D. H. Cook and D. E. Fenton, *Inorg. Chim. Acta*, 25, L95, (1977).
 (10) D. C. Liles, M. McPartlin, and P. A. Tasker, J. Am. Chem. Soc., 99,
- 7704 (1977), and references therein.

Contribution from the Department of Chemistry, University of New Brunswick, Fredericton, N.B., Canada E3B 5A3

A Convenient Synthesis and Vibrational Spectrum of **Tellurium Bromide Pentafluoride**

Lawrence Lawlor and Jack Passmore*

Received March 9, 1979

Tellurium pentafluoride (TeBrF₅) was first prepared in low yield by Fraser, Peacock, and Watkins¹ by the reaction of fluorine and tellurium tetrabromide. Large amounts of tellurium hexafluoride and bromine were also produced from which the product was not separated. We wish to report a convenient synthesis of TeBrF, in good yield, by the reaction of bromine, fluorine, and tellurium tetrafluoride. The vibrational spectrum was obtained and assigned by comparison with related molecules.

Experimental Section

Techniques and apparatus are described in ref 2. Sodium fluoride, TeO₂, and SF₄ were used without further purification. Fluorine (Matheson) was stored over NaF to remove HF. Bromine (McArthur Chemical Co.) was dried over P_2O_5 . Tellurium tetrafluoride was prepared by the reaction of TeO_2 with SF_4 and resublimed before use.3

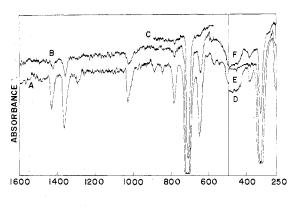
Infrared spectra were recorded on a Perkin-Elmer 467 spectrometer in the range of 4000-250 cm⁻¹. Stainless steel cells of 10-cm path length fitted with AgCl windows and a glass cell fitted with polyethylene windows were used as sample containers. Samples of liquid TeBrF, for Raman spectroscopy were prepared by condensing TeBrF, into glass capillary tubes which were then vacuum sealed. Raman

0020-1669/79/1318-2921\$01.00/0 © 1979 American Chemical Society

spectra were recorded by using a Spex Ramalab spectrometer and a 5145-Å line light source from a 2-W Ar/Kr ion laser. Polarization measurements were carried out by means of an Ednalite polarization rotator. ¹⁹F NMR spectra were recorded by using a Varian Associates HA 60 spectrometer operating at 56.4 MHz. Vapor pressure measurements were made by using a Helicoid Monel Bourdon type gauge.

Preparation of Tellurium Bromide Pentafluoride. In a typical reaction bromine (11.6 mmol) was condensed into a Monel can containing tellurium tetrafluoride (28.7 mmol). A slight excess of fluorine (14.0 mmol) was added in small aliquots (\sim 3 mmol) with the vessel held at -196 °C. After each addition the can was placed in a -22 °C bath for 1.5 h and an ice bath for 1.5 h and finally left to stand at room temperature for 4 h or overnight, before the next addition. Excess fluorine was removed by pumping at -196 °C. The slightly reddish brown liquid product consisted of a mixture of TeBrF₅, TeF_6 , and traces of SiF₄ and Br₂. Pure material (14.4 mmol) was obtained by condensing out a portion of the product until the infrared spectrum indicated the absence of TeF₆ and SiF₄ and that only TeBrF₅ remained. TeBrF₅ was then separated from the more volatile fraction by pumping on the mixure at -78 °C. The product (4.96 mmol) was retained in the -78 °C vessel, giving a total of 19.4 (14.4 + 4.96) mmol of colorless TeBrF₅ or an 83% yield based on the amount of bromine used. Reactions which were carried out with the same stoichiometry as above but over a shorter time interval resulted in the product containing greatly increased amounts of TeF_6 and Br_2 .

The identity of the material was established by comparison of its ¹⁹F NMR spectrum with that reported in the literature.¹ A ¹²⁵Te to ¹⁹F (equatorial fluorine) coupling constant of 3600 ± 2 Hz was observed (3613 Hz in TeClF₅⁴). TeBrF₅ is a colorless liquid with a melting point of -32 ± 1 °C (-28 ± 1 °C for TeClF₅)⁵. The vapor pressure of TeBrF₅ at 20 and -23 °C is 290 and 64 mm, respectively. The vapor pressure data between 0 and 20 °C were fit by the equation log $P_{torr} = 7.36 - 1438/(T (K))$. The molar heat of vaporization is 6.6 kcal and the Trouton constant 20.5 eu. Bromine was formed during the course of the vapor pressure measurements and thus caused some uncertainty in the data.


