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The electron relaxation energy, ER, is a well-recognized limitation of Koopmans’ approximation for ionization energies. 
Several characteristic aspects of E ,  for first ionizations of atoms are discussed. I t  is shown that (1) Slater’s screening 
model gives good account of the basic trends in ER with valence ionizations of main-group atoms but fails for d electron 
ionizations of transition metals, (2) the relatively large ER for ionization of 3d electrons is association with the 3d shielding 
of 3s and 3p electrons (these relaxation characteristics help to clarify the filling of the 4s and 3d orbitals in the periodic 
table), and (3) there is more than a proportional decrease in E,  when the valence density removed from an atom is less 
than a complete electron (this indicates that the intraatomic portion of ER will be less for ionization from a delocalized 
orbital than from a localized orbital) 

The ionization energies of atoms and molecules are asso- 
ciated with many aspects of chemistry, including certain 
thermochemical cycles, models of electronegativity, and pa- 
rameterization schemes for semiempirical molecular orbital 
theories. Koopmans’ theorem’ relates ionization energies to 
electron orbital energies in the Hartree-Fock model and thus 
provides a theoretical framework for interpreting the associated 
physical and chemical properties in terms of ground-state 
electronic structures. As a result, Koopmans’ theorem has had 
either a direct or implied influence on many current concepts 
and models of chemical behavior. 

The description of any molecular property or chemical 
process in terms of ground-state structure is limited by the 
approximate representation of the excited or final state. In 
the case of Koopmans’ theorem this limitation arises from the 
assumption that, when an electron is removed from an atom 
or molecule, the remaining charge distribution does not change. 
In fact, the remaining charge distribution is contracted or 
reorganized as a result of the decrease in electron-electron 
repulsions.2 The difference in energy between the positive 
ion with “frozen” orbitals (Koopmans’ ion) and the positive 
ion with optimized orbitals (SCF ion) is termed the relaxation 
energy, E R ,  

Because of our interest in the high-resolution valence-pho- 
toelectron spectroscopy and electronic structure of transi- 
tion-metal complexes, we have been directly concerned with 
understanding the limitations of Koopmans’ approximation. 
This has led us to a fundamental theoretical investigation of 
the relaxation process with valence ionization. One aspect of 
this study has involved different ab initio model calculations 
of the electronic structure of atoms and ions.3 We wish to 
report here some features of the relaxation energy that have 
been revealed by this work. Our developments have been 
assisted by the numerous studies of electron relaxation asso- 
ciated with core ionization and the Auger p r o c e ~ s . ~  A par- 
ticularly excellent presentation of these concepts along the lines 
of the present discussion has been provided by Martin and 
S h i r l e ~ . ~  It should also be noted that several calculational 
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Table I. Shielding Factors Snl ,ny i  

n’i’ 
nld 3s 3P 3d 4s 

3s a 0.35 0.35 0 
b 0.25 0.25 0.08 

3p a 0.35 0.35 0 
b c  0.38 0.05 

3d a 1.0 1.0 0.35 0 
b e  C 0.27 0 

4s a 0.85 0.85 0.85 0.35 
b c  C 0.84 0.10 

a Slater’s rules.’b Clementi and Raimondi.” Combined in 
single term for all inner electrons. 

alternatives to Koopmans’ approximation have been put for- 
wards6 

Many of our results on ER are easily understood in terms 
of Slater’s concept of electron shielding and effective nuclear 
charges7 In this model the origin of the electron relaxation 
energy follows from the different total electron shielding in 
the positive ion compared to the neutral atom. The total 
shielding of each electron from the nucleus is defined as the 
sum of the individual electron-shielding factors from all other 
electrons. This may be written as eq 1 where S,, is the extent 

(1) 

an electron with [n,l] quantum numbers is shielded by one 
electron with [n’l’] quantum numbers, and Ndlt is the number 
of electrons with these quantum numbers (subtracting Snl,n, 
eliminates an electron shielding itself). Some examples of 
shielding factors that will prove useful are given in Table I. 
Similar to the development by Snyder for core-electron binding 
energies,* a general expression for the relaxation energy (in 
Rydbergs) in this model is 

Shielded electrons. 

Sn/ = CC(Nn,Sn/,nt/O - Sn/,n/ 
n’ /’ 

ER = C(N+n//nz>[S+n/ - Sn/12 (2) 
nl 

where Wnl and S+nl correspond to the orbital occupations in 
the positive ion. This equation indicates that only those shells 
that are shielded by the electron to be removed contribute to 
the relaxation energy, since the term vanishes if the shell is 
shielded by an equivalent amount in both the neutral atom 
and the positive ion. According to Slater’s rules for screening 
factors an electron does not shield electrons that are in deeper 
shells, so only electrons that are in the same shell as the 

(5) Brundle, C. R.; Baker, A. D. “Electron Spectroscopy”; Academic Press: 
New York, 1977; pp 98-114. 

