thank R. D. Chapman (University California, Irvine) for his assistance in the structure determination and M. J. Root (University of Cincinnati) for his assistance with the alkylation experiment.

**Registry** No.  $[(en)_2Co(SC_6H_4NH_2)](ClO_4)_2$ , 72905-17-0;  $[(en)_2Co(S(O)C_6H_4NH_2)](ClO_4)_2, 72893-80-2; [(en)_2Co(S-1))(ClO_4)_2, 728-2; [(en)_2CO(S-1))((en)_2CO(S-1))((en)_2CO(S-1))((en)_2CO(S-1))((en)_2CO(S-1))((en$   $(O)_2C_6H_4NH_2)](ClO_4)_2$ , 72893-82-4; [(en)\_2Co(S(O)\_2C\_6H\_4NH\_2)]-(SCN)<sub>2</sub>, 72893-84-6; 2,2'-diaminodiphenyl disulfide, 1141-88-4;  $[(en)_2Co(SC_6H_4NH_2)](ClO_4)Cl, 72905-18-1.$ 

Supplementary Material Available: Listings of structure factor amplitudes, hydrogen atom positional parameters, and principal root-mean-square amplitudes of thermal motion (11 pages). Ordering information is given on any current masthead page.

Contribution from the Faculty of Pharmaceutical Science, Kyoto University, Shimoadachi-cho, Yoshida, Sakyo-ku, Kyoto, Japan, and the Department of Synthetic Chemistry, Kyoto University, Honmachi, Yoshida, Sakyo-ku, Kyoto, Japan

# Crystal and Molecular Structure of (Octaethylporphinato)iron(III) Perchlorate. Anomalous Magnetic Properties and Structural Aspects

HIDEKI MASUDA,\* TOORU TAGA, KENJI OSAKI, HIROSHI SUGIMOTO, ZEN-ICHI YOSHIDA, and HISANOBU OGOSHI\*

#### Received August 6, 1979

The crystal structure of (octaethylporphinato)iron(III) perchlorate has been determined by the X-ray method. The compound crystallizes in the monoclinic space group  $P2_1/a$  with four molecules in a unit cell of dimensions a = 18.87 (1) Å, b =14.20 (5) Å, c = 13.64 (1) Å, and  $\beta = 106.05$  (6)°. The crystal structure is composed of dimers of the complex; the two iron porphyrins have a "face-to-face" contact with a closest approach of 3.56 Å between the meso carbon and the pyrrolic  $\alpha$ -carbon on the different porphyrins. This dimerization is explained by weak  $\pi$ - $\pi$ \* interactions. Weak ( $\pi$ -pyrrolyl)iron interactions were also noted between the approached complexes. The perchlorate anion has  $C_{3\nu}$  symmetry. Fe $\rightarrow$ (O<sub>1</sub>-Cl)  $\pi^*$  back-bonding seems to cause a longer Cl-O<sub>1</sub> bond (1.515 Å) relative to the other three Cl-O bonds. The porphinato core is planar within 0.04 Å. The average Fe-N and Fe-OClO<sub>3</sub> distances are determined as 1.994 (10) and 2.067 (9) Å, respectively. The iron atom is displaced by 0.26 Å out of the plane defined by the four porphinato nitrogen atoms. The overall geometric parameters give a good indication that the complex has an intermediate-spin state (S = 3/2) in comparison with high- or low-spin iron porphyrins. The temperature-dependent magnetic moment revealed the iron atom to be in the  $S = \frac{3}{2}$  state only. The structural details are discussed with its anomalous magnetic properties from other physical measurements.

## Introduction

Ferricytochrome c', a heme enzyme, isolated from photosynthetic and denitrifying bacteria, has been shown to have unusual chemical and physical properties.<sup>1</sup> Maltempo has suggested that the anomalous magnetic property arises from the electronic configurations of heme iron at the ground state of quantum mechanical admixtures of an intermediate-spin state  $(S = \frac{3}{2})$  and of a high-spin state  $(S = \frac{5}{2})$ , coupled via a spin-orbit interaction.<sup>1</sup>

Few intermediate-spin or mixed-spin synthetic heme complexes have received much attention  $^{2\!-\!4,6}$  since the synthesis and magnetic properties of (octaethylporphinato)iron(III) perchlorate, (OEP)Fe<sup>III</sup>ClO<sub>4</sub>, were reported.<sup>2,3</sup> The unusual magnetic moments of these complexes were interpreted in terms of a thermal admixture of the high-spin (S = 5/2) and low-spin (S = 1/2) states.<sup>3</sup> Recently, Dolphin et al.<sup>2</sup> have reported that  $(OEP)Fe^{III}ClO_4$  is of an intermediate-spin state on the basis of Mössbauer spectra and magnetic susceptibility at various temperatures. The structure of heme centers has been discussed in relation to the function and mechanism of heme proteins.<sup>5b</sup> A number of molecular structures of iron porphyrins have been reported.<sup>5,8-10</sup> Scheidt et al. have reported the crystal structure of the ferric perchlorate complex of tetraphenylporphine, (TPP)Fe<sup>III</sup>ClO<sub>4</sub>· $^{1}/_{2}C_{8}H_{10}^{6a,b}$  and in-terpreted it in terms of the  $S = \frac{3}{2}$  state and the quantum mechanically mixed  $S = \frac{3}{2}, \frac{5}{2}$  state, respectively. In this paper, we describe the crystal structure of (OEP)Fe<sup>III</sup>ClO<sub>4</sub>, its geometry, and its temperature-dependent magnetic moment.

## **Experimental Section**

Crystal Structure. (OEP)Fe<sup>III</sup>ClO<sub>4</sub> was prepared by refluxing a benzene solution of (OEP)Fe<sup>III</sup>Cl and AgClO<sub>4</sub>.<sup>3</sup> Dark brown platelike

crystals were obtained by recrystallization from benzene solution. Preliminary X-ray data showed that the crystal is monoclinic and the space group is  $P2_1/a$  from the systematic absences of h0l for h odd and 0k0 for k odd. The unit cell dimensions are a = 18.87 (1) Å, b = 14.20 (5) Å, c = 13.64 (1) Å, and  $\beta = 106.05$  (6)°, from Weissenberg photographs calibrated by Ge standard power lines, respectively. The calculated density, with the assumption of four molecules in a unit cell, is  $1.300 \text{ g/cm}^3$ . The observed density was

- (a) Maltempo, M. M. J. Chem. Phys. 1974, 61, 2540. (b) Maltempo, M. M.; Moss, T. H.; Cusanovich, M. A. Biochim. Biophys. Acta 1974, 342, 290. (c) Maltempo, M. M. Ibid. 1975, 379, 97.
   (2) Dolphin, D. H.; Sams, J. R.; Tsin, T. B. Inorg. Chem. 1977, 16, 711.
   (3) Ogoshi, H.; Watanabe, E.; Yoshida, Z. Chem. Lett. 1973, 989.
   (4) Ogoshi, H.; Sugimoto, H.; Yoshida, Z., submitted for publication.
   (5) Okumed J. B. "Derivative and Mathematication Mathematication".

- (a) Hoard, J. R. "Porphyrins and Metalloporphyrins"; Smith, K. M., Ed.; Elsevier: Amsterdam, 1975; Chapter 8. (b) Hoard, J. L. Science
- (a) Elsevier Americani, 1975, Chapter 6: Optimized, J. E. Science 1971, 174, 1295. (c) Scheidt, W. R. Acc. Chem. Res. 1977, 10, 339.
   (a) Kastner, M. E.; Scheidt, W. R.; Mashiko, T.; Reed, C. A. J. Am. Chem. Soc. 1978, 100, 666. (b) Reed, C. A.; Mashiko, T.; Bentley, S. P.; Kastner, M. E.; Scheidt, W. R.; Spartalian, K.; Lang, G. Ibid. 1979, 100, 000 (c) 100 (c) 101, 2948. (c) Scheidt, W. R.; Cohen, I. A.; Kastner, M. E. Biochemistry 1979, 18, 3546.
- (7) (a) Ibers, J. A., Hamilton, W. C., Eds.; "International Tables for X-Ray Crystallography"; Kynoch Press: Birmingham, England, 1974; Vol. IV. (b) Macgillavry, C. H.; Rieck, G. D., Lonsdale, K., Eds. "International Tables for X-Ray Crystallography"; Kynoch Press: Birmingham, England, 1968; Vol. III.
- (a) Koenig, D. M. Acta Crystallogr. 1965, 18, 663. (b) Hoard, J. L; Hamor, M. J.; Hamor, T. A.; Caughey, W. S. J. Am. Chem. Soc. 1965, 87, 2312. (c) Hoard, J. L.; Cohen, G. N.; Glick, M. D. Ibid. 1967, 89, 1992. (d) Hoffman, A. B.; Collins, D. M.; Day, V. W.; Fleischer, E. B.; Srivastava, T. S.; Hoard, J. L. *Ibid.* **1972**, *94*, 3620. (e) Mashiko, T.; Kastner, M. E.; Spartalian, K.; Scheidt, W. R.; Reed, C. A. *Ibid.* 1978, 100, 6354.
- (9) Tang, S. C.; Koch, S.; Papaefthymiou, G. C.; Foner, S.; Frankel, R. B.; Ibers, J. A.; Holms, R. H. J. Am. Chem. Soc. 1976, 98, 2414.
  (10) (a) Collins, D. M.; Countryman, R.; Hoard, J. L. J. Am. Chem. Soc. 1972, 94, 2066. (b) Takenaka, A.; Sasada, Y.; Ogoshi, H.; Watanabe, E.; Yoshida, Z. Chem. Lett. 1972, 1235. (c) Little, R. G.; Dymoch, K. R.; Ibers, J. A. J. Am. Chem. Soc. 1975, 97, 4532.
  (11) Tulinsky, A.; Chen, B. M. L. J. Am. Chem. Soc. 1977, 99, 3647.

<sup>\*</sup> To whom correspondence should be addressed: H.M., Faculty of Pharmaceutical Science: H.O., Department of Synthetic Chemistry.





Figure 1. Stereoscopic view of the contents of one unit cell of (OEP)Fe<sup>III</sup>ClO<sub>4</sub>. The x axis is horizontal to the right, the y axis is almost vertical, and the z axis is about perpendicular to the paper going up to the reader. Hydrogen atoms have been omitted.