TeBrF₅ has been stored without noticeable decomposition in dry Teflon apparatus at -78 °C for 15 weeks; however, at room temperature, bromine was observed after 4 days. A solution of SO_2 and TeBrF₅ was allowed to stand at room temperature for 10 days. The volatile material was removed from the reaction vessel at room temperature and shown by infrared spectroscopy to contain SO_2 , TeF₆, and traces of TeBrF₅ and SO₂BrF. The physical properties of the volatiles indicated the presence of Br₂. A white solid remaining in the reaction vessel was shown to be TeF_4 by its Raman spectrum. In glass, traces of SiF_4 and bromine were detectable after 1 day. Bromine was observed on transfer of the product in the Monel vacuum line. The crude product mixture was shaken with mercury at 0 °C for 2-3 h to remove bromine; however, TeBrF5 was also consumed. After 1 h at room temperature the crude product was found to react with tetrabutylammonium bromide with consumption of TeBrF, and formation of bromine. For this reason it is important that the synthesis be carried out with a deficit of bromine and thus remove the necessity of its separation from TeBrF₅.

Results and Discussion

Preparation of TeBrF5. Tellurium bromide pentafluoride has been prepared in good yield by the reaction of excess tellurium tetrafluoride and a mixture of bromine and fluorine. Presumably the addition of fluorine to bromine leads to the formation⁶ of BrF which reacts with TeF₄ to give TeBrF₅.

TeBrF₅ has properties similar to those of TeClF₅; however, it is more reactive toward mercury and glass and is less thermally stable than the chloride. SBrF₅ has been noted to have greater reactivity than SClF₅ toward halo olefins, and it decomposes photochemically more readily.⁷⁻⁹ The products of the decomposition of TeBrF₅ in the presence of SO₂ at room temperature were TeF₆, TeF₄, Br₂, and traces of SO₂BrF, indicating the following mode of decomposition: 2TeBrF₅ \rightarrow TeF₄ + TeF₆ + Br₂.

Vibration Spectrum of TeBrF₅. Figure 1 shows the infrared spectrum of gaseous TeBrF₅ in the region 1600–250 cm⁻¹, and Figure 2 the Raman spectrum of liquid TeBrF₅. Table I lists

FREQUENCY (cm⁻¹)

Figure 1. Infrared spectrum of gaseous TeBrF₅: (A) 200, (B) 50, and (C) ~ 1 torr pressure in a 10-cm cell with AgCl windows; (D) 100, (E) 15, and (F) ~ 1 torr pressure in a 10-cm cell with polyethylene windows.

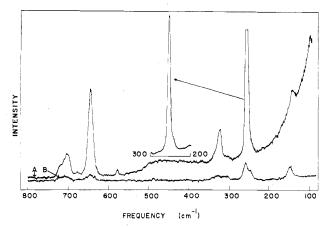


Figure 2. Raman spectrum of liquid TeBrF₅ at room temperature slit width 4 cm⁻¹ and exciting line 5145 Å: (A) incident polarization parallel; (B) incident polarization perpendicular.

Table I.	Vibrational	Spectra	of TeBrF.	(cm^{-1})
----------	-------------	---------	-----------	-------------

infrared (gas) ^a	Raman (liq) ^b	assignt	approx description of mode ^d
1428 ^c mw	······································	$2\nu_1(a_1)$	
1362 m		$\nu_1 + \nu_2$	
1293 w		$2\nu_{2}$	
1026 mw		imp SiF ₄ ?	
888 w		1 4	
845 w			
785 mw		$v_{2} + v_{11}$	
715 vvs	720 (5) dp	$\nu_{\rm s}({\rm e})$	$v_{as}(TeF_4)$
	707 (32) p	$\nu_1(a_1)$	$\nu(TeF')$
	682 (1) p	imp?	
648° ms	646 (68) p	$\nu_{2}(a_{1})$	$v_{sym}(TeF_4)$
	580 (2) p	imp?	UJ II I
330 vs	326 (30) p	$\nu_3(a_1)$	$\delta_{sym}(TeF_4)$
302 sh	306 (14) dp	$\nu_{o}(e)$	δ(F'TeF ₄)
248 m ^e	257 (100) p	$v_4(a_1)$	v(TeBr)
	244 (5) dp	$\nu_{10}(e)$	$\delta_{as}(TeF_4)$
	144 (20) dp	$\nu_{11}(e)$	$\delta(BrTeF_4)$

^a Frequencies have an accuracy of ca. 2 cm⁻¹. ^b Relative intensities are given in parentheses. ^c PQR branches observed. The listed frequency is for the Q branch. ^d Correspond to those given by Christe et al.¹³ ^e Obtained with a Beckman 1R 12 spectrometer.

the observed frequencies and assignments.

