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Table 1V. Compaison between the Calculated JAF and the 
Experimental J Values of M a , -  Chainsa 

J A  F (calcd) 

Charlot present 
chain et al.b work J(expt1) 

csvc1, -64.0 -130 -160" 
N(CH,),MnCl, -13.1 -56 -8.7d 
CsNiC1, -36.6 -84 -18.lf -15.3,P-19.7' 

a All the numbers are in cm-' units. * Reference 11. " Kef- 

Reference 3q. 
erence 3e. Reference 3g. e Reference 30. ? Reference 3p. 

the sum of the ferromagnetic contribution JF and the anti- 
ferromagnetic contribution JAF, with expression 19a for JAF 

(19a) 

where n is the number of unpaired d electrons in a metal ion, 
S,, is the overlap between two magnetic orbitals x,, centered 
on the nearest-neighbor ions, and W, is the width of the band 
built from x,. In the present work, corresponds to a band 
all the levels of which are singly occupied, i.e.., p = la ,  le, or 
2e. According to Charlot, Girerd, and Kahn" and eq 6, S,, 
may be approximated by eq 19b where E,, is the mean band 

n 

,= 1 
JAF = -( 1 /n2) c Wws,, 

s,,, -W,/[4(K - 1 1 4  (1 9b) 

energy per unit cell of the band b, and K = 1.75 (the constant 
in the Wolfsberg-Helmholz appro~imation).~~" From eq 19a,b 

n 

,,=l 
JAF (1 / n 2 )  C (W,2 /34  (20) 

Due to the approximation for the overlap introduced in eq 19b, 
JAF: is made origin-dependent (Le., dependent on e,) in eq 20. 
This is conceptually unsatisfactory but reasonable within the 
framework of the extended Hiickel method. 

Table IV lists the calculated JAF values using eq 20, those 
of Charlot, Girerd, and Kahn" obtained from their calculations 
of (C1,(MC13),)(m+3)- (rn = 1-6), and the experimental J 
values. The magnitudes of the present JAF values are some- 

what greater than those of Charlot, Girerd, and Kahn, but both 
sets exhibit the same trend that the magnitudes of the JAF 
values vary as VCl< > NiClq > MnCl j-. A proper treatment 
of JF values, which may not be constant if not negligible, 
remains to be a problem." 
Summary and Concluding Remarks 

A number of ternary sulfides and chlorides are made up of 
face-sharing octahedral MX,". chains. The electrical and 
magnetic properties of some ternary compounds were discussed 
on the basis of the one-electron band structures of their FAX3" 
chains. The metallic and magnetic insulating states of the 
MX3" chains were constructed from their d-block bands with 
appropriate assignment of band orbilal occupancies, and the 
relative stabilities of these states were analyzed taking elec. 
tron-electron repulsion into consideration. This analysis led 
to rough estimates for the lower bounds of the on-site re- 
pulsions of MX3" chains. The antiferromagnetic contributions 
to the magnetic exchange parameters J were also examined 
for the MC13- chains based upon the magnetic insulating states 
of their d-block bands. Our study suggests that one-electron 
band structures can be of use for the qualitative discussion of 
magnetic insulating states once the effect of electron-electron 
repulsion on band orbital occupancy is properly accounted for. 
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Within the framework of Hartree-Fock band theory, the relative stabilities of the metallic and magnetic insulating states 
of a partially filled degenerate band were examined in terms of bandwidths, mean band energies per unit cell, and on-site 
repulsions. The insulating nature of magnetic insulators was rationalized in terms of unusual band orbital occupancy brought 
about by electron-electron repulsion when bandwidth is small. 

In one-electron band theory the total energy per unit cell 
is simply given by the sum of all the occupied band orbital 
energies, thereby leading to the prediction that a crystalline 
material with Dartiallv filled band is a metal. while that with 

spatial distortion of the lattice (Le., Peierls distortion)' and 
introduction of an antiferromagnetic stiblattice (Le., Slater 
antiferromagnetism) ,2  A crucial factor causing the Slater 

I_ l-l__ll completely filied ban; is an insulator. A metal is converted (1) R. E, peierls, ' h ~ ~ ~ ~ ~ ~ ~ ~  ~l~~~~~ of Solids", Oxford university press, 
into an insulator by unit cell doubling mechanisms such as London, 1955, pp 108-12. 
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antiferromagnetism is electron-electron rep~ls ion,~* which is 
generally responsible for a class of materials with partially 
filled bands to have insulating properties.’ Typical examples 
are magnetic ( M ~ t t ) ~  insulators which, upon increasing tem- 
perature, do not become metals but undergo a disordering of 
local magnetic moments. 