(6) For leading references see: (a) vonNiessen, W.; Dierckson, G. H. F.; 
Cederbaum, L. S. J .  Chem. Phys. 1977, 67, 4124. (b) Reference 17, 
p 305. 

(7) (a) Slater, J. C. Phys. Reu. 1930,36, 57. (b) See for instance: Huheey, 
J. E. “Inorganic Chemistry”; Harper and Row: New York, 1972; p 40. 

(8) Snyder, L. C. J .  Chem. Phys. 1971, 55, 95. 
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electron to be removed, or in outer shells, will experience 
relaxation. In the case of core ionizations ER is generally 
dominated by the large number of electrons in outer shells that 
are very effectively shielded from the nucleus by the core 
electron. 

In the case of valence-electron ionizations there are no 
outer-shell electrons to relax, so only the term for intrashell 
relaxation need be considered. If Nvalence is defined as the 
number of electrons in the valence shell (according to Slater’s 
grouping of orbitals) of the neutral atom, eq 2 is reduced to 
eq 3. The numerical factor of 0.35 follows from recognizing 

(3) 
that the total shielding of an electron remaining in the valence 
shell is reduced by 0.35 (0.30 if n = 1) when one valence 
electron is removed. Equation 3 simply says that the total 
electron relaxation energy is proportional to the number of 
electrons remaining in the valence shell multiplied by a term 
that is related to the change in shielding of each electron. 

Equation 3 suggests periodic trends in ER that are consistent 
with the results of Hartree-Fock-Slater and other calculations 
of these relaxation e n e r g i e ~ . ~ ~ ~ ~ J  ER decreases going down a 
column of the table because of the increase in principal 
quantum number n in eq 3. ER is very low for the first ion- 
ization of group 1A elements, where (Nvalence - 1) = 0, and 
ER increases from left to right across a row of the periodic 
table. The change in ER between atoms of successive groups 
is indicated to be (0.35/n).2 It is interesting to compare this 
prediction with the results of Hartree-Fock calculations on 
the atoms and ions. This comparison is not completely 
straightforward because of complications caused by certain 
open-shell states and electron configurations of the atomic 
species. These configurations lead to a slightly nonuniform 
increase in ER from left to right across a row of the periodic 
table, just as there is also a nonuniform increase in the ioni- 
zation energies. However, the average change in ER between 
atoms in successive groups of the first three rows of the periodic 
table9 compares nicely with the predictions of Slater’s shielding 
factors, as shown in Table 11. 

Evidence has been accumulating in recent years that ex- 
ceptionally large relaxation energies may accompany the va- 
lence d ionizations of transition metals, especially metals in 
organometallic complexes.10 A striking example is provided 
by the case of ferrocene. Independent theoretical studies’Oa,b 
indicate that the first ionizations of ferrocene, at  about 7 eV, 
are associated with orbitals with high metal d character and 
involve relaxation energies between 6 and 7 eV. The next 
ionizations of ferrocene, near 9 eV, primarily involve carbon 
p,, orbitals of the cyclopentadienyl rings, and the relaxation 
energies are less than 1 eV. Such large differences in relax- 
ation energy for different valence orbitals can lead to serious 
problems in the chemical interpretation of electronic structure. 
Other estimates of ER for 3d ionization of discrete transi- 

(9) Clementi, E.; Roetti, C. At .  Data Nucl. Data Tables 1974, 14, 177. 
Groups 6 and 7 are not included in this average because of large errors 
in using the orbital eigenvalue to predict the energy of the frozen-orbital 
positive ion for these configurations. If these groups were included, the 
corresponding values in Table I1 would be, for n = 2, 0.47, for n = 3, 
0.19, and, for n = 4, 0.14. 

(10) (a) Coutiere, M.-M.; Demuynick, J.; Veillard, A. Theor. Chim. Acta, 
1972, 27, 281. (b) Bagus, P. S.; Walgren, U. I.; Almlof, J. J.  Chem. 
Phys. 1976, 64, 2324. (c) Hillier, I. H.; Guest, M. F.; Higginson, B. 
R.; Lloyd, D. R. Mol. Phys. 1974,27,215. (d) Connor, J. A.; Derrick, 
L. M. R.; Hall, M. B.; Hillier, I .  H.; Guest, M. F.; Higginson, B. R.; 
Lloyd, D. R. Ibid. 1974, 28, 1193. (e) Connor, J. A,; Derrick, L. M. 
R.; Hillier, I. H.; Guest, M. F.; Lloyd, D. R. Ibid. 1976, 31, 23. (f) 
Schaefer, H. F., 111 “Modern Theoretical Chemistry”; Plenum Press: 
New York, 1977; p 207. (g) Evans, S.; Guest, M. F.; Hillier, I. H.; 
Orchard, A. F. J .  Chem. Soc., Faraday Trans. 2 1974, 70, 417. (h) 
Guest, M. F.; Hillier, I. H.; Higginson, B. R.; Lloyd, D. R. Mol. Phys. 
1975, 29, 113. (i) Rohmer, M.-M.; Veillard, A. J .  Chem. Soc., Chem. 
Commun. 1973, 250. 6) Veillard, A. Chem. Commun. 1969, 1022. 