1.287 (2) g/cm<sup>3</sup>, measured by flotation in calcium chloride solutions. Equi-inclination Weissenberg photographs were taken by rotating the crystal about the *b* and *c* axes by using nickel-filtered Cu K $\alpha$  radiation. Intensity data were corrected on an AD-1 densitometer collected by a NOVA 1200 computer acting in cooperation with a DIABLO 31 disk drive. Structure factors of 2070 independent reflections were obtained through the usual data reduction procedure. An absorption correction was applied by using the linear absorption coefficient of 45.63 cm<sup>-1</sup>.

The structure was solved by the heavy-atom method and refined by block-diagonal least-squares calculations with anisotropic thermal parameters. After several cycles of refinement, all hydrogen atoms were revealed in difference Fourier maps. The refinement with the weighting scheme  $w = 1/|\sigma(F_o)|^2$ , including the hydrogen atoms in the calculation of the structure factors, was carried to convergence. The final values of the discrepancy indexes were 0.079 for

$$R = (|F_{\rm o}| - |F_{\rm c}|) / \sum |F_{\rm o}|$$

and 0.080 for

$$R_{\rm w} = \left[\sum w(|F_{\rm o}| - |F_{\rm c}|)^2 / \sum w(F_{\rm o})^2\right]^{1/2}$$

Atomic scattering factors and absorption coefficients were obtained from ref 7. All computations were performed on a FACOM M-190 large computer in the Data Processing Center of Kyoto University by using the program system KPAX, which included the UNICS programs.

Magnetic Susceptibility. A Faraday magnetic balance was employed for measurement of magnetic susceptibilities from 77 to 300 K. The magnetic susceptibility of anhydrous hexaamminechromium(III) chloride powder was used as a "thermometer" which was calibrated at each run to an atmospheric liquid-nitrogen temperature with corrections for the Hg barometer and gravitational constant by following the procedure of Linder.<sup>22</sup> The accuracy of the measurements was not less than 10%. The diamagnetic susceptibilities of the porphyrin ligand and axial ligand were corrected by measurement of free-base octaethylporphyrin and by Pascal's rule.

#### Results

The positional and anisotropic thermal parameters for all atoms except for hydrogen atoms are listed in Table I. A stereoscopic view of the (OEP)Fe<sup>III</sup>ClO<sub>4</sub> molecule with the atomic numbering is shown in Figure 2. Agreement between chemically equivalent bond distances and angles in the core is quite satisfactory. Bond distances and angles are given in Table II. The average bond distances and angles for the four crystallographically nonequivalent pyrrole rings are presented in Figure 3. The pyrrole  $\beta$ -carbon-methylene carbon and the methylene carbon-methyl carbon distances for the ethyl groups are corrected for thermal motions, with the assumption that the terminal ethyl groups are "riding" on the porphinato core.



Figure 2. Computer-drawn model in perspective of the (OEP) $Fe^{II}ClO_4$  molecule. Each atom is represented by an ellipsoid having the orientation and relative size concomitant with the thermal parameters listed in Table I. The labeling scheme used for the atoms in the molecule is also shown.

As is shown in Figure 4, the porphinato core is planar within 0.04 Å. This core conformation differs from the domed and ruffled forms which have been proposed in solution by means of resonance Raman spectroscopy by Spiro et al.<sup>21</sup> As shown in Figure 2, the four adjacent terminal ethyl groups are oriented upward from the pyrrole planes, whereas the other four groups are downward. Although this molecular conformation is similar to that of the six-coordinated low-spin complex  $(OEP)Fe^{III}(Im)_2ClO_4$ ,<sup>10b</sup> the conformation of the ethyl groups differs from those of the free base and metalloporphyrin (OEP)M (M = H<sub>2</sub>, Ni, Zn, Ti, Ru, Co, etc.).<sup>12</sup> Hence, the orientation of the terminal ethyl groups seems to depend upon the molecular packing in the crystal structure. As shown in Figure 1, the crystal structure consists of dimers of (OEP)- $Fe^{III}ClO_4$  molecules. The two porphyrin molecules related by a center of symmetry have "face-to-face" contact. Eight peripheral ethyl groups are wrapping the porphinato cores at the plane edge. The stacking features in the vertical views of

<sup>(12) (</sup>a) Meyer, E. F., Jr. Acta Crystallogr., Sect. B 1972, 28, 2162. (b) Cullen, D. L.; Meyer, E. F., Jr. J. Am. Chem. Soc. 1974, 96, 2095. (c) Hopf, F. R.; O'Brien, T. P.; Scheidt, W. R.; Whitten, D. G. Ibid. 1975, 97, 277. (d) Cullen, D. L.; Meyer, E. F., Jr. Acta Crystallogr., Sect. B 1976, 32, 2259. (e) Guilard, R.; Fontesse, M.; Fournari, P.; Lecomte, C.; Protas, J. J. Chem. Soc., Chem. Commun. 1976, 161. (f) Little, R. G.; Ibers, J. A. J. Am. Chem. Soc. 1974, 96, 4452. (g) Lauher, J. W.; Ibers, J. A. Ibid. 1973, 95, 5148.



**Figure 3.** (a) Diagram giving the average bond distances (Å) and angles (deg) in the porphyrin skeleton of the (OEP)Fe<sup>III</sup>ClO<sub>4</sub> molecule. (b) The square-pyramidal coordination group in the (OEP)Fe<sup>III</sup>ClO<sub>4</sub> molecule.



**Figure 4.** A formal diagram of the porphinato skeleton in (OEP)- $Fe^{III}CIO_4$  showing the perpendicular displacements, in units of 0.01 Å, from the mean plane of core. The core has the same relative orientation as Figure 2.



Figure 5. Stacking diagram of porphinato core for a pair of molecules approaching each other as viewed upright to the mean plane of the four porphinato nitrogen atoms.

the porphinato cores are shown in Figure 5. The distance between the mean planes defined by the four N atoms is 3.53 Å. Atomic contacts less than 4.0 Å are listed in Table III. The shortest distance (3.56 Å) is found between the meso carbon,  $C_{2m}$ , and the  $\alpha$ -carbon of the pyrrole ring,  $C_{4a}^*$ . The iron atom is situated below the pyrrole ring of the other porphyrin of the dimer. The distance from the iron to the least-squares plane including the five pyrrole ring atoms is determined to be 3.74 Å.

The perchlorate anion has approximately  $C_{3v}$  symmetry which is lower than  $T_d$  found in the free anion. Lower symmetry of coordinated ClO<sub>4</sub><sup>-</sup> is rationalized by the IR spectra<sup>13</sup> in which the single band (1119 cm<sup>-1</sup>) observed for the free anion is split into many bands.<sup>3</sup> As shown in Figure 2, the O<sub>1</sub> atom is bound to the porphinato iron as a monodentate ligand. The Cl–O<sub>1</sub> distance, 1.515 Å, is considerably longer than the average uncoordinated O–Cl distance, 1.411 Å. The perchlorate anion is oriented in such a manner that the O<sub>1</sub>– Cl–O<sub>4</sub> plane is approximately perpendicular to the porphinato plane. The Fe–O<sub>1</sub> vector is almost perpendicular to the porphinato plane. The Fe–O<sub>1</sub> distance is 2.067 (9) Å and the Fe–O<sub>1</sub>–Cl bond angle is 125.7 (5)°. The N<sub>1</sub>–Fe–O<sub>1</sub>–Cl dihedral angle is 19.02°. The Fe–O<sub>1</sub> distance is close to the Fe–OH<sub>2</sub> distance, 2.095 (2) Å, in (TPP)Fe<sup>III</sup>(OH<sub>2</sub>)ClO<sub>4</sub>. 2THF<sup>6a,c</sup> but slightly longer than Fe–OClO<sub>3</sub> in (TPP)Fe<sup>III</sup>-ClO<sub>4</sub>, 2.025 (4) Å. The Fe–O<sub>1</sub>–Cl bond angle indicates the sp<sup>2</sup> character of the oxygen atom.

The geometry about the central iron is given in Figure 3b. The iron atom is displaced by 0.26 Å out of the plane defined by the four porphinato nitrogen atoms toward the ligand oxygen. The iron atom in a low-spin iron(III) porphyrin<sup>10</sup> usually lies in the porphinato plane, while the usual displacement of the iron from the porphinato plane in a five-coordinated high-spin porphyrin is ~0.5 Å.<sup>5,8</sup> Hence, the value of 0.26 Å is just intermediate between these of the extreme cases. This value is almost the same as that for (TPP)Fe<sup>III</sup>ClO<sub>4</sub> reported by Scheidt and his co-workers.<sup>6</sup> The Fe–N distance is 1.994 (10) Å. The N–C<sub>1</sub>, distance defined by the distance between one nitrogen and the center (C<sub>1</sub>) of the four nitrogen atoms is 1.977 (10) Å. The Fe–N distance is slightly shorter than that typical of five-coordinated high-spin derivatives (ca. 2.065 Å).<sup>8a-c,9</sup> The value is very close to those in low-spin derivatives.<sup>10</sup>

Table IV summarizes the molar susceptibility and effective magnetic moment of (OEP)Fe<sup>III</sup>ClO<sub>4</sub> at temperatures from 77 to 270 K. The effective magnetic moment of (OEP)-Fe<sup>III</sup>ClO<sub>4</sub> is almost the same as but lower than that of the typical low-spin state  $(2.15-2.74 \ \mu_B)$ .<sup>23</sup>

### Discussion

Dimerization of porphyrins, as observed in (OEP)Fe<sup>III</sup>ClO<sub>4</sub>, has been found in a number of five-coordinate metallo-

<sup>(13)</sup> Nakamoto, K. "Infrared Spectra of Inorganic and Coordination Compounds", 2nd ed.; Wiley-Interscience: New York, 1970; pp 175-6.