One-electron band theory neglects electron-electron re- 
pulsion and assumes the existence of long-range spin order in 
crystalline materials. Consequently, magnetic insulators are 
not properly described by one-electron band theory. A number 
of theoretical studies3 have dealt with the role of electron- 
electron repulsion in magnetic insulators and the question how 
to justify the existence of a Heisenberg-like spin Hamiltonian 
commonly used for the proper treatment of their spin dy- 
namics. In the local moment Hartree-Fock theory3a the 
conceptual basis for the Hartree-Fock description of magnetic 
insulators is provided by Ising-HF configurations built upon 
spin-order dependent Wannier orbitals, and the main features 
of magnetic insulating states are explained by unusual solutions 
of the usual Hartree-Fock approximations. 

Recently, the effect of electron-electron repulsion on band 
orbital occupancy was studied5 for a half-filled nondegenerate 
band by using the Hartree-Fock band theorya6 An insulating 
state of a half-filled nondegenerate band occurs when all the 
band levels are singly occupied. This kind of magnetic insu- 
lating state is unusual from the viewpoint of one-electron band 
theory, but minimizes electron-electron repulsion by virtue 
of avoiding double occupancy of band orbitals. Of course, such 
a band theory5 does not explain either antiferromagnetism or 
spin disorder of magnetic insulators but provides a stability 
condition for the magnetic (strictly speaking, ferromagnetic) 
insulating state that is consistent with the conclusion derived 
from the many-body theoretical treatment.3b 

In the present work the relative stabilities of metallic and 
magnetic insulating states of partially filled degenerate bands 
will be examined by using the Hartree-Fock band theory, so 
as to derive simple stability conditions for magnetic insulating 
states that are suitable for the qualitative rationalization of 
magnetic insulators based upon their one-electron band 
structures. Qualitative description of magnetic insulators by 
the band theory may be justified if the ferromagnetic insulating 
states predicted from it are fair approximations for the ap- 
propriate Ising-HF configurations of the local moment 
Hartree-Fock theory, which appears reasonable since a 
spin-order dependent Wannier orbital retains the one-site 
localized nature despite orbital rearrangement resulting from 
its local spin e n ~ i r o n m e n t . ~ ~  

(2) (a) J. C. Slater, Phys. Rev., 82, 538 (1951); (b) T. Matsubara and T. 
Yokoda, Proc. Int. Conf. Theor. Phys., 693 (1954); (c) J. des Cloizeaux, 
J .  Phys. Radium, 20, 606, 751 (1959). 

(3) (a) B. H. Brandow, Adv. Phys., 26,651 (1977), and references therein; 
Int. J.  Quantum Chem., Symp., 10,417 (1976); (b) J. Hubbard, Proc. 
R .  Sac. London, Ser. A ,  276, 238 (1963); 277, 237 (1964); 281, 401 
(1964); (c) J. Kanamori, Prog. Theor. Phys., 30,275 (1963); (d) P. 
W. Anderson, Solid State Phys., 14,99 (1963), and references therein; 
( e )  J.  B. Goodenough, “Magnetism and Chemical Bond”, Wiley, New 
York, 1963; Prog. Solid State Chem., 5, 145 (1971); (0 J.-J. Girerd, 
M.-F. Charlot, and 0. Kahn, Mol. Phys., 34, 1063 (1977); (8) N. F. 
Mott, “Metal-Insulator Transitions”, Barnes and Noble, New York, 
1974, and references therein; (h) H. J. Keller, Ed., “Chemistry and 
Physics of One-Dimensional Metals”, Plenum, New York, 1977; (i) C. 
Herring, “Magnetism”, Vol. IV, G. T. Rad0 and H. Suhl, Eds., Aca- 
demic Press, New York, 1966, and references therein; G )  E. J. Yoffa, 
W. A. Rodrigues, and D. Alder, Phys. Rev. B, 19, 1203 (1979). 

