resemble the pattern observed for $[Mn(CO)_5]$ ⁻ and $[Mn (CO)_{4}PPh_{3}]$, the deviations from C_{3v} symmetry for Fe- $(CO)₄PPh₃$ are less severe, i.e., the axial-Fe-equatorial bond angles are close to 90 \degree (88.2–92.3 \degree) and the C(1)–Fe–P angle is essentially linear (178.3°) . As shown in Table VI, Fe lies out of the plane of the equatorial carbon atoms and away from the PPh₃ ligand, a feature which is common in trigonal-bipyramidal ML4L' structures and which was discussed in the preceding section.

Figure 3 illustrates the packing arrangement of the $[Ph_4P]^+$ and $[Mn(CO)_4PPh_3]$ ⁻ ions. Each $[Mn(CO)_4PPh_3]$ ⁻ ion is surrounded by two cations and two anions at distances of ca. 3.25 **A** and by an additional two cations and two anions at distances of ca. 3.5 **A.** As shown in Figure **4,** each Fe- $(CO)₄PPh₃$ molecule is surrounded by eight other molecules at distances of ca. 3.5 **A.** Neither arrangement corresponds to an easily recognizable type of molecular packing.

Acknowledgment. This work was supported by the Robert **A.** Welch Foundation (Grant No. F-233). We are also indebted to the National Science Foundation for purchase of the Syntex $P2_1$ diffractometer (Grant No. GP-37028), to Professor Mark Wrighton for supplying crystals of $[Ph_4P]$ - $[Mn(CO)₄PPh₃]$, and to Professor Rowland Pettit and Charles Sumner for providing a sample of $Fe(CO)₄PPh₃$.

Registry No. [Ph₄P] [Mn(CO)₄PPh₃], 71927-68-9; Fe(CO)₄PPh₃, 35679-07-3.

Supplementary Material Available: Listings of structure factor amplitudes and fractional coordinates (58 pages). Ordering information is given on any current masthead page.

Contribution from the Departments of Chemistry, Baylor University, Waco, Texas 76703, and Abilene Christian University, Abilene, Texas 79601

Iron-Nitrogen Bond Lengths in Low-Spin and High-Spin Iron(I1) Complexes with Poly(pyrazoly1) borate Ligands

J. D. OLIVER,^{1a} D. F. MULLICA,^{1b} B. B. HUTCHINSON,*^{1c} and W. O. MILLIGAN*^{1b}

Received July 13, I979

The structures of bis[hydrotris(1-pyrazolyl)borato]iron(II) (1), $C_{18}H_{20}N_{12}B_2Fe$, and bis[hydrotris(3,5-dimethyl**pyrazolyl)borato]iron(II) (2),** C30H44N12B2Fe, have been elucidated by single-crystal X-ray diffraction techniques. The iron atom in **1** is in the low-spin state at room temperature, whereas in **2** the iron atom is in the high-spin state at room temperature. Both molecules possess virtual *D3d* symmetry in the solid state. The average metal-ligand bond distances, $(Fe-N)$, are 1.973 (7) Å for 1 and 2.172 (22) Å for 2. The $(Fe-N)$ value for the high-spin complex is thus 0.199 Å longer than the similar value for the low-spin complex. This is one of the largest values observed for the bond length expansion between the low-spin and high-spin states. The averages of the independent N-Fe-N bond angles are 88.3 (2)^o for 1 and 86.6 (5)^o for **2**. Crystal data for **1** are as follows: space group P_1/c ; $Z = 4$; $a = 12.258$ (3), $b = 11.606$ (2), $c = 16.518$ (3) \hat{A} ; $\beta = 107.56$ (2)°; $V = 2240 \hat{A}^3$; $R = 5.2\%$ for 1890 reflections. Crystal data for 2 are as follows: space group *P*1; $Z = 1$; $a = 8.824$ (3), $b = 10.216$ (4), $c = 10.787$ (4) Å; $\alpha = 116.36$ (3), $\beta = 85.24$ (3), $\gamma = 100.09$ (3)^{σ}; $V = 858$ Å³; $R = 3.9\%$ for 1819 reflections.