Table I. Positional and Thermal Parameters for the Atoms of (OEP)Fe<sup>III</sup>ClO<sub>4</sub>

|                       |                |             | and the second se |                     |                     |                    |                    |                    |                    |
|-----------------------|----------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------------|--------------------|--------------------|--------------------|--------------------|
| atom                  | x <sup>a</sup> | У           | Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\beta_{11}^{b}$    | β22                 | β <sub>33</sub>    | $\beta_{12}$       | $\beta_{13}$       | β <sub>23</sub>    |
| Fe                    | 0.4363 (1)     | 0.4897 (2)  | 0.6485 (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 23 (1)              | 47 (2)              | 56 (1)             | -3 (1)             | 9 (1)              | 0 (1)              |
| Cl                    | 0.3088 (1)     | 0.5126 (3)  | 0.7598 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 27 (1)              | 50 (3)              | 42 (2)             | 3 (1)              | 9 (1)              | -5 (2)             |
| <b>O</b> <sub>1</sub> | 0.3508 (4)     | 0.5541 (6)  | 0.6901 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 31 (3)              | 60 (7)              | 59 (6)             | 11 (4)             | 19 (3)             | 12 (5)             |
| 0,                    | 0.3550 (4)     | 0.4988 (8)  | 0.8565 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 41 (3)              | 103 (9)             | 58 (6)             | -3(5)              | 19 (3)             | 7 (6)              |
| 0,                    | 0.2788 (5)     | 0.4245 (9)  | 0.7228 (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 43 (4)              | 108 (11)            | 158 (11)           | -28(5)             | 36 (5)             | -33 (9)            |
| O                     | 0.2548 (5)     | 0.5838 (8)  | 0.7635 (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 44 (4)              | 73 (9)              | 101 (8)            | 7 (5)              | 22 (4)             | 15 (7)             |
| N.                    | 0.4653 (4)     | 0.3932 (8)  | 0.7589 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17 (3)              | 64 (9)              | 29 (5)             | 0 (4)              | -5(3)              | -1(6)              |
| C.                    | 0.4317 (6)     | 0.3034 (10) | 0.7586 (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 30 (5)              | 61 (12)             | 64 (9)             | -2 (6)             | 11 (5)             | -1(8)              |
| Cib                   | 0.4605 (6)     | 0.2602 (9)  | 0.8539(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 26 (4)              | 36 (10)             | 29 (7)             | -12(5)             | 6 (4)              | 7 (6)              |
| Č.                    | 0.5078 (6)     | 0.3232(10)  | 0.9165 (8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 24 (4)              | 55 (11)             | 46 (8)             | 9 (5)              | 9 (4)              | 7 (7)              |
| C. a                  | 0.5098 (6)     | 0.4068 (9)  | 0.8558 (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 29 (4)              | 14 (9)              | 74 (9)             | 12 (5)             | 16 (5)             | 11 (7)             |
|                       | 0.5537(5)      | 0.4869(10)  | 0.8905(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\frac{25}{26}$ (4) | 63 (11)             | 25 (6)             | -2(6)              | 0(4)               | -19(7)             |
| N N                   | 0.5357(5)      | 0.4009(10)  | 0.3200(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25 (3)              | 37 (8)              | 38 (6)             | $\frac{2}{2}(4)$   | 2(3)               | -5(5)              |
| $\hat{\Gamma}^{2}$    | 0.5173(5)      | 0.5752(1)   | 0.8284(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25(3)               | 64(12)              | 46 (8)             | 5 (5)              | 9(5)               | 11(7)              |
| $C_{2a}$              | 0.6016 (6)     | 0.5377(10)  | 0.0207(0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25(4)               | 55 (12)             | 63 (0)             | 23 (5)             | $\frac{7}{7}(5)$   | 11(7)              |
| C <sup>2</sup> b      | 0.5889 (8)     | 0.0303(10)  | 0.0097(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 45 (6)              | 55(12)              | 82 (12)            | -6(7)              | $\frac{7}{18}(7)$  | 20(10)             |
| C2C                   | 0.3003(0)      | 0,7013(12)  | 0.7000(11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\frac{1}{20}(0)$   | $\frac{01}{22}(11)$ | 57 (9)             | -0(7)              | $\frac{10}{5}$     | $\frac{20}{1}$     |
| C <sup>2d</sup>       | 0.3301(0)      | 0.0030 (9)  | 0.7030(0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 30 (4)<br>21 (4)    | 32(11)              | 37 (8)<br>95 (10)  | $\frac{2}{11}(5)$  | 6 (S)<br>5 (S)     | 1(7)               |
| $C_2 m$               | 0.3098 (6)     | 0.0988 (9)  | 0.6100 (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 21(4)               | 30(10)              | 03 (10)            | 11(5)              | 3 (3)              | 10 (6)             |
| N <sub>3</sub>        | 0.42/2(5)      | 0.56/9(8)   | 0.5277(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 24 (3)              | /3(10)              | 48 (7)             | -11(5)             | 10 (4)             | -17 (0)            |
| C <sub>3a</sub>       | 0.4594 (6)     | 0.6588 (10) | 0.5307 (8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 21 (4)              | 62(12)              | 45 (8)             | 1 (5)              | 4 (4)              | -10(7)             |
| C <sub>3b</sub>       | 0.4392 (5)     | 0.7020 (9)  | 0.4306 (8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15 (4)              | . 44 (11)           | 60 (8)             | 7 (5)              | -4 (4)             | -12(7)             |
| C <sub>3c</sub>       | 0.3911 (6)     | 0.6412 (11) | 0.3686 (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20 (4)              | 84 (13)             | 63 (9)             | 14 (6)             | 20 (5)             | 29 (8)             |
| C <sub>3d</sub>       | 0.3857 (6)     | 0.5630 (10) | 0.4297 (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 36 (5)              | 57 (12)             | 56 (8)             | 9 (6)              | 27 (5)             | -23 (8)            |
| $C_{3m}$              | 0.3444 (7)     | 0.4854 (10) | 0.3944 (8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 51 (5)              | 42 (11)             | 36 (7)             | 30 (6)             | -2 (5)             | -7(7)              |
| $N_4$                 | 0.3777 (5)     | 0.3914 (7)  | 0.5555 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 22 (3)              | 51 (9)              | 33 (6)             | 3 (4)              | 2 (3)              | 3 (5)              |
| C <sub>4a</sub>       | 0.3385 (6)     | 0.4065 (10) | 0.4555 (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 29 (4)              | 50 (12)             | 70 (10)            | 10 (6)             | 0 (5)              | -4 (8)             |
| C <sub>4b</sub>       | 0.2918 (6)     | 0.3289 (10) | 0.4153 (8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 21 (4)              | 85 (13)             | 35 (7)             | 20 (6)             | -1 (4)             | -16 (7)            |
| $C_{4c}$              | 0.3027 (7)     | 0.2626 (13) | 0.4955 (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 36 (6)              | 99 (16)             | 81 (12)            | 8(7)               | 13(7)              | -28 (11)           |
| C <sub>4d</sub>       | 0.3547 (6)     | 0.2988 (9)  | 0.5799 (8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 21 (4)              | 40 (11)             | 63 (8)             | 4 (5)              | 15 (5)             | 12 (7)             |
| Cam                   | 0.3840 (6)     | 0.2660 (10) | 0.6759 (8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 29 (4)              | 40 (11)             | 48 (8)             | -13(5)             | 10 (5)             | 16 (7)             |
| Cibo                  | 0.4376 (8)     | 0.1669 (11) | 0.8801 (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 52 (6)              | 48 (12)             | 79 (10)            | 7 (7)              | 18(6)              | -8 (9)             |
| Cing                  | 0.4779 (11)    | 0.0906 (13) | 0.8451 (14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 97 (11)             | 61 (16)             | 133 (17)           | -29(10)            | -30(11)            | 16 (13)            |
| C                     | 0.5524 (7)     | 0.3056 (10) | 1.0234 (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 49 (6)              | 43 (12)             | 52 (9)             | -8 (6)             | 19 (6)             | -5 (8)             |
| Cian                  | 0.6341 (8)     | 0.2757(11)  | 1.0304 (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 50 (6)              | 58 (13)             | 91 (12)            | 14 (7)             | 22 (7)             | 5 (10)             |
| Cabo                  | 0.6582 (7)     | 0.6510 (10) | 0.9701 (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 54 (6)              | 27(11)              | 55 (9)             | -19(6)             | 20 (6)             | -7(7)              |
| Cabe                  | 0.7269 (6)     | 0.5857(12)  | 0.9819 (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 27 (5)              | 91 (14)             | 71 (10)            | 1 (6)              | 7(5)               | 8 (9)              |
| C. op                 | 0.6244(8)      | 0.7996(12)  | 0.7818(10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 54(7)               | 76 (14)             | 72 (10)            | 13 (8)             | 22(7)              | 14 (10)            |
| Card                  | 0.5799 (8)     | 0.8752(14)  | 0.7985(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 51 (7)              | 119 (18)            | 116(15)            | -29(9)             | 35 (8)             | -1(13)             |
| Caba                  | 0.4610(7)      | 0.7994(11)  | 0.4006(11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 39 (6)              | 55(12)              | 105(12)            | $\frac{29}{28}(7)$ | (11(7))            | 34(10)             |
| Cabl                  | 0.4169 (8)     | 0.8770(14)  | 0.4308(11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 46 (6)              | 118 (18)            | 88 (12)            | -13(8)             | 3(7)               | 36 (12)            |
| С                     | 0.3534(7)      | 0.6477(10)  | 0.2564(10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 45 (6)              | 29 (11)             | 79 (10)            | -3(6)              | 25 (6)             | 11 (8)             |
| $C_{3c\alpha}$        | 0.2737(8)      | 0.6874(13)  | 0.2296(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 46 (7)              | 99 (17)             | 115 (14)           | 7 (8)              | 25 (8)             | $\frac{11}{8}(12)$ |
| C.b.                  | 0 2395 (7)     | 0.3204(11)  | 0.3161(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 33 (5)              | 57 (12)             | 60 (9)             | 11 (6)             | 11 (5)             | 12(8)              |
| Caba                  | 0 1632 (9)     | 0 3557 (16) | 0.3126(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 54 (7)              | 154(21)             | 91 (13)            | <b>5</b> (10)      | 6 (8)              | 7 (13)             |
| C                     | 0.2710(8)      | 0.1599(10)  | 0 5008 (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 60(7)               | 25 (11)             | 63 (9)             | -17(6)             | 22(7)              | -16(8)             |
| $C_{4}c\alpha$        | 0.3252(7)      | 0.0863(11)  | 0.5000(10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 41 (5)              | 58 (14)             | 97 (12)            | -17(0)<br>-9(7)    | $\frac{22}{12}(7)$ | -10(0)             |
| ~400                  | J. J L J L ( ) |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 71 (0)              |                     | 2 ( ( 1 <b>4</b> ) | -2111              | 14(0)              | -0(10)             |

<sup>a</sup> Estimated standard deviations in the least significant figure(s) are given in parentheses. <sup>b</sup> The form of the anisotropic thermal parameter ellipsoid is  $\exp\left[-(\beta_{11}h^2 + \beta_{22}k^2 + \beta_{33}l^2 + 2\beta_{12}hk + 2\beta_{13}hl + 2\beta_{23}kl\right]$ . The thermal parameters are multiplied by 10<sup>4</sup>.