(4) Mott insulators have been identified as ordinary magnetic insulators. 
See ref 3a. 
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and Breach, New York, 1976, pp 1-58; (b) J. Ladik, “Electronic 
Structure of Polymers and Crystals”, J. M. Andre and J. Ladik, Eds., 
Plenum, New York, 1975, p 23; (c) J. M. Andre, J .  Chem. Phys., 50, 
1536 (1969). 
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Theoretical Considerations 
For the purpose of simplicity, we will consider a crystalline 

chain of repeat distance a. The band orbitals C#Jnk, for bands 
n at wave vectors k, of such a chain are assumed to be the 
eigenfunctions of H (Le., the operator for the kinetic plus the 
nuclear-electron attraction energies)6a with the band orbital 
energies enk (see eq 1). Further the band orbital energies tnk  

are assumed to behave as a tight-binding band, where E ,  is the 
mean band energy per unit cell and W, is the bandwidth (see 
eq 2). For such a tight-binding band, the ratio of the available 

band levels in a region -kl I k I kl  to that of the total band 
levels in the first Brillouin zone -K I k 5 K (K = r / a )  is given 

In the Hartree-Fock band theory, the total electronic energy 
per unit cell is the sum of all the occupied band orbital energies 
plus that of all the Coulomb and exchange repulsions between 
the occupied band orbitals. As the total number of unit cells 
N of a chain increases, summations over k are replaced by 
integrations over k,’ 

%k = (C#JnklqC#Jnk)  (1) 

E,k = E ,  - ( W , / 2 )  COS (ak )  ( -n /a I k I ~ / a )  (2) 

by kllK. 

- ( N / 2 a S  dk 
k 

(3) 

From eq 2 and 3 

.. .. 
Nlfnen - (sin Una) / 2 r )  Wnl (4) 

wheref, is the fractional occupancy of the band n, namely, 

The band orbitals &,k can be expressed in terms of the 
Wannier orbitals (orthogonal localized orbitals) $?j;8 see eq 
5 ,  where R, = j a  and $M = $,(r - Rj), Le., the Wannier orbital 

fn = kn/K* 

of the band n located in the unit cell j .  With use of eq 5 ,  
summations of the Coulomb repulsions Jhtv  and the exchange 
repulsions Knhtv (between the band orbitals q5& and gntK) may 
be approximated by neglecting all but the on-site repulsions.3a* 
Thus 

Nf~n.($nj$n~, l$nj+n~) = NfJnfJnnt (6b) 
Following the work of Kanam01-i~~ and bran do^,^^ the on- 

site repulsions U,,, and J,,, may be approximated by eq 7. 
U,,, = J,,, = U 

Unnf = U’, if n # n’ (7) 
J,,,,, = J ,  if n # n‘ 

(7) M. Lax, “Symmetry Principles in Solid State and Molecular Physics”, 
Wiley, New York, 1964, p 187. 

(8) (a) J. M. Ziman, “Principles of the Theory of Solids”, Cambridge 
University Press, London, 1964, pp 148-51. (b) J. C. Slater, “Quantum 
Theory of Molecules and Solids”, Vol. 2, McGraw-Hill. New York, 
1965, pp 154-8. 
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fl, = I f,, = 112 frit= fn+ = 1/4 

f,t = f2+= I fn+=  213 fn4 = f n + =  1/3 
Figure 1. Schematic band representations of metallic and magnetic 
insulating states of partially filled degenerate bands. 

Electron-Electron Repulsion and Band Orbital Occupancy 
A. Insulating States and On-Site Repulsions. Figure 1 

illustrates some metallic and insulating states of a partially 
filled degenerate band with mean band energy per unit cell 
e and bandwidth W. Here la, 2a, and 3a are magnetic insu- 
lating states, and IC, 2c, and 3c are nonmagnetic metallic states 
expected from one-electron band theory. The meaning of the 
metallic states lb,  2b, and 3b will become clear in our later 
discussion. The relative stabilities of these states may now be 
compared to examine the condition for the insulating states 
to be the most stable states in each case. Let us consider that 
there exists m electrons per unit cell to fill the degenerate band 
of degeneracy n (m < n) with mean band energy per unit cell 
e and bandwidth W. The various states of Figure 1 belong 
to one of the cases in eq 8. With use of eq 4, 6, and I ,  the 

a: f i t  = f 2 t  = . . . =f,t = 1 

f i t  =f2? = . . . =f,t = m/n b: 

c: f i t  = f2t = . . . = f , t  = m/2n 
f i l  = f21 = . . , =f,J = m/2n 

(8) 

total electronic energies per unit cell of the above states are 
written as in eq 9. Therefore the relative stabilities of the 