ER = (Nvalence - 1)(0*35/n) 
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Figure 1. Relationship of the eigenvalues and relaxation energies of 
the 3d’ and 4s’ configurations to the positive-ion state of potassium. 

tion-metal atoms range from about 2 eV for titanium to more 
than 5 eV for ~ o p p e r . ~ ~ J ~ ~ ~ ~ ~ ~ * ~  

Equation 3 indicates that ER should be large for metals to 
the right of the row because of the large number of valence 
electrons that remain in the shell. However, the equation fails 
to account for the full magnitude of ER, especially for the early 
transition metals. This limitation of eq 3 can be traced to the 
inadequacy of Slater’s rules for screening factors of d electrons. 
Table I contains the screening factors derived by Clementi and 
Raimondi from their “best atom” SCF calculations.” These 
factors show that the 3d electrons shield the 3s and 3p electrons 
at least as effectively as they shield the other 3d electrons. This 
indicates that the 3s and 3p electrons should be included in 
the same shell as the 3d electrons when 3d ionization is dis- 
cussed, and Nvalence in eq 3 should range from 9 to 18 electrons 
instead of from 1 to 10. if eq 2 is used with Clementi and 
Raimondi’s screening factors to estimate E ,  for 3d ionization 
of transition metals, a reasonable agreement with other cal- 
culations of E ,  is obtained. 

This analysis provides a relatively simple interpretation of 
the filling and emptying of the 4s and 3d orbitals, which 
continues to be a source of confusion in the teaching of atomic 
electronic structure.’* Much of the confusion arises from 
thinking that the most stable electronic state of the atom 
corresponds to occupying the most stable orbitals. This ignores 
the effect of electron-electron repulsions. For instance, when 
the electronic configurations of the elements in the periodic 
table are built up, the 4s orbital is occupied before the 3d even 
though the 3d orbital eigenvalue is slightly more stable than 
the 4s orbital eigenvalue. The major difference between 
electrons in the 3d and 4s orbitals is that the 3d electrons shield 
the 3s and 3p electrons, and this shielding destabilizes the total 
energy for that electronic state. The relationship between the 
common positive ion for the two configurations, the orbital 
eigenvalues, and the relaxation energies is illustrated in Figure 
1. The figure shows that if two different atomic states can 
be linked to a common state through an ionization process, 
then knowledge of the appropriate eigenvalues plus relaxation 
energies allows prediction of the relative stability of the states.13 
It is worth noting that the state of sodium with a neon core 
and one electron in a 3d orbital is more stable than the state 
with one electron in the 4s orbital.12 These states of sodium 
have no 3s and 3p electrons. 

The relaxation of atomic electron density is also a con- 
tributing factor to ER for valence ionizations of molecules. It 
is instructive to view ER for molecular ionizations in terms of 
contributions from interatomic and intraatomic portions (eq 
4). This is a natural separation for core ionizations and has 

(4) = ERinteratomic + E intraatomic 
R 

been discussed in several papers.14 The interatomic term 

(11) Clementi, E.; Raimondi, D. L. J .  Chem. Phys. 1963, 38, 2686. 
(12) Pilar, F. J.  Chem. Educ. 1978, 55, 1.  
( 1  3) Electron correlation and relativistic effects may also influence the result. 
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Table 11. Average Change in ER between Successive Atoms (eV) 

Calabro and Lichtenberger 

n = 2  n=3 n = 4  

Slater's rules 0.42 0.19 0.10 
Hartree-Fackg 0.42 0.17 0.13 

represents a rearrangement of the molecular electron density 
that tends to delocalize the positve potential hole of the ion. 
The interatomic relaxation is generally expected to be largest 
for removal of an electron from a localized orbital because of 
the flow of remaining electron density toward the localized 
positive hole, 

The intraatomic term represents the energy of relaxation 
of atomic electron densities toward their cores. This relaxation 
is due to loss of atomic valence electron density according to 
the positive hole distribution in the molecular ion. In molecular 
orbital terms this distribution might be represented as the 
atomic composition of the molecular orbital from which the 
electron is removed. The total intraatomic relaxation energy 
may be expressed as the sum of the individual atomic relax- 
ations. 

dtOmS 

E R ' ( F ~ )  (5) ERintraatomic = 
i 

In this equation F, represents the fractional amount of va- 
lence-electrv density lost from atom i, and ER'(F,) is the 
corresponding energy of relaxation of the electrons remaining 
on atom i. Generalizing eq 3 for this fractional electron loss 
gives eq 6. It can be seen that if F, = 1 (completely localized 

molecular orbital), then ERi(Fi) = ER(atomic). The quantity 
(Nvalepm - FJ represents the amount of electron density which 
remains on the atom to relax, and this density is multiplied 
by a factor related to the change in shielding of this density. 