Introduction

Beginning in $1966²$ the coordination chemistry of poly $(1$ pyrazoly1)borate ligands has been the center of exhaustive research. One of the earlier types of complexes studied was of the form $(HBPz₃)₂M$, where M is a divalent metal ion. A crystal structure of one such complex, $(HBPz₃)₂Co₃$ has appeared. The temperature dependence of the magnetic moment of the complex $(HBPz_3)_2Fe$ (1) in chloroform indicated a "spin equilibrium" between the low- and high-spin forms. 4 Spin crossover in the solid state was first implied by the observation of a color change from purple to white upon heating.⁵ Magnetic susceptibility and Mössbauer and infrared spectroscopic studies have confirmed this spin crossover at 393 K.⁶ Although several Fe(I1) compounds are known which exhibit spin-equilibrium characteristics, this Fe(I1) complex is unique in that the crossover is from low to high spin and occurs above room temperature. The magnetic properties of a very similar complex, $[HB(C_5H_7N_2)_3]_2$ Fe (2), indicated that it is a highspin complex at room temperature.

- (a) On Sabbatical leave from Department *of* Chemistry, West Texas (1) State University, Canyon, Texas. (b) Baylor University. (c) Abilene Christian University. S. Trofimenko, *J. Am. Chem.* Soc., **88, 1842 (1966).** M. R. Churchill, K. Gold, and C. E. Maw, Jr., *Inorg. Chem.,* **9, 1597**
-
- **(1970).**
- (4) J. P. Jesson, S. Trofimenko, and D. **R.** Eaton, *J. Am. Chem.* Soc., **89,** *3158* **(1967).**
- **S.** Trofimenko, *Acc. Chem. Res.,* **4, 7 (1971).**
- B. Hutchinson, L. Daniels, and G. Long, *Chem. Commun.,* in **press.**
- Since a change from t_{2g} ⁶ low-spin state to a t_{2g} ⁴ e_g ² high-spin state is predicted to be accompanied by an expansion of the metal-ligand bond length, accurate X-ray crystal analyses are important to obtain the magnitude and pattern of such changes. *An* approximate value for the bond-length difference, δ , of 0.12 Å resulted from a structure study⁷ of [Fe(phen)₂- $(NCS)_2$] at 295 and 100 K; however, the accuracy of these determinations was poor. The room-temperature structural study⁸ of two solvated forms of the α -picolyamine (α -P) complex, $[Fe(\alpha-P)_3]Cl_2$, have yielded a more accurate value major stereochemical change resulted from a difference in solvation. For the aquated form, the three amine nitrogen atoms occupy a triangular face of the coordination octahedron. In the methanol solvated form, two amine nitrogen atoms and one pyridine nitrogen atom occupy this triangular face. The possibility thus exists that the spin-state difference as well as the stereochemical difference might both contribute to δ . With this in mind we have completed the structural analysis of the complexes **1** and **2** in order to obtain an accurate value for 6 in the absence of a stereochemical change. of 0.192 Å for δ . In addition to the spin-state difference, a

Experimental Section

method.⁹ All X-ray measurements were made on a four-circle Syntheses of **1** and **2** were accomplished by a previously published

- **(7)** E. Konig and K. J. Watson, *Chem. Phys. Lett., 6,* **457 (1970).**
- **(8)** A. M. Greenaway and E. Sinn, *J. Am. Chem.* Soc., **100,8080 (1978).**
- **(9) S.** Trofimenko, *J. Am. Chem. Soc.,* **89, 3170 (1967).**

0020-1669/80/1319-0165\$01 *.OO/O 0* 1980 American Chemical Society

Figure 1. Stereoview of (HBPz₃)₂Fe. Thermal motion ellipsoids enclosing 30% probability are represented, except for the hydrogen atoms which are drawn artifically small.

Enraf-Nonius CAD-4 autodiffractometer equipped with a Si(Li) energy-dispersive detector.

The cell parameters for each crystal listed in Table I were obtained from a least-squares refinement of *25* carefully centered reflections. Intensity data were collected by the θ -2 θ scan method at a variable scan rate determined by a fast (3.3° min⁻¹) prescan. For each crystal the intensities of two check reflections were monitored every **2** h of data collection. Examination of these intensities revealed only random variations *(<6%* deviation from mean intensity) that did not constitute

Figure 2. Stereoview of $[HB(C_5H_7N_2)_3]_2$ Fe. Thermal motion ellipsoids enclosing **30%** probability are represented.

any trend. Stability of the crystals and instrument was thus ensured. The data were corrected for Lorentz and polarization effects. Due to the small values for μ and the isometric shape of each crystal, analytical corrections for absorption were deemed unnecessary. Standard deviations of the structure factors were calculated according to

$$
\sigma(|F_{\rm o}|) = 0.5({\rm VLP})^{1/2}[(\rm{Pk} + \rm{Bg} + p^2 I_{\rm rel}^2)/I_{\rm rel}]^{1/2}
$$

where VLP is the standard Lorentz-polarization term, Pk is the peak intensity, Bg is the sum of the background counts taken on both sides of the peak, *p* is the ignorance factor **(0.02** for both compounds), and I_{rel} is $Pk - Bg$.