E(a) = me + [m(m - l ) /2](Uf-  J) 
E(b) = me - (n/2a)[sin ( m ~ / n ) ]  W + 

E ( c )  = me - (n/a)[sin (mx/2n)]W + 
(m/42[n(n - 1)/21(uf - 4 (9 )  

(m/2n)*[nU + 2n(n - 1)U’- n(n - 1)J3 

various states of Figure 1 can be summarized as in eq 10. 

(1 Oa) 

(lob) 

E(1a) - E(1b) = W / a  - (U’- J ) /4  

E(la) - E(1c) = f i W / i ~  - ( U +  2U’- J ) / 8  

E(2a) - E(2b) = 3fiW/47r - (U’- J ) / 3  
E(2a) - E(2c) = 3 W / ~ T  - (U + 4U’- 2J)/  12 

E(3a) - E(3b) = 3fiW/47r - (U’- J ) / 3  
( 1 OC) 

E(3a) - E(3c) = 3 f i W / 2 x  - (U + U’+ 4 / 3  

It turns out to be a difficult task to estimate the magnitudes 
of U, U’, and J .  For the magnetic insulator NiO, it has been 

f,t= fl+ = f*+= I fn,=l,f,*:2/3 
Figure 2. Schematic band representations of metallic and magnetic 
insulating states of partially filled degenerate bands. 

estimated that U N 10, U’ N 8.4, and J N 0.8 eV.3a On the 
basis of this result, it may be assumed that 

U‘ 0.84U J 0.08U (1 1) 
in order to reduce our analysis from a three-parameter (U, U’, 
and J) to a one-parameter (q problem. From eq 10 and 11, 
it is found that the insulating states la, 2a, and 3a are the most 
stable states of 1, 2, and 3, respectively, when W < -0.6U. 

Figure 2 shows the insulating and metallic states derived 
from the partially filled degenerate bands of Figure 1 when 
n more electrons are added. It can be easily shown that 

E(1a’) - E(1b’) = E(la) - E(lb) 

E(3a’) - E(3b’) = E(3a) - E(3b) 
The metallic states lb’, 2b’, and 3b’ simulate those expected 
from a spin-polarized local p1I3 exchange appro xi ma ti or^.^^ For 
example, lb’ is equivalent to the split band representation lb” 
shown below, where A, refers to the exchange splitting. In 

E(2a’) - E(2b’) = E(2a) - E(2b) (12) 

<,..g..a ~ 

t I 2  

AX 

y l l i l  1 2  

Ib” 
the present approximation Ax = (U + 4 / 2 ,  which is obtained, 
as will be discussed in the next section, by calculating the 
effective potentials per electron per unit cell exerted on the 
up-spin and down-spin electrons in lb’. According to eq 12, 
the insulating states la’, 2a’, and 3a’ are more stable than the 
metallic states lb’, 2b’, and 3b’, respectively, again if W < 
-0.6U. 

B. Band Splitting, Insulating Gap, and Exciton. The on-site 
repulsions and hence the effective potentials experienced by 
the up-spin and down-spin electrons in an insulating state of 
a partially filled degenerate band depend upon the number 
of up-spin and down-spin electrons and also upon the presence 
of doubly and singly filled bands. This leads to band splitting, 
as examined in detail for MnO, COO, and NiO by bran do^.^^ 
As an example, the band splitting expected from 2a’ may now 
be considered. With use of the symbols d t  and d l  (st and s i )  
for the up-spin and down-spin electrons of the doubly (singly) 
occupied band, respectively, the effective potentials exerted 
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U’ - J 

U 
2J 

df -!- u 
S l  a vi-”’ 

Figure 3. A split band representation of the magnetic insulating state 
2a‘. 