porphyrins.<sup>8b,9,15,17</sup> In contrast, dimerization of TPP-like metalloporphyrins is unlikely, due to the repulsive interaction of the bulky phenyl groups at the meso positions.<sup>14</sup> The  $\pi$ - $\pi$ interactions between the "face-to-face" contact porphinato cores have been verified by X-ray studies for nickel(II) porphyrins<sup>15</sup> and by ESR studies on dimeric cupric and vanadyl porphyrins.<sup>16</sup> Such a  $\pi - \pi$  interaction is possible when the  $\pi$  orbitals of each porphyrin have large overlap with a pairing of a  $\pi$  donor and a  $\pi$  acceptor. The interplanar distance in (OEP)Fe<sup>III</sup>ClO<sub>4</sub> is about 3.6 Å, and  $C_{2\underline{m}}$  and  $C_{4\underline{a}}$ \* on each porphyrin core are close to each other. The interplanar distance is sufficiently short for the overlapping of the  $\pi$  orbitals;

even with a spacing of 6.5-6.8 Å, existence of strong faceto-face interactions has been reported for the constrained trans-diurea binary iron(II) porphyrin by Collman et al.<sup>18</sup> Recent ab initio LCAO-MO calculations on porphine and its metallo derivatives<sup>19</sup> have shown that the two highest occupied molecular orbitals (HOMO) have  $A_{1u}$  and  $A_{2u}$  symmetries for the  $D_{4h}$  point group and that the lowest unoccupied molecular orbitals (LUMO) have  $E_g$  symmetry. These orbitals are  $\pi$ orbitals. The atomic orbital  $\phi_{C_a}$  has a large coefficient in the wave function  $\psi_{A_{1y}}$ , and  $\phi_{C_N}$  and  $\phi_{C_m}$  have very large coefficients in  $\psi_{E_a}$ . The large electron density distributions at  $C_{4a}^*$ for the HOMO  $(A_{1u})$  and at  $C_{2m}$  for the LUMO  $(E_g)$  rationally permit electron transfer through  $\pi - \pi^*$  interaction from  $C_{4a}$ \* to  $C_{2m}$ . Therefore, the dimer of (OEP)Fe<sup>III</sup>ClO<sub>4</sub> is considered to be stabilized by the  $\pi - \pi^*$  interactions of the donor and acceptor. The pyrrole ring coordinates the iron atom of

<sup>(14) (</sup>TPP) $Zn^{II}ClO_4$  is only one case observed in (TPP)M in which the dimer formation would be sterically prevented by the bulky phenyl groups: Spaulding, L. D.; Eller, P. G.; Bertrand, J. A.; Felton, R. H. J. Am. Chem. Soc. 1974, 96, 982

<sup>(15)</sup> Hamor, T. A.; Caughey, W. S.; Hoard, J. L. J. Am. Chem. Soc. 1965,

<sup>87, 2305.
(16) (</sup>a) Boyd, P. D. W.; Smith, T. D.; Price, J. H.; Pilbrow, J. R. J. Chem. Phys. 1972, 56, 1253. (b) Blumberg, W. E.; Peisach, J. J. Biol. Chem. 1965, 240, 870.

<sup>(</sup>a) Cullen, D. L.; Meyer, E. F., Jr. J. Am. Chem. Soc. 1974, 96, 2095. (17)(b) Cullen, D. L.; Meyer, E. F., Jr. Acta Crystallogr., Sect. B 1976, 32, 2259.

<sup>(18)</sup> Collman, J. P.; Elliott, C. M.; Halbert, T. R.; Tovrog, B. S. Proc. Natl.

 <sup>(</sup>a) Case, D. A.; Karplus, M. J. Am. Chem. Soc. 1977, 99, 6182. (b)
 Gouterman, M. J. Chem. Phys. 1959, 30, 1139. (c) Spangler, D.;
 Maggiora, G. M.; Shipman, L. L.; Christoffeerson, R. E. J. Am. Chem. Soc. 1977, 99, 7478.

| Table II. Dond Distances (A) and Angles (Deg) for (OEF)Fe <sup></sup> C | Table II. | Bond Distances | (Å) and | Angles (Deg) | for (OEP | )Fe <sup>III</sup> ClO |
|-------------------------------------------------------------------------|-----------|----------------|---------|--------------|----------|------------------------|
|-------------------------------------------------------------------------|-----------|----------------|---------|--------------|----------|------------------------|