We have shown the functional form of this equation to be 
correct with model ab  initio atomic calculations on the helium 
atom by using program POLYATOM.~~  The 1s function of H e  
was first represented in a basis of six Gaussian functions." 
Calculations were then performed with fractional occupations 
of the 1s orbital and with the total electron-electron inter- 
actions reduced appropriately. The relaxation energy was 
determined as the energy difference between the frozen orbital 
(from the neutral atom) and optimized orbital representations 
of the ions with fractional occupations. The dependence of 
E R  on F is exactly represented by eq 6 with a shielding factor 
of 0.335. A plot of this dependence is shown in Figure 2. 

I t  is important to note from eq 6 that E R  is not a linear 
function of F as indicated in other p a p e r ~ . ~ J , ~  The F2 depen- 
dence in eq 6 means that as less electron density is removed 
from an atomic orbital, the remaining density will undergo 
a less than proportional amount of relaxation. For instance, 
if F = 0.5 (loss of half an electron, as in the orbital of a 
homonuclear diatomic), the remaining density (Nvalsnce - F) 
experiences one-fourth rather than one-half of the atomic 
relaxation ( F  = 1). A plot comparing atomic ER values for 
fractional density loss (ER(F) )  to that for the loss of a single 
electron (ER(1)) is shown in Figure 2. If ER were linearly 

(a) Kowalczyk, S. P.; Pollack, R. A,; McFeely, F. R.; Ley, L.; Shirley, 
D. A. Phys. Rev. B 1973, 8, 2381. (b) Ley, L.; Kowalczyk, S .  P.; 
McFeely, F. R.; Pollak, R. A,; Shirley, D. A. Ibid. 1973, 8, 2392. (c) 
Watson, K. E.; Perlman, M. L.; Herbst, J. F. Ibid. 1976, 13, 2358. It 
should be emphasized that there is no complete separation of these terms 
since interatomic flow of charge onto a center will reduce the intraa- 
tomic relaxation. 
(a) Brogli, F.; Clark, P, A,; Heilbronner, E. Angew Chem., Int. Ed. 
Engl. 1973, 12, 422. (b) Bagus, P. S . ;  Batra, I. P.; Clementi, E. Chem. 
Phys. Lett. 1973, 23, 305. 
Goutier, D.; Macaulay, R.; Duke, A. J. Program 241.1, Quantum 
Chemistry Program Exchange, Indiana University, 1978. 
Hehre, W. J . ;  Stewart, R. F.; Pople, J .  A. J .  Chem. Phys. 1969, SI, 
2651. 
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Figure 2. Comparison of relaxation energies for fractional loss of 
valence-electron density to loss of a complete valence electron. The 
dotted line represents the case of helium and was obtained from both 
eq 6 and a b  initio calculations. The solid line represents the neon 
configuration. The dashed line would result if the relaxation were 
directly proportional to the amount of valence density removed. 

I 
I 1 I I I 
2 4 6 8 1 0  

- NC 

Figure 3. Intraatomic relaxation energy vs. the number of carbon 
atoms contributing equally to a delocalized molecular orbital. 

proportional to F, the dashed line would result. 
Since ER(F) is always proportionately less than indicated 

by the fractional loss of electron density from a center, the 
intraatomic relaxation for ionization from a molecular orbital 
spread over several centers is expected to be less than from 
an orbital on a single center. Thus, like the interatomic term 
in ey 4, the intraatomic term also indicates smaller relaxation 
energies for ionizations from delocalized orbitals.lOgih,f This 
point can be illustrated with the example of an  orbital spread 
equally over a number of carbon centers. If N, is the number 
of carbon centers, then F for each center is 1 /Nc. Combining 
this information with eq 5 and 6 gives 

Figure 3 shows that ERintraatomic decreases rapidly as the orbital 
becomes more delocalized. An interesting corollary to this 
point is that, all other factors being the same, the most stable 
state of the positive ion will be the one with the most localized 
orbital positive hole, because this will be the state with the 
greatest relaxation energy from the Koopmans ion. 
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