on the up-spin and down-spin electrons of 2a’ may be written 
as in eq 13a. If an extra electron were to be added into one 

dt(2a’): E + U + 2U’- 2 J  

di(2a’): E + U + 2U’ ( 1 3 4  
st(2a’): E + 3U’- 2 J  

of the singly occupied bands of 2a’ this electron would feel the 
effective potential as shown in eq 13b. Thus the partially filled 

degenerate band 2a’ will split as shown in Figure 3, which has 
the meaning of effective one-electron density of states (more 
precisely, the partial density of states for the Wannier orbitals 
located in a unit cell).3a 

The energy separation, (U’- J - W), between the top of 
the d$ band and the bottom of the s i  band in Figure 3 is the 
insulating gap of 2a‘ (i.e., the excitation energy required to 
produce a current-carrying state from 2a’). In the Hartree- 
Fock theory, the unoccupied orbitals of an m-electron system 
reflect the potential created by m rather than m - 1 electrons? 
and thus the position of the vacant s i  band determined by eq 
13b may be understood. However, it is of interest to obtain 
the insulating gap without introducing an extra electron. 2a” 

sl(2a’): c + U + 3U’- J (13b) 

BDU 1 2 3  

f I t  = f*+=f3+= I 

f,, = I  - 8, fz+= s 
2U“ 

shows a metallic state resulting from the insulating state 2a’ 
by a slight change in the band orbital occupancy, where the 
magnitude of the change is measured by 6. The energy re- 
quired per electron per unit cell for the insulator-to-metal 
transition 2a’ - 2a” is 
[E(2a”) - E(2a’)]/6 = (1 - 6)(U’- J) - 

[sin (6?r)/6?r]W = U’- J -  W (as 6 -+ 0) (14) 

This is in agreement with the insulating gap obtained from 
eq 13 and Figure 3. 

Our final topic of the present section is concerned with a 
band picture of crystal field excitons in magnetic insulators, 
which may be examined by considering hypothetical insulating 
states shown in Figure 4. The insulating state 4a consists of 
the two bands 1 and 2 whose mean band energies per unit cell 
(bandwidths) are el and t2 (W, and W,), respectively. When 
the down-spin electron of 4a is promoted from the band 1 to 
the band 2 to produce another insulating state 4b, the exci- 
tation energy is simply given by A (=e2 - E , )  since the total 
on-site repulsions of 4a and 4b are the same. If the split band 
representation of 4a (i.e., 4a’) were to be used for the de- 
scription of the above excitation, the excitation energy would 

(9) S. Huzinaga and C. Arnau, Phys. Rev. A ,  1, 1285 (1970); J .  Chem. 
Phys., 54, 1948 (1971). 
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Figure 4. A schematic band representation of crystal field exciton. 
In 4a‘, it was assumed that U > U’ + J + A. 

be explained by the energy separation between the d i  and s i  
bands, (U’- J + A), minus the particle-hole on-site interaction, 
(V’- J),3a In any event, if (U’- J) is large compared with 
( Wl + W2)/2, the excitation energy for 4a - 4b lies within 
the insulating gap, [ U’ - J + A - ( Wl + W2)/2]. 
Discussion and Concluding Remarks 

In essence the present work is a variation of the Stoner 
theory of band magnetism6a so that the magnetic insulating 
states predicted from this theory are ferromagnetic. Under 
the assumption that such insulating states are reasonable 
approximations for the appropriate Ising-HF config~rations,~~ 
the present band description of magnetic insulating states may 
be justified. In the present work electrons in magnetic insu- 
lating states have bandwidth by the very nature of the band 
theory, and the insulating feature of magnetic insulators is 
rationalized in terms of unusual band orbital occupancy 
brought about by electron-electron repulsion when bandwidth 
is small compared with on-site repulsion. Practically, these 
aspects are consistent with the results of the local moment 
Hartree-Fock theory.3a 

An advantage of the present Hartree-Fock band description 
is that the relative stabilities of metallic and magnetic insu- 
lating states of a band can be readily estimated in terms of 
bandwidths and on-site repulsions. Orbitals obtained from 
SCF and one-electron methods exhibit qualitatively similar 
behavior in their crucial aspects,1° Le., relative orbital or- 
derings and their variations with geometry distortion. Thus 
the band structures determined from one-electron band theory 
may be employed for the description of magnetic insulators 
with appropriate band orbital occupancy or conversely for the 
estimate of on-site repulsion with appropriate stability con- 
dition. These topics will be discussed in our subsequent paper. 
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