Tellurium bromide pentafluoride is expected to have C_{4v} symmetry and on the basis should exhibit 11 fundamental vibrational modes: $4 a_1 (R, p; IR) + 2 b_1 (R, dp) + b_2 (R, dp) + 4 e (R, dp; IR).$ Notes

Four Raman-polarized bands appeared at 707, 646, 326, and 257 cm^{-1} and are therefore a_1 modes and are assigned by comparison with related molecules (SBrF₅,^{10,11} MClF₅^{12,13} (M = S, Se, Te)) as $v_1(a_1)$, $v_2(a_1)$, $v_3(a_1)$, and $v_4(a_1)$. Three corresponding infrared bands occur at 648, 330, and 248 cm⁻¹ with the 707-cm⁻¹ band presumably hidden under the intense 715-cm⁻¹ band. The depolarized band at 720 cm⁻¹ in the Raman with a strong counterpart in the infrared at 715 cm⁻¹ is readily assigned as $\nu_8(e)$. The low-frequency depolarized bands at 244 and 144 cm⁻¹ are assigned as $v_{10}(e)$ and $v_{11}(e)$, respectively, by comparison with related molecules. The Raman band at 306 cm⁻¹ appears to have a counterpart in the infrared at 302 cm⁻¹ (sh) and can be assigned as $\nu_9(e)$. One of the b_1 modes, ν_6 , is too low in intensity to be observed in similar molecules, ^{12,13} and $\nu_5(b_2)$ is probably hidden under the strong 646-cm⁻¹ band.

Those vibrations involving motions of the TeF₅ part of the molecule are rather similar in frequency to those reported for TeClF₅.¹² The TeBr stretching frequency of the 257-cm⁻¹ (ν_4) band is similar to the highest TeBr stretch in $TeBr_4^{14}$ (250 cm^{-1}).

Acknowledgment. We thank the National Research Council (Canada) for financial assistance and a postgraduate scholarship to L.L. We are indebted to E. K. Richardson and R. Kaiser for the ¹⁹F NMR spectra.

Registry No. TeBrF₅, 21975-45-1; bromine, 7726-95-6; fluorine, 7782-41-4.

References and Notes

- (1) G. W. Fraser, R. D. Peacock, and P. M. Watkins, Chem. Commun., 1257 (1968).
- C. Lau and J. Passmore, J. Chem. Soc., Dalton Trans., 2528 (1973). D. Lentz, H. Pritzkow, and K. Seppelt, Inorg. Chem., 17, 1926 (1978).
- (3)
- (4) G. Schrobilgen, private communication.
 (5) C. Lau and J. Passmore, *Inorg. Chem.*, 13, 2278 (1974).

- (a) C. Lau and J. Fassmore, *Inorg. Chem.*, 13, 2278 (1974).
 (b) L. Stein, *Halogen Chem.*, 1, 133 (1967).
 (c) A. D. Berry and W. B. Fox, J. Fluorine Chem., 6, 175 (1975).
 (c) A. D. Berry and W. B. Fox, J. Fluorine Chem., 7, 456 (1976).
 (c) A. D. Berry and W. B. Fox, J. Fluorine Chem., 7, 449 (1976).
- (10) K. O. Christe, E. C. Curtis, and C. J. Schack, Spectrochim. Acta, Part A, 33a, 69 (1977
- (11) R. R. Smardzewski, R. E. Noftle, and W. B. Fox, J. Mol. Spectrosc., **62**, 449 (1976).
- W. V. F. Brooks, M. Eshaque, C. Lau, and J. Passmore, Can. J. Chem., (12)54, 817 (1976).
 (13) K. O. Christe, C. J. Schack, and C. Curtis, *Inorg. Chem.*, 11, 583 (1972).
- (14) G. C. Hayward and P. J. Hendra, J. Chem. Soc. A, 643 (1967).

Contribution from the Department of Chemistry, University of New Brunswick, Fredericton, N.B., Canada E3B 5A3

Existence of Cesium Salts of CO₂F⁻, CO₂F₂²⁻, and NO₂F₂⁻

Lawrence Lawlor and Jack Passmore*

Received March 27, 1979

The reported synthesis of the salts of $CO_2F_2^{2-1}$ and NO_4^{3-2} anions extends the series of known isoelectronic, 32-valence-electron species BF₄⁻, CF₄, NF₄⁺,³ ONF₃,^{4,5} and OCF₃^{-,6} The formation of salts of CO_2F^- , a member of the series BF_3 , $CO_3^{2^-}$, NO_3^- , FNO_2 , OCF_2 , and ONF_2^+ , has been reported¹ but not characterized. There have been conflicting reports⁷ of the synthesis of $CsNO_2F_2$. While attempting to prepare derivatives of $NO_2F_2^-$ (a 32-valence-electron species), we repeated the syntheses of CO₂F₂²⁻ and CO₂F⁻-containing species without success. We wish to report the results of a careful reexamination of the reported reactions of carbon

dioxide and nitrosyl fluoride with cesium fluoride and the reaction of dicesium oxide with carbonyl fluoride.