| $ \begin{array}{cccccc} Fe-N_{3} & 2.022 (10) & Cl-Q_{1} & 1.52 (1) & C_{3}C_{4}^{2}C_{4}^{2} & 121 (1) \\ Fe-N_{3} & 2.002 (10) & Cl-Q_{3} & 1.41 (1) & N_{3}C_{3}G^{2}m & 121 (1) \\ Fe-N_{4} & 2.002 (10) & Cl-Q_{4} & 1.45 (11) & N_{5}C_{3}G^{2}m & 121 (1) \\ N_{1}-C_{1a} & 1.42 (2) & N_{7}EN_{8} & 88.3 (5) & N_{4}C_{4a}C_{3m} & 121 (1) \\ N_{1}-C_{1a} & 1.37 (1) & N_{7}EN_{8} & 88.3 (5) & N_{4}C_{4a}C_{5m} & 122 (1) \\ N_{2}-C_{1a} & 1.42 (2) & N_{7}EN_{8} & 88.3 (5) & N_{4}C_{4a}C_{5m} & 122 (1) \\ N_{2}-C_{1a} & 1.42 (2) & N_{7}EN_{8} & 89.3 (5) & N_{4}C_{4a}C_{5m} & 118 (1) \\ N_{2}-C_{1a} & 1.42 (2) & N_{7}EN_{8} & 89.3 (5) & N_{4}C_{4a}C_{5m} & 118 (1) \\ N_{3}-C_{1a} & 1.42 (2) & N_{7}EN_{8} & 87.6 (5) & Ca_{6}C_{5m} & 118 (1) \\ N_{3}-C_{1a} & 1.42 (2) & N_{7}EN_{8} & 87.6 (5) & Ca_{6}C_{5m} & 118 (1) \\ N_{3}-C_{1a} & 1.43 (2) & N_{7}FeN_{8} & 87.6 (5) & Ca_{6}C_{5m} & 118 (1) \\ N_{3}-C_{1a} & 1.35 (1) & N_{7}FeN_{8} & 87.6 (5) & Ca_{6}C_{5m} & 109 (1) \\ N_{8}-C_{1a} & 1.45 (2) & N_{7}FeO_{1} & 99.7 (4) & Ca_{6}C_{5b}C_{1c} & 104 (1) \\ C_{1a}-C_{1b} & 1.46 (2) & N_{7}FeO_{1} & 98.4 (5) & Ca_{6}C_{5b}C_{1c} & 106 (1) \\ C_{1a}-C_{1b} & 1.44 (2) & O_{7}CO_{7} & 111.7 (5) & Ca_{6}C_{1b}C_{1c} & 106 (1) \\ C_{1a}-C_{1b} & 1.44 (2) & O_{7}CO_{7} & 110.4 (6) & Ca_{5}C_{5}C_{5}C_{4} & 109 (1) \\ C_{1a}-C_{1b} & 1.44 (2) & O_{7}CO_{7} & 110.4 (6) & Ca_{5}C_{5}C_{5}C_{4} & 106 (1) \\ C_{1a}-C_{1b} & 1.44 (2) & O_{7}CO_{4} & 1142.6 (6) & Ca_{6}C_{1m}C_{2a} & 123 (1) \\ C_{1a}-C_{1b} & 1.44 (2) & O_{7}CO_{4} & 1124.7 (6) & Ca_{6}C_{1m}C_{2a} & 123 (1) \\ C_{1a}-C_{1b} & 1.44 (2) & O_{7}CO_{4} & 1124.2 (6) & Ca_{6}C_{1c}C_{4} & 108 (1) \\ C_{1a}-C_{1b} & 1.44 (2) & O_{7}CO_{4} & 1125.7 (6) & Ca_{6}C_{1m}C_{2a} & 123 (1) \\ C_{1a}-C_{1b} & 1.44 (2) & FeN_{7}C_{1a} & 125.7 (6) & Ca_{6}C_{1b}C_{1b} & 124 (1) \\ C_{1b}-C_{4c} & 1.43 (2) & FeN_{7}C_{1a} & 125.7 (5) & Ca_{6}C_{1b}C_{1b} & 124 (1) \\ C_{1b}-C_{4c} & 1.44 (2) & FeN_{7}C_{1a} & 125.7 (5) & Ca_{6}C_{1b}C_{1b} & 124 (1) \\ C_{1b}-C_{1b} & 1.35 (2) & FeN_{7}C_{1a} & 125.7 (5) & Ca_{6}C_{1b}$                                                                   | Fe-N <sub>1</sub> <sup>a</sup>     | 1.997 (10) <sup>b</sup> | $C_{4c\alpha} - C_{4c\beta}$                    | 1.47 (1)         | $N_{1}C_{10}C_{2m}$                               | 127(1)           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-------------------------|-------------------------------------------------|------------------|---------------------------------------------------|------------------|
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Fe-N <sub>2</sub>                  | 2.022 (10)              | CI-O,                                           | 1.52(1)          | $C_{1}C_{2}C_{2}C_{2}m$                           | 121 (1)          |
| $ \begin{array}{cccccc} Fe-N, & 2.002 (10) & Cl-O, & 1.41 (1) & V_1C_0^{12}C_0^{12} & 121 (1) \\ N_1-C_1a & 1.42 (2) & N_1-EN, & 88.3 (5) & N_4C_4a^{1}C_{2b} & 122 (1) \\ N_1-C_1a & 1.42 (2) & N_1-EN, & 88.3 (5) & N_4C_4a^{1}C_{2b} & 122 (1) \\ N_2-C_1a & 1.42 (2) & N_1-EN, & 89.3 (5) & C_4C_4a^{1}C_{2b} & 122 (1) \\ N_2-C_1a & 1.42 (2) & N_1-EN, & 89.3 (5) & C_4C_4a^{1}C_{2b} & 122 (1) \\ N_2-C_1a & 1.42 (2) & N_1-EN, & 89.3 (5) & V_4C_4a^{1}C_{2b} & 122 (1) \\ N_2-C_1a & 1.42 (2) & N_1-EN, & 89.3 (5) & V_4C_4a^{1}C_{2c} & 118 (1) \\ N_2-C_1a & 1.42 (2) & N_1-EN, & 89.3 (5) & C_4C_4a^{1}C_{2b} & 118 (1) \\ N_2-C_1a & 1.35 (1) & N_1-EN, & 165.1 (4) & C_4C_4a^{1}C_{2b} & 118 (1) \\ N_2-C_1a & 1.38 (1) & N_1-EN, & 87.6 (5) & C_{1a}C_{1b}C_{1c} & 108 (1) \\ N_4-C_4a & 1.45 (2) & N_1-EO, & 99.7 (4) & C_{1a}C_{1b}C_{1c} & 106 (1) \\ C_{1a}-C_{1b} & 1.44 (2) & O_1-EO, & 95.0 (5) & C_{2a}C_{1b}C_{1c} & 106 (1) \\ C_{1a}-C_{1b} & 1.44 (2) & O_1-EO, & 98.4 (5) & C_{4a}C_{4b}C_{4c} & 106 (1) \\ C_{1a}-C_{1b} & 1.44 (2) & O_1-EO, & 111.7 (5) & C_{1b}C_{1c}C_{1d} & 107 (1) \\ C_{1a}-C_{1b} & 1.44 (2) & O_1-EO, & 110.4 (6) & C_{2b}C_{2c}C_{1d} & 107 (1) \\ C_{1a}-C_{1b} & 1.44 (2) & O_1-EO, & 104.2 (6) & C_{4b}C_{4c}C_{4d} & 106 (1) \\ C_{4a}-C_{4b} & 1.42 (2) & O_1-EO, & 104.2 (6) & C_{4b}C_{4c}C_{4d} & 106 (1) \\ C_{4a}-C_{4b} & 1.42 (2) & O_1-EO, & 104.2 (6) & C_{4b}C_{4c}C_{4d} & 106 (1) \\ C_{4a}-C_{4b} & 1.42 (2) & O_1-EO, & 104.2 (6) & C_{4b}C_{4c}C_{4d} & 106 (1) \\ C_{4a}-C_{4b} & 1.42 (2) & O_1-EO, & 104.2 (6) & C_{4b}C_{4c}C_{4d} & 126 (10) \\ C_{4a}-C_{4b} & 1.43 (2) & FEN, C_{1a} & 125.7 (6) & C_{4b}C_{4c}C_{4d} & 128 (1) \\ C_{1b}-C_{4c} & 1.43 (2) & FEN, C_{1a} & 125.0 (8) & C_{1a}C_{1b}C_{1b}C_{1b} & 124 (1) \\ C_{1b}-C_{4c} & 1.43 (2) & FEN, C_{1a} & 125.0 (8) & C_{1a}C_{1b}C_{1b}C_{1b} & 128 (1) \\ C_{1b}-C_{1c} & 1.36 (2) & FEN, C_{1a} & 126.6 (8) & C_{1a}C_{1b}C_{1b} & 124 (1) \\ C_{1b}-C_{4c} & 1.42 (2) & FEN, C_{1a} & 126.6 (8) & C_{1a}C_{1b}C_{1b}C_{1b} & 126 (1) \\ C_{1b}-C_{1b} & 1.35 (2) & FEN, C_{1a} & 126.4 (1) & C_{4c}C_{1c}C_{1b}$                                                                  | Fe-N <sub>3</sub>                  | 1.954 (11)              | Cl-O                                            | 1.38 (1)         | Na Cad Cao                                        | 115 (1)          |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Fe-N                               | 2.002 (10)              | Cl-O,                                           | 1.41 (1)         | N <sub>2</sub> C <sub>2</sub> dC <sub>2</sub> m   | 121 (1)          |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Fe-O,                              | 2.067 (9)               | CI-O.                                           | 1.45(1)          |                                                   | 124(1)           |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NC.                                | 1.42(2)                 | 01 04                                           |                  |                                                   | 112(1)           |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NC.a                               | 1.37(1)                 | $N_1 FeN_2$                                     | 88.3 (5)         | N C C                                             | 112(1)<br>127(1) |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N <sub>2</sub> -C <sub>2</sub>     | 1.33(1)                 | $N_1$ FeN $_3$                                  | 165.3 (4)        | $\Gamma_4 C_{4a} C_{3m}$                          | 127(1)<br>122(1) |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $N_2 = C_2 a$                      | 1 42 (2)                | N, FeN4                                         | 89.3 (5)         | $V_{4b}C_{4a}C_{3m}$                              | 122(1)           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $N_{2} C_{2\alpha}$                | 1.42(2)<br>1.42(2)      | $N_2$ FeN <sub>3</sub>                          | 91.1 (5)         | $N_4C_4dC_4c$                                     | 109(1)           |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $N_3 - C_{3a}$                     | 1.72(2)                 | N <sub>2</sub> FeN <sub>4</sub>                 | 165.1 (4)        | N <sub>4</sub> C <sub>4</sub> dC <sub>4</sub> m   | 122(1)           |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N <sub>3</sub> -C <sub>3d</sub>    | 1.33(1)<br>1.28(1)      | N <sub>3</sub> FeN                              | 87.6 (5)         | C <sub>4</sub> cC <sub>4</sub> dC <sub>4</sub> m  | 133(1)           |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N <sub>4</sub> -C <sub>4a</sub>    | 1.38(1)                 | N.FeO                                           | 99.7 (4)         | $C_{1a}C_{1b}C_{1c}$                              | 108 (1)          |
| $\begin{array}{c} \Gamma_{a} - \Gamma_{a} b & 1.40 (2) & \Gamma_{a}^{a} FeO_{1}^{-1} & 95.0 (5) & C_{a} C_{5} C_{5} c & 106 (1) \\ C_{1e} - C_{1b} & 1.44 (2) & N_{a}^{a} FeO_{1} & 98.4 (5) & C_{a} C_{5} C_{5} C_{5} c & 106 (1) \\ C_{3a} - C_{5b} & 1.44 (2) & O_{1} ClO_{2} & 111.7 (5) & C_{1b} C_{1c} C_{1d} & 107 (1) \\ C_{3a} - C_{3b} & 1.48 (2) & O_{1} ClO_{3} & 110.4 (6) & C_{3b} C_{2a} C_{5d} & 109 (1) \\ C_{3a} - C_{3b} & 1.48 (2) & O_{1} ClO_{4} & 104.2 (6) & C_{3b} C_{2a} C_{5d} & 108 (1) \\ C_{4a} - C_{4b} & 1.42 (2) & O_{2} ClO_{4} & 109.4 (6) & C_{1d} C_{1m} C_{2a} & 121 (1) \\ C_{4e} - C_{4d} & 1.39 (2) & O_{2} ClO_{4} & 109.4 (6) & C_{1d} C_{1m} C_{2a} & 124 (1) \\ C_{1b} - C_{1c} & 1.38 (2) & FeN_{1} C_{1a} & 125.7 (6) & C_{4d} C_{4m} C_{1a} & 124 (1) \\ C_{1b} - C_{1c} & 1.43 (2) & FeN_{1} C_{1a} & 125.7 (6) & C_{1d} C_{1m} C_{1a} & 124 (1) \\ C_{1b} - C_{1c} & 1.43 (2) & FeN_{1} C_{1a} & 125.7 (6) & C_{1d} C_{1m} C_{1a} & 124 (1) \\ C_{1b} - C_{1c} & 1.41 (2) & FeN_{1} C_{1a} & 125.0 (8) & C_{1a} C_{1b} C_{1b} c & 124 (1) \\ C_{1b} - C_{4c} & 1.36 (2) & FeN_{1} C_{1a} & 125.0 (8) & C_{1a} C_{1b} C_{1b} c & 124 (1) \\ C_{1a} - C_{1m} & 1.41 (2) & FeN_{3} C_{3a} & 123.6 (7) & C_{1b} C_{1b} c & 124 (1) \\ C_{1a} - C_{1m} & 1.35 (2) & FeN_{3} C_{3a} & 123.6 (7) & C_{1b} C_{1b} c & 126 (1) \\ C_{3a} - C_{3m} & 1.35 (2) & FeN_{3} C_{2a} & 124.8 (9) & C_{1a} C_{1b} C_{1b} c & 124 (1) \\ C_{4a} - C_{4m} & 1.36 (2) & C_{1a} N_{1} C_{1d} & 106 (1) & C_{1b} C_{2a} C_{1b} C_{1b} a & 124 (1) \\ C_{4a} - C_{4m} & 1.36 (2) & C_{1a} N_{1} C_{1d} & 106 (1) & C_{1b} C_{2a} C_{1b} C_{1b} a & 129 (1) \\ C_{4a} - C_{4m} & 1.36 (2) & C_{1a} N_{1} C_{1d} & 106 (1) & C_{1b} C_{2a} C_{1b} C_{1b} a & 129 (1) \\ C_{4a} - C_{4m} & 1.36 (2) & C_{4a} N_{1} C_{2d} & 108 (1) & C_{2d} C_{2b} C_{1b} a & 124 (1) \\ C_{1b} - C_{1b} & 1.49 (1) & N_{1} C_{4a} C_{1m} & 123 (1) & C_{4b} C_{2b} C_{2b} a & 124 (1) \\ C_{1b} - C_{2b} C_{2a} a & 1.50 (1) & N_{1} C_{4a} C_{1b} & 109 (1) & C_{2a} C_{2b} C_{2b} a & 124 (1) \\ C_{1b} - C_{2b} C_{2c} a & 1.56 (1) & C_{1b} C_{1a} C_{2m} & 127$                                                       | N <sub>4</sub> -C <sub>4</sub> d   | 1.45 (2)                | N.FeO.                                          | 96.5 (5)         | $C_{2a}C_{2b}C_{2c}$                              | 104(1)           |
| $\begin{array}{c} c_1 c c_1 d & 1.45 (2) & 1.45 c_1 & 1.25 c_1 & 2.84 (5) & C_4 a_1 C_5 c_6 & 106 (1) \\ C_1 a C_1 b & 1.44 (2) & O_1 ClO_2 & 111.7 (5) & C_1 b_1 C_2 C_1 d & 107 (1) \\ C_3 c C_2 d & 1.37 (2) & O_1 ClO_3 & 110.4 (6) & C_3 b_1 C_3 c_1 d & 106 (1) \\ C_3 c C_3 b & 1.48 (2) & O_1 ClO_4 & 104.2 (6) & C_3 b_1 C_3 c_2 C_3 d & 106 (1) \\ C_4 a C_4 b & 1.42 (2) & O_2 ClO_1 & 107.6 (7) & C_4 a_1 C_4 a & 121 (1) \\ C_4 c C_4 d & 1.39 (2) & O_3 ClO_4 & 114.6 (6) & C_4 d_1 m_{1a} a & 121 (1) \\ C_4 c C_4 d & 1.39 (2) & O_3 ClO_4 & 114.6 (6) & C_4 d_1 m_{1a} a & 128 (1) \\ C_1 b C_1 c & 1.38 (2) & FeN_1 C_1 a & 125.7 (6) & C_4 d_1 m_{1a} & 133 (1) \\ C_4 b C_4 c & 1.43 (2) & FeN_1 C_1 a & 125.0 (8) & C_4 a_1 C_1 m_{1a} & 133 (1) \\ C_4 b C_4 c & 1.42 (2) & FeN_1 C_1 a & 125.0 (8) & C_4 a_1 C_1 m_{1a} & 133 (1) \\ C_4 b C_4 c & 1.42 (2) & FeN_1 C_2 a & 126.6 (8) & C_4 c_1 C_1 m_{1a} & 133 (1) \\ C_4 b C_4 c & 1.43 (2) & FeN_1 C_2 a & 126.6 (8) & C_4 c_1 C_1 m_{1a} & 133 (1) \\ C_4 b C_4 c & 1.35 (2) & FeN_1 C_2 a & 126.6 (8) & C_4 c_1 C_1 m_{1a} & 126 (1) \\ C_1 a C_1 m & 1.32 (2) & FeN_1 C_2 a & 126.6 (8) & C_4 c_1 C_1 m_{1a} & 126 (1) \\ C_3 a C_1 m & 1.35 (2) & FeN_1 C_2 a & 124.4 (10) & C_1 a_1 C_1 C_1 c_2 c_1 c_2 & 128 (1) \\ C_3 a C_3 m & 1.35 (2) & FeN_1 C_2 a & 124.4 (10) & C_4 a_1 C_2 c_1 c_2 c_1 m_{1a} & 124.4 (10) \\ C_3 a C_3 m & 1.36 (2) & C_{1a} N_1 C_1 d & 106 (1) & C_3 d_2 C_2 c_2 c_{2} c_{2}$                                                                                                             | $C_{1a} - C_{1b}$                  | 1.40(2)                 | N. FeO.                                         | 95.0 (5)         | $C_{3a}C_{3b}C_{3c}$                              | 106 (1)          |