Structure Solution and Refinement

A C-centered arrangement of the Fe atoms for **1** was suspected due to the strong reflections being dominated by the *uuu* and *ggg* parity groups. Attempts to solve the structure by conventional heavy-atom

Table II. Positional and Thermal Parameters for the Nongroup Atoms of $(HBPz₃)₂Fe$

A NuMBCRS IN PARENTHESES Ih TUIS ANI) ALL SUBSEOIJENT TAeLES RErER TO THE ESTIMATFD STANDARD DEVIATIONS IN TUE UYITS OF TYt LEAST SIGNIFICAYT DIGITS. POSITIONAL AND TYERYIL PARAMETERS ARE PRE'JEYTED Y10 , **THE rORM OF T4E ANIEOTRS@IC** OF THE LEAST SIGNIFICANT DIGTTS, POSITIONAL AND THERMAL PARAMETERS ARE PRESENTED X10⁴. The form of the anisotr
Of the least significant digtts, positional and thermal parameters are presented x10⁴. The form of the anis **METERS FOR THE REMAINING ATUPS ARE PRESENTED X10 I 3** THE FORM OF THE ANISOTRO^BIC

Table III. Rigid Group Parameters for $(HBPz₃)₂$ Fe

RIGID GROUP PARAMETERS

DERIVED ATOMIC PARAMETERS

...Y_, AND .Z_ ARE THE .FRACTIONAL CODRDINATES OF THE ORIGIN OF THE RIGID GROUP. ^BTHE RIGID GROUP. ORIENTATION ANGLES DELTA, EPSILON, AND ETA(RADIANS) HAVE BEEN PREVIOUSLY DEFINED: S.J. LA PLACA AND J.A. IMERS, ACTA CRYSTALLOGR., 18, 511, (1965). .
"POSITIJNAL PARAMETERS ARE PRESENTED X10["].

techniques produced ambiguous results. Both structures were eventually solved by direct methods using the MULTAN¹⁰ package. Each structure was refined by full-matrix least-squares techniques. For 1 the six pyrazolyl rings were treated as rigid groups of idealized geometry.¹¹ The hydrogen atoms were included at their idealized positions and were not refined. Variable, isotropic extinction pa-

(11) J. D. Oliver and N. C. Rice, Inorg. Chem., 15, 2741 (1976).

rameters,¹² 2.0 (1) × 10⁻⁶ for 1 and 4.8 (2) × 10⁻⁶ for 2, were also
utilized. The final values for $R_F = \sum \Delta F / \sum |F_o|$, where $\Delta F = ||F_o||$
- $|F_o||$, are 0.052 for 1 and 0.039 for 2. The final values for $R_{wF} = [\sum w(\Delta F)^2$ for 1 and 2, respectively. In the final least-squares cycles the largest shift: σ ratio for any parameter was 0.4 and the standard deviations of an observation of unit weight were 1.27 for 1 and 0.78 for 2. Final difference electron density maps revealed a randomly fluctuating
background below 0.4 e Å⁻³. Additional peaks of density +0.6 e Å⁻³
along the C21-C22 and C41-C42 bonds were observed for 1. Atomic

(12) W. H. Zachariasen, Acta Crystallogr., Sect. A, 24, 212 (1968).

⁽¹⁰⁾ P. Main, M. M. Woolfson, L. Lessinger, G. Germain, and J. P. Declercq, "MULTAN 74. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data", University of York, York, Belgium, 1974.

A
AUMBERS IN PARENTHESES IN THIS AND ALL SUBSEQUENT TABLES REFER TO THE ESTINATED STANDARD DEVIATIONS IN THE UNITS OF
THE LEAST BIGNIFICANT DIGITS. POSITIONAL(X10) AND THERMAL(X10) PARAMETERS ARE PRESENTED. THE FORM OF T **TRIMBERS IN FARERTHESSS IN THIS AND ALL SUBBEQUENT TABLES KEFKK TO THE ESTIMATED STANDARD DETAILORS IN THE UNITS OF
THE LEAST BIGNIFICANT DIGITS. POSITIONAL(X10⁵) AND THERMAL(X10⁵) PARAMETERS ARE PRESENTED. THE FORM O ?OR ?BE ICMAIIIIIC ATOMS ARC PIBSCI1TCD** X10 . **3**

scattering factors for all atoms and the anomalous dispersion terms for Fe were taken from the usual source.¹³ Final atomic parameters are given in Tables II, III, and IV. For a description of the major

computer programs used in this work, see ref 11.