Experimental Section

Techniques and apparatus are described in ref 8. Purity of starting materials was routinely established by X-ray powder photography or infrared spectroscopy. Cesium fluoride (Ozark Mahoning) was dried by heating at 150 °C in vacuo for 12 h and then finely ground before use. Molecular sieve, 3 Å (Davidson Chemical), was heated at 350-400 °C in vacuo for 24 h before use.

Acetonitrile (Matheson Coleman and Bell) was purified by method B of Walter and Ramaley.⁹ In addition, the acetonitrile was vacuum distilled through a 60-cm column containing dehydrated molecular sieve and collected in a glass vessel also containing molecular sieve. The acetonitrile was then distilled twice into similarly prepared vessels. For a further check on the purity of starting materials, cesium fluoride pretreated as above was reacted with OCF2 in acetonitrile according to ref 6 and was shown to readily give CsOCF₃.^{6,10}

 FNO_2 was prepared by the reaction of excess F_2 (Matheson) with NO_2 (Matheson) in a Monel can. Excess F_2 was removed by pumping on the reaction vessel held at -196 °C. FNO₂ (bp -72.5 °C) was distilled as needed from the reaction vessel held at -78 °C. Tetraethylammonium fluoride dihydrate (Et4NF+2H2O, Eastman Organic Chemicals) was dehydrated by the method of Miller, Freid, and Goldwhite¹¹ and finely ground before use. CO₂ (Matheson, Bone Dry), Cs₂O (Alfa-Ventron), OCF₂ (Pierce Chemical Co.), SF₄ (Columbia Organic Chemicals), and CsNO3 (PCR Research Chemicals) were used without further purification.

Reaction of CsF and CO₂. In a typical experiment, acetonitrile (12.2 mmol) was condensed into a 50-cm³ Parr bomb containing CsF (13.5 mmol). CO_2 (71.6 mmol) was condensed into the bomb which was allowed to stand at room temperature, with continuous stirring, for 7 days. The excess CO_2 was removed by pumping on the reaction vessel held at -78 °C. The acetonitrile was distilled from the reaction vessel held at -22 °C. The weight of solid product was identical with the weight of starting CsF. The product was identified as unreacted CsF by its X-ray powder diffraction photograph. Various experiments were done with pressures of CO₂ up to 110 atm.

Reaction of CO₂ and Et₄NF·2H₂O. CH₃CN (43.2 mmol) was condensed into a glass vessel containing Et₄NF-2H₂O (2.32 mmol) with partial dissolution. The reaction vessel was opened to the vacuum line, and CO_2 was expanded into the line to a pressure of 1000 torr. Some CO₂ was taken up immediately, and the insoluble Et₄NF·2H₂O was taken into solution. The CO₂ pressure was increased to 1500 torr, and the reaction vessel was closed and held at room temperature for 1 day with occasional shaking. The volatiles were condensed from the reaction vessel held at room temperature, leaving behind a pasty white solid (0.48 g).

Reaction of CO₂ and Et₄NF. Acetonitrile (56.1 mmol) was condensed into a glass vessel containing Et_4NF (1.76 mmol). The reaction vessel was opened to the vacuum line, and CO₂ was expanded into the line to a pressure of 760 torr. The pressure remained constant over several hours, indicating no uptake of CO2. The vessel was closed and held at room temperature overnight. The volatiles were quickly condensed out from the reaction vessel held at room temperature. The weight of product was identical with the weight of starting Et₄NF.

Reaction of Cs₂O and OCF₂ in CH₃CN. CH₃CN (40.7 mmol) was condensed into a Monel can containing Cs_2O (4.40 mmol). COF_2 (7.12 mmol) was also condensed into the can which was held at room temperature for 6 days with continuous stirring. The infrared spectrum of the volatiles showed CO_2 and a trace of CF_4 (an impurity in COF_2) to be present. The presence of a noncondensable gas was also observed. The CO₂ was pumped from the reaction vessel held at -78 °C, and the CH₃CN (1.74 g) was condensed out at room temperature. The infrared spectrum of the volatiles above the CH₃CN showed CO₂ to be present. The product remaining in the reaction vessel was a tan-brown solid (1.43 g). The infrared spectrum of the solid showed CsOCF₃, possibly Cs₂CO₃, and traces of CsHF₂. Cs₂CO₃ is difficult to identify in the presence of the other two anions since their spectra overlap. The solid product was heated to 100 °C for 1 h, and the volatiles given off were shown to be CO₂ and OCF₂ by infrared spectroscopy.

Reaction of CsNO3 and SF4. CH3CN (68.5 mmol) was condensed into a Monel can containing CsNO₃ (5.85 mmol). SF₄ (18.0 mmol) was condensed into the can which was allowed to react at room temperature for 10 days with continuous stirring. The infrared