| $\begin{array}{c} C_{2a} - C_{2b} & 1.44 (2) & C_{1a} C_{2b} & 10.7 (5) & C_{2b} C_{1c} C_{c} d & 107 (1) \\ C_{1e} - C_{1d} & 1.37 (2) & O_{1} ClO_{2} & 111.7 (5) & C_{1b} C_{1e} C_{1d} & 109 (1) \\ C_{3e} - C_{3b} & 1.48 (2) & O_{1} ClO_{3} & 110.4 (6) & C_{1b} C_{2e} C_{3d} & 106 (1) \\ C_{3e} - C_{1d} & 1.41 (2) & O_{1} ClO_{4} & 104.2 (6) & C_{1b} C_{2e} C_{1d} & 108 (1) \\ C_{4e} - C_{4d} & 1.39 (2) & O_{1} ClO_{4} & 109.4 (6) & C_{1d} C_{1m} C_{2a} & 121 (1) \\ C_{1e} - C_{1e} & 1.38 (2) & FeN_{1} C_{1a} & 125.7 (6) & C_{3d} C_{3m} C_{2a} & 128 (1) \\ C_{1b} - C_{1e} & 1.38 (2) & FeN_{1} C_{1a} & 125.7 (6) & C_{3d} C_{3m} C_{2a} & 124 (1) \\ C_{1b} - C_{1e} & 1.36 (2) & FeN_{1} C_{1a} & 125.7 (6) & C_{1d} C_{1m} C_{1a} & 128 (1) \\ C_{1b} - C_{1e} & 1.41 (2) & FeN_{2} C_{2a} & 125.0 (8) & C_{1e} C_{1b} C_{1b} & 128 (1) \\ C_{1b} - C_{1e} & 1.42 (2) & FeN_{2} C_{2a} & 125.0 (8) & C_{1e} C_{1b} C_{1b} & 128 (1) \\ C_{1d} - C_{1m} & 1.41 (2) & FeN_{2} C_{2a} & 123.6 (7) & C_{1b} C_{1c} C_{1c} & 126 (1) \\ C_{1d} - C_{1m} & 1.32 (2) & FeN_{2} C_{1a} & 124.2 (10) & C_{1d} C_{1e} C_{1e} & 126 (1) \\ C_{1a} - C_{1m} & 1.35 (2) & FeN_{2} C_{1a} & 124.8 (9) & C_{2a} C_{2b} C_{2b} C_{2b} & 122 (1) \\ C_{3a} - C_{2m} & 1.35 (2) & FeN_{2} C_{1a} & 124.8 (9) & C_{2a} C_{2b} C_{2b} C_{2b} & 122 (1) \\ C_{3a} - C_{2m} & 1.35 (2) & FeN_{2} C_{1a} & 108 (1) & C_{2b} C_{2c} C_{2c} & 129 (1) \\ C_{4a} - C_{4m} & 1.36 (2) & C_{4a} N_{2} C_{2d} & 108 (1) & C_{2b} C_{2b} C_{2b} C_{2b} & 122 (1) \\ C_{4a} - C_{4m} & 1.34 (2) & C_{4a} N_{2} C_{2d} & 108 (1) & C_{2b} C_{2b} C_{2b} C_{2b} & 128 (1) \\ C_{1e} - C_{1c} & 1.49 (1) & N_{1} C_{1a} C_{2m} & 123 (1) & C_{2b} C_{2b} C_{2b} C_{2b} & 128 (1) \\ C_{1e} - C_{1c} & 1.49 (1) & N_{1} C_{1a} C_{2m} & 123 (1) & C_{2b} C_{2b} C_{2b} C_{2b} & 128 (1) \\ C_{1e} - C_{1c} & 1.49 (1) & N_{1} C_{1a} C_{2m} & 123 (1) & C_{2b} C_{2b} C_{2b} C_{2b} & 128 (1) \\ C_{1e} - C_{1c} & 1.49 (1) & N_{1} C_{1a} C_{2m} & 123 (1) & C_{2b} C_{2b} C_{2b} & 128 (1) \\ C_{1e} - C_{1c} & 1.49 (1) & N_{1} C_{1a} C_{2m} & 123 (1) & C_{2b}$                                                                      | $C_{1c} - C_{1d}$                  | 1.45 (2)                | N FeO                                           | 984(5)           | $C_{4a}C_{4b}C_{4c}$                              | 106(1)           |
| $\begin{array}{c} C_{1}e^{-C_{1}d} & 1.37 (2) & O_{1}C_{1}S_{2} & 111, (3) & C_{1}b^{-C_{2}}c^{-C_{1}d} & 109 (1) \\ C_{3}a^{-C_{3}b} & 1.48 (2) & O_{1}C_{1}S_{2} & 111, (4) (6) & C_{1}b^{-C_{2}}c^{-C_{1}d} & 106 (1) \\ C_{3}e^{-C_{3}d} & 1.41 (2) & O_{2}C_{1}S_{1} & 107, 6 (7) & C_{1}b^{-C_{2}}c^{-C_{1}d} & 108 (1) \\ C_{4}e^{-C_{1}d} & 1.39 (2) & O_{2}C_{1}O_{2} & 107, 6 (7) & C_{1}b^{-C_{2}}c^{-C_{1}a} & 128 (1) \\ C_{4}e^{-C_{1}d} & 1.39 (2) & O_{1}C_{1}O_{4} & 109, 4 (6) & C_{1}d^{-C_{1}mC_{1}a} & 128 (1) \\ C_{1}b^{-C_{1}c} & 1.38 (2) & FeN_{1}C_{1}a & 126, 8 (8) & C_{1}d^{-C_{1}}mC_{1}a & 128 (1) \\ C_{3}b^{-C_{1}c} & 1.36 (2) & FeN_{1}C_{1}a & 126, 8 (8) & C_{1}a^{-C_{1}}b^{-C_{1}}b\alpha & 124 (1) \\ C_{3}b^{-C_{1}c} & 1.36 (2) & FeN_{1}C_{1}a & 126, 6 (8) & C_{1}a^{-C_{1}}b^{-C_{1}}b\alpha & 128 (1) \\ C_{3}b^{-C_{1}c} & 1.35 (2) & FeN_{2}C_{1}a & 123, 6 (7) & C_{1}b^{-C_{1}}b\alpha & 128 (1) \\ C_{4}a^{-C_{1}m} & 1.32 (2) & FeN_{3}C_{3}a & 123, 6 (7) & C_{1}b^{-C_{1}}cc & 127 (1) \\ C_{3}a^{-C_{1}m} & 1.35 (2) & FeN_{3}C_{3}a & 134, 2 (10) & C_{1}a^{-C_{1}}cc & 127 (1) \\ C_{3}a^{-C_{1}m} & 1.35 (2) & FeN_{3}C_{3}a & 123, 6 (7) & C_{1}b^{-C_{2}}bc_{1}b\alpha & 124 (1) \\ C_{3}a^{-C_{1}m} & 1.35 (2) & FeN_{3}C_{3}a & 123, 6 (7) & C_{1}b^{-C_{2}}cc & 129 (1) \\ C_{3}a^{-C_{1}m} & 1.35 (2) & FeN_{3}C_{3}a & 129, 4 (9) & C_{2}a^{-C_{2}}bC_{2}b\alpha & 124 (1) \\ C_{3}a^{-C_{1}m} & 1.36 (2) & C_{1}a^{N_{1}}C_{1}d & 106 (1) & C_{1}b^{-C_{2}}cc & 129 (1) \\ C_{4}a^{-C_{4}m} & 1.36 (2) & C_{4}a^{N_{3}}C_{3}d & 102 (1) & C_{2}a^{-C_{3}}b^{-C_{3}b\alpha} & 122 (1) \\ C_{4}a^{-C_{4}m} & 1.36 (2) & C_{3}a^{N_{1}}C_{3}d & 102 (1) & C_{2}a^{-C_{2}}b^{-C_{1}b\alpha} & 128 (1) \\ C_{1}e^{-C_{1}b\alpha} & 1.49 (2) & C_{6}a^{N_{1}}C_{3}d & 102 (1) & C_{2}a^{-C_{2}}b^{-C_{1}b\alpha} & 129 (1) \\ C_{4}e^{-C_{4}m} & 1.36 (2) & C_{3}a^{N_{1}}C_{3}d & 102 (1) & C_{3}a^{-C_{3}}b^{-C_{3}b\alpha} & 128 (1) \\ C_{1}e^{-C_{1}c\alpha} & 1.49 (1) & N_{1}C_{1}a^{-C_{1}m} & 123 (1) & C_{2}a^{-C_{2}}b^{-C_{3}b\alpha} & 128 (1) \\ C_{1}e^{-C_{1}c\alpha} & 1.49 (1) & N_{1}C_{1}a^{-C_{1}m} & 123 (1) & C_{2}a^{-C_{2}}b^{-C_{3}b\alpha} $ | $C_{2a}-C_{2b}$                    | 1.44(2)                 | 0 ClO                                           | 1117(5)          | $C_{1b}C_{1c}C_{1d}$                              | 107 (1)          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $C_{2c}-C_{2d}$                    | 1.37 (2)                | $O_1 C O_2$                                     | 110.4(6)         | $C_{2b}C_{2c}C_{2d}$                              | 109(1)           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $C_{3a}-C_{3b}$                    | 1.48 (2)                | $O_1 C O_3$                                     | 10.4(6)          | $C_{3b}C_{3c}C_{3d}$                              | 106(1)           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $C_{3c}-C_{3d}$                    | 1.41 (2)                | $O_1 ClO_4$                                     | 104.2 (8)        | C <sub>4</sub> bC <sub>4</sub> cC <sub>4</sub> d  | 108(1)           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $C_{4a} - C_{4b}$                  | 1.42 (2)                | $O_2 C O_3$                                     | 107.6(7)         | $C_{1d}C_{1m}C_{2a}$                              | 121(1)           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $C_{4c}-C_{4d}$                    | 1.39 (2)                | 0,2004                                          | 109.4 (6)        | C <sub>ad</sub> C <sub>am</sub> C <sub>a</sub>    | 128 (1)          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $C_{1b}-C_{1c}$                    | 1.38 (2)                |                                                 | 114.6 (6)        | $C_{1d}C_{1m}C_{1n}$                              | 124(1)           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $C_{2h}$ - $C_{2c}$                | 1.43 (2)                | FeN <sub>1</sub> C <sub>1</sub> a               | 125.7 (6)        | CidCimCia                                         | 133 (1)          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $C_{1b} - C_{1c}$                  | 1.36 (2)                | FeN <sub>1</sub> C <sub>1</sub> d               | 126.8 (8)        | $C_1 \circ C_2 \circ C_2 \circ C_2$               | 124(1)           |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C <sub>4</sub> b-C <sub>4</sub> c  | 1.42(2)                 | FeN <sub>2</sub> C <sub>2</sub> a               | 125.0 (8)        | $C_{12}C_{12}C_{13}C_{13}$                        | 128 (1)          |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C.d-C.m                            | 1.41 (2)                | FeN <sub>2</sub> C <sub>2</sub> d               | 126.6 (8)        |                                                   | 126(1)           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Cas-Cam                            | 1.32 (2)                | FeN <sub>3</sub> C <sub>3a</sub>                | 123.6 (7)        | $C_1C_1C_1C_1$                                    | 120(1)<br>127(1) |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Cad-Cam                            | 1.35 (2)                | FeN <sub>3</sub> C <sub>3d</sub>                | 134.2 (10)       | C $C$ $C$ $C$                                     | 127(1)<br>137(1) |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CarCan Car                         | 1.35 (2)                | FeN <sub>4</sub> C <sub>4</sub> a               | 124.8 (9)        | $C^{2a}C^{2b}C^{2b\alpha}$                        | 132(1)<br>124(1) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $C_{3a} = C_{2m}$                  | 1.36(2)                 | FeN <sub>4</sub> C <sub>4</sub> d               | 129.4 (9)        | $C_2 C_2 b C_2 b \alpha$                          | 124(1)           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $C_{3d} = C_{3m}$                  | 1.50(2)<br>1.42(2)      | $C_{ia}N_{i}C_{id}$                             | 106 (1)          | $C_{2}bC_{2}cC_{2}c\alpha$                        | 129(1)<br>122(1) |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $C_{4a} = C_{3m}$                  | 1.42(2)<br>1.36(2)      | $C_{2a}N_{2}C_{2d}$                             | 108 (1)          | $C_2 d C_2 c C_2 c \alpha$                        | 122(1)<br>129(1) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $C_{4d} = C_{4m}$                  | 1.34 (2)                | $C_{aa}N_{a}C_{ad}$                             | 102(1)           | $C_{3a}C_{3b}C_{3b\alpha}$                        | 126(1)           |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $C_{1a} = C_{4m}$                  | 1.34(2)<br>1.49(2)      | $C_{4a}N_{4}C_{4d}$                             | 105 (1)          | C30C3bC3ba                                        | 120(1)           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $C_{1b} - C_{1b\alpha}$            | 1.49(2)                 | FeO <sub>1</sub> Cl                             | 125.7 (5)        | C3bC3cC3ca                                        | 130(1)           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $C_1 c^{-} C_1 c \alpha$           | 1,49 (1)                | $N_1 C_{1a} C_{1b}$                             | 109 (1)          | C <sup>3d</sup> C <sup>3c</sup> C <sup>3ca</sup>  | 124 (1)          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C <sub>2b</sub> -C <sub>2bα</sub>  | 1.50(1)                 | $N_1C_1aC_4m$                                   | 123(1)           | C <sub>4a</sub> C <sub>4b</sub> C <sub>4b</sub> α | 128 (1)          |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C2c-C2ca                           | 1.56 (1)                | CibCiaCam                                       | 127 (1)          | $C_{4c}C_{4b}C_{4b\alpha}$                        | 126(1)           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C <sub>3b</sub> -C <sub>3b</sub>   | 1.56 (3)                | N, C, dC, a                                     | 109(1)           | $C_{4b}C_{4c}C_{4c\alpha}$                        | 132 (1)          |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $C_{3c} - C_{3c\alpha}$            | 1.51 (1)                | $N_1C_1dC_1m$                                   | 126(1)           | $C_{4d}C_{4c}C_{4c\alpha}$                        | 119(1)           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $C_{4b} - C_{4b\alpha}$            | 1.45 (1)                | C. C. dC. m                                     | 125(1)           | $C_{ib}C_{ib\alpha}C_{ib\beta}$                   | 112(1)           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $C_{4c} - C_{4c\alpha}$            | 1.60(1)                 | NC                                              | 111 (1)          | $C_{1 c} C_{1 c \alpha} C_{1 c \beta}$            | 113 (1)          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $C_{1b\alpha} - C_{1b\beta}$       | 1.49(1)                 | $N_2 C_{2a} C_{2b}$                             | 132 (1)          | $C_{2b}C_{2b\alpha}C_{2b\beta}$                   | 112(1)           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $C_{1c\alpha} - C_{1c\beta}$       | 1.60 (2)                | C C C                                           | 117 (1)          | $C_{2c}C_{2c\alpha}C_{2c\beta}$                   | 113(1)           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $C_{2b\alpha} - C_{2b\beta}$       | 1.59 (2)                | $V_{2b}$ $v_{2a}$ $v_{1m}$                      | 108 (1)          | $C_{ab}C_{ab\alpha}C_{ab\beta}$                   | 112 (1)          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $C_{2c\alpha} - C_{2c\beta}$       | 1.42 (1)                | N <sub>2</sub> C <sub>2</sub> dC <sub>2</sub> c | 100(1)           | CacCaccac                                         | 115 (1)          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $C_{ab\alpha} - C_{ab\beta}$       | 1.52(1)                 | N <sub>2</sub> C <sub>2</sub> dC <sub>2</sub> m | 121(1)<br>120(1) | CabCaboCabo                                       | 114(1)           |
| $C_{abc} - C_{abc}$ 1.55 (4) $N_3 C_{3a} C_{3b}$ III (1) $-4c^{-2} de a^{-2} de a^{-2$                                                                                                       | Caco-Caco                          | 1.59 (3)                | $C_{2c}C_{2d}C_{2m}$                            | 130(1)           | $C_{10}C_{100}C_{100}$                            | 113(1)           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C <sub>4b0</sub> -C <sub>4b0</sub> | 1.55 (4)                | N <sub>3</sub> C <sub>3a</sub> C <sub>3b</sub>  | 111(1)           | 4 C - 4CC - 4Cp                                   | ~~~ (^)          |