Discussion of Results

The molecular geometries of 1 and 2 are displayed in Figures 1 and 2, respectively. Since the two crystallographically independent molecules of 1 are virtually identical in every 1 and 2, respectively. Since the two crystallographically
Crystallography", Vol. IV, Kynoch Press, Birmingham, England, 1974,
pp ⁷²⁻¹⁵¹. The molecule containing Fe(1) is shown. The

Fe-N Bond Lengths in Fe(I1) Complexes

Table **V.** Selected Bond Distances **(A)** for (HBPz,),Fe

Table **VI.** Selected Bond Distances **(A)** for [HB(C,H,N,),], Fe

Table VII. Selected Bond Angles (deg) for $(HBPz₃)₂Fe$

dramatic stereochemical similarity for 1, 2, and $(HBPz₁)₂Co³$ is immediately obvious. Tables V, VI, VII, and VI11 present the chemically important bond lengths and bond angles for **1** and **2.**

For **1** the planes defined by the pyrazolyl rings associated with Fe(1) intersect to form angles of 126° [PZ(1) with PZ-(2)], 117° $[PZ(1)$ with PZ(3)], and 117° $[PZ(2)$ with PZ(3)]; while those associated with Fe(2) intersect to form angles of 119° $[PZ(4)$ with PZ(5)], 119° $[PZ(4)$ with PZ(6), and 122° [PZ(5) with PZ(6)]. For **2** the planes defined by the pyrazolyl rings intersect to form angles of 113° (ring 1 with ring 2), 122° (ring 1 with ring 3), and 123° (ring 2 with ring 3). The virtual D_{3d} symmetry observed for $(HBPz_3)_2$ Co³ is thus also possessed by these molecules.

The predominant interest in these structures involves the variations in the Fe-N bond lengths. **A** predicted value for the change in ionic radius for Fe(I1) upon going from the low-spin to high-spin electronic configuration is 0.17 **A.14** The

Inorganic Chemistry, Vol. 19, No. 1, 1980 **169**

Table VIII. Selected Bond Angles (deg) for $[HB(C, H, N_2),]$, Fe

largest Fe-N bond length difference, 6, previously observed for the spin transition was 0.192 Å ⁸ with the (Fe-N) bond lengths being 2.006 (22) and 2.198 (18) **A** for the low-spin and high-spin forms, respectively. This value for δ is thus 4.8 times the sum of the standard deviations of these average values. The $(Fe-N)$ bond lengths are 1.973 (7) and 2.172 (22) **A** for **1** and **2,** respectively. The difference in (Fe-N) bond lengths, 6, in the current work, 0.199 **A,** is in excellent agreement with the value of Greenaway and Sinn;⁸ however, this value of δ is 6.9 times the sum of the standard errors for the average bond lengths. Such agreement for the value of δ thus indicates the stereochemical change observed for the $[Fe(\alpha-P)_3]^{2+}$ cation did not make a significant contribution to δ .

Although 1 and $(HBPz₃)₂Co³$ are isostructural on the molecular level, their molecular packing schemes, and thereby their lattice constants, are entirely different. Several crystals were mounted in an attempt to find a crystal that was isomorphous to the Co analogue, but to no avail. The solvent from which the crystals of $(HBPz₃)₂$ Co were grown was not known; thus the extent to which the solvent influenced the crystal morphology could not be ascertained.

The molecules within both crystals are separated by normal van der Waals contact distances. For **2** no intramolecular contact distances involving nonbonded atoms are shorter than the sum of their respective van der Waals radii.

Acknowledgment. The authors wish to thank The Robert A. Welch Foundation (Grant No. R-483 and AA-668) for financial support of this work.

Registry No. 1, 16949-45-4; **2,** 17567-19-0.

Supplementary Material Available: Listings of the structure factor amplitudes (22 pages). Ordering information is given on any current masthead page.

(14) J. E. Huheey, "Inorganic Chemistry", 2nd ed., Harper and Row, New York, 1978, pp **367-368.**