<sup>a</sup> The atoms respectively noted by the labelings given in Figure 2. <sup>b</sup> The numbers in parentheses are the estimated standard deviations in the last significant figures.

| Table III. Packing Distances in the Crystalline Arrange | ement |  |
|---------------------------------------------------------|-------|--|
|---------------------------------------------------------|-------|--|

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ~                                                                                              |   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|---|
| bond type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | length, Å                                                                                      | bond type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | length, A                                                                                      | _ |
| $\frac{Fe-C_{3b}*^{a}}{Fe-C_{3c}*}Fe-C_{3d}*\\N_{1}-C_{3b}*\\N_{1}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_{2}-C_{3c}*\\N_$ | 3.936 (14)<br>3.813 (13)<br>3.868 (14)<br>3.786 (16)<br>3.635 (16)<br>3.929 (19)<br>3.765 (17) | $\begin{array}{c} C_{2m}-C_{3m}*\\ C_{2m}-N_{4}*\\ C_{3m}-C_{4a}*\\ C_{2m}-C_{4b}*\\ N_{3}-N_{3}*\\ N_{3}-C_{3d}*\\ C_{2m}-C_{4b}*\\ N_{3}-N_{3}*\\ N_{3}-C_{3d}*\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.809 (20)<br>3.728 (17)<br>3.557 (19)<br>3.874 (17)<br>3.603 (15)<br>3.889 (16)<br>3.653 (16) |   |
| $N_2 - C_{3m}^*$<br>$C_{2d} - C_{3m}^*$<br>$C_{2d} - C_{4a}^*$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.597 (17)<br>3.639 (20)<br>3.790 (19)                                                         | $C_{3a} - C_{4a} + C_{3b} - N_{4} + C_{3b} - N_{4} + C_{3b} - C_{4d} + C_{3b} - C_{4d} + C_{$ | 3.880 (17)<br>3.657 (14)<br>3.931 (16)                                                         |   |

 $^{a}$  The atoms with asterisk belong to molecule related by the center of symmetry at 1/2, 1/2, 1/2.

the counterpart porphyrin as a weak sixth ligand.  $\pi$ - $\pi$  interactions as observed in  $(\pi$ -pyrrolyl)iron and  $(\pi$ -pentadienvl)iron<sup>20</sup> may also be possible between the iron and the pyrrole ring. The existence of these  $\pi$ - $\pi$  interactions between (OEP)Fe<sup>III</sup>ClO<sub>4</sub> molecules may contribute to retention of the

(20) Moffitt, W. J. Am. Chem. Soc. 1954, 76, 3386.

| Table IV. | Molar Susceptibilitie | s and Effective | Magnetic I | Moments |
|-----------|-----------------------|-----------------|------------|---------|
| at Some T | emperatures           |                 |            |         |

| <i>T</i> , K | $10^6 \chi_M^a$ | $\mu_{\rm eff}, \mu_{\rm B}$ | <i>T</i> , K | $10^{6}\chi_{M}^{a}$ | $\mu_{\rm eff}, \mu_{\rm B}$ |  |
|--------------|-----------------|------------------------------|--------------|----------------------|------------------------------|--|
| <br>77.2     | 28 000          | 4.16                         | 190          | 13 100               | 4.46                         |  |
| 83.6         | 26 400          | 4.20                         | 201          | 12 700               | 4.52                         |  |
| 97.2         | 23 000          | 4.23                         | 211          | 12 200               | 4.53                         |  |
| 107          | 20 500          | 4.20                         | 222          | 11 800               | 4.58                         |  |
| 120          | 18 800          | 4.25                         | 233          | 11 500               | 4.64                         |  |
| 131          | 17 300          | 4.26                         | 242          | 11100                | 4.64                         |  |
| 144          | 16 000          | 4.30                         | 254          | 10 800               | 4.68                         |  |
| 156          | 15 100          | 4.35                         | 264          | 10 600               | 4.73                         |  |
| 166          | 14 300          | 4.35                         | 275          | 10 400               | 4.78                         |  |
| 177          | 13 600          | 4.39                         |              |                      |                              |  |
| 1 / /        | 10,000          | 7.33                         |              |                      |                              |  |

 $a_{\chi_{M}}$  in cgsu.

core planarity in the crystal. Although the asymmetric fivecoordination may cause the doming or ruffling form of the core as observed in solution,<sup>21</sup> the OEP core of the complex shows

<sup>(21) (</sup>a) Spiro, T. G.; Stong, J. D.; Stein, P. J. Am. Chem. Soc. 1979, 101, 2648. (b) Rakshit, G.; Spiro, T. G. Biochemistry 1974, 13, 5317. (c) Spiro, T. G.; Strekas, T. C. J. Am. Chem. Soc. 1974, 96, 338.
(22) Linder, C. T. Research Report R-94433-2-A (Westinghouse Research

Laboratories).

#### (Octaethylporphinato)iron(III) Perchlorate

the intact planar structure in the crystalline state.

As described in the Introduction, we are particularly interested in the spin state of the iron. The iron in the established structure has four strong-field planar ligands, porphines, and a weak-field axial ligand, perchlorate. From the viewpoint of ligand field theory, the structure allows the 3d<sup>5</sup> energy levels to split to  $d_{x^2-y^2}$  and  $d_{z^2}$  of  $d_{\sigma}$  antibonding orbitals and  $d_{xy}$ ,  $d_{yz}$ , and  $d_{zx}$  of  $d_{\pi}$  bonding orbitals. The  $d_{z^2}$  orbital energy is lower than the  $d_{x^2-y^2}$  energy because of a weak axial ligand (the perchlorate anion). The  $d_{z^2}$  level would be further lowered by the weak bonding of the lone pair of the perchlorate oxygen, while the interorbital interaction between the antibonding  $\pi^*$ of the oxygen and the  $d_{yz}$  and  $d_{zx}$  of the iron may cause effective Fe $\rightarrow$ (O-Cl)  $\pi^*$  back-bonding. In the established perchlorate structure, the Cl-O<sub>1</sub> bond is longer than the other three Cl-O bonds. The longer Cl-O<sub>1</sub> bond must give evidence of Fe $\rightarrow$ (O-Cl)  $\pi^*$  back-bonding. Although this interaction stabilizes the  $d_{yz}$  and  $d_{zx}$  orbitals, these  $d_{yz}$  and  $d_{zx}$  orbitals must be raised due to the repulsion by the  $2p_z$  electrons of the equatorial ligand nitrogens, while the  $d_{xy}$  orbital interacts directly neither with the equatorial nitrogens nor with the axial oxygen. Thus the  $d_{xy}$  orbital energy will be lower than that for the  $d_{yz}$  and  $d_{zx}$  orbitals. The Fe–N distances and the size of the central hole of the porphinato core are strongly related to the occupancy of the  $d_{x^2-y^2}$  orbital.<sup>5</sup> If the nitrogen comes near the central iron in the equatorial direction, the  $d_{x^2-y^2}$ orbital energy would be raised because of repulsion between the  $d_{x^2-y^2}$  electron and the sp<sup>2</sup> lone-pair electrons of the nitrogen. When the energy gap between the  $d_{x^2-y^2}$  and  $d_{z^2}$  levels exceeds the pairing energy, the raised  $d_{x^2-y^2}$  orbital is unoccupied. Consequently, the nonoccupancy of the  $d_{x^2-v^2}$  orbital results in shorter Fe-N distance. The Fe-N distances of the complex are shorter than the Ct-N distance observed in metal-free OEP (2.062 Å).<sup>12g</sup> The value is very close to those in the low-spin derivatives possess vacant  $d_{x^2-y^2}$  orbitals.<sup>10</sup> Therefore, the  $d_{x^2-y^2}$  orbital of the intermediate-spin complex is thought to be unoccupied. The displacement of the iron from the porphinato plane is associated with occupancy of the  $d_{r^2}$ orbital. Since the displacement of 0.26 Å is intermediate between those of low spin<sup>10</sup> and the high spin,<sup>5,8</sup> the  $d_{z^2}$  orbital may be singly occupied. An intermediate value for the displacement of the iron seems to be characteristic of the pentacoordinate intermediate-spin  $(S = \frac{3}{2})$  complex. The ground-state configuration is expressed by the configuration  $(d_{xy})^2(d_{yz})(d_{zx})(d_{z^2})$ . Indeed, the geometric parameters of the

(23) (a) Epstein, L. M.; Straub, D. K.; Maricondi, C. Inorg. Chem. 1967,
 6, 1720. (b) Bullard, L.; Panayappan, R.; Thorpe, A.; Hambright, P.;
 Ng, G. Bioinorg. Chem. 1973, 3, 41.

studied (OEP)Fe<sup>III</sup>ClO<sub>4</sub> are very similar to those of (TPP)- $Fe^{III}ClO_4$  (Fe--C<sub>t</sub> = 0.27 Å, Fe-N = 1.997 Å),<sup>6</sup> which has been presumed to have the same configuration as (OEP)-Fe<sup>III</sup>ClO<sub>4</sub>, and also those of the high-spin d<sup>4</sup> (TPP)Mn<sup>II</sup>Cl  $(Mn-C_t = 0.265 \text{ Å}, Mn-N = 2.008 \text{ Å})$ ,<sup>11</sup> which has a singly occupied  $3d_{z^2}$  and an unoccupied  $3d_{x^2-y^2}$  orbital. In the Mössbauer spectra of (OEP)Fe<sup>III</sup>ClO<sub>4</sub>, the large positive quadrupole splitting indicates that the energy levels of the singly occupied  $d_{yz}$  and  $d_{zx}$  states are higher than that of the doubly occupied  $d_{xy}$  state.<sup>4</sup> The complex has almost the same effective magnetic moments  $\mu_{eff} = 4.2 \ \mu_B$  at 77 K and 4.7  $\mu_B$ at 275 K. When these values are compared with calculated values  $\mu_{\rm eff} = 5.92$ , 3.87, and 1.73  $\mu_{\rm B}$  for  $S = \frac{5}{2}, \frac{3}{2}$ , and  $\frac{1}{2}$ , respectively, the complex can be regarded as an intermedi-ate-spin (S = 3/2) complex.<sup>2,4</sup> It is noted that the (TPP)-Fe<sup>III</sup>ClO<sub>4</sub> crystal recently studied by Scheidt et al. included m-xylene.<sup>6b</sup> The mean separation of m-xylene from the porphinato core was determined as 3.48 Å, which is close to that of the separation of the paired (OEP)Fe<sup>III</sup>ClO<sub>4</sub>. The m-xylene molecule is thought to act as a  $\pi$  base to stabilize (TPP)- $Fe^{III}ClO_4$  in the crystalline state. This fact indicates that the pyrrole ring of the OEP core coordinates axially to the iron as a  $\pi$  base to stabilize the (OEP)Fe<sup>III</sup>ClO<sub>4</sub> structure.

As described so far, the  $S = \frac{3}{2}$  state only of (OEP)-Fe<sup>III</sup>ClO<sub>4</sub> could be assigned from its structural properties. Thus, it is concluded that the Fe-N and Fe-C<sub>1</sub> distances can be used as good structural indicators to determine the relative energy levels and/or the occupancy of the  $d_{x^2-y^2}$  and  $d_{z^2}$  orbitals of (porphinato)iron complexes.

When we compare the spectroscopic properties of ferricytochrome c' with those of the intermediate-spin complexes, there are many similarities. Since the intermediate-spin state of (OEP)Fe<sup>III</sup>ClO<sub>4</sub> resulted from the weak bonding of the perchlorate group to the iron, the histidyl imidazole at the proximal site of ferricytochrome c' would weakly coordinate the heme. That is, the proximal imidazole nitrogen might be bound to the iron as a weak ligand due to the conformation of the apoprotein at physiological pH values.

In order to reveal more precisely the structural features for intermediate-spin (porphinato)iron(III), we are proceeding with structure analyses of new ferric complexes possessing anomalous spin states.<sup>3,4</sup>

Acknowledgment. We thank Professor Hiroshi Kato for his helpful comments concerning the theoretical interpretation.

**Registry No.** (OEP)Fe<sup>III</sup>ClO<sub>4</sub>, 50540-30-2.

**Supplementary Material Available:** Listing of structure factor amplitudes (14 pages). Ordering information is given on any current masthead page.