# Structure of $[Rh_2Br_2(\mu-CO)((C_6H_5)_2PCH_2P(C_6H_5)_2)_2]$ : A Binuclear Rhodium Carbonyl Complex Having an Unusually Low Carbonyl Stretching Frequency

### MARTIN COWIE\* and STEPHEN K. DWIGHT

### Received February 8, 1980

The structure of  $[Rh_2Br_2(\mu-CO)(Ph_2PCH_2PPh_2)_2]$  has been determined by X-ray crystallography. This binuclear, diphospine-bridged species has a bridging carbonyl ligand and terminal bromo ligands and, on the basis of the structural parameters (Rh-Rh = 2.7566 (9) Å, Rh- $C_{carbonyl}$ -Rh = 89.4 (4)°), can be formulated as having a metal-metal bond. The unusually low carbonyl stretching frequency (1745 cm<sup>-1</sup>, Nujol mull), its low-field <sup>13</sup>C chemical shift (227.5 ppm), and the short Rh-C<sub>carbonyl</sub> distances (1.958 (8) and 1.961 (8) Å) suggest a large amount of back-donation from the metals to the carbonyl ligand. The compound crystallizes in the space group  $C_{2h}^5 - P2_1/n$  with a = 20.429 (2) Å, b = 11.985 (1) Å, c = 18.865 (2) Å,  $\beta = 100.275$  (9)°, and Z = 4. On the basis of 4718 unique, observed reflections, the structure was refined by full-matrix, least-squares techniques to R = 0.045 and  $R_w = 0.055$  for 205 parameters varied.

# Introduction

The reaction of trans-[RhCl(CO)(DPM)]<sub>2</sub><sup>1</sup> with NaBr initially yields<sup>2</sup> an asymmetric species  $[Rh_2Br(CO)(\mu-CO)-$ (DPM)<sub>2</sub>][Br] which undergoes a rearrangement in solution to give a symmetric species having an unusually low value for  $\nu(CO)$  of 1745 cm<sup>-1</sup>. On the basis of spectral data, elemental analyses, and its chemistry with  $SO_2$ , this symmetric product can equally well be formulated as  $[Rh_2Br_2(\mu-CO)_2(DPM)_2]$ , containing two bridging ketonic<sup>3</sup> carbonyl ligands or as  $[Rh_2Br_2(\mu-CO)(DPM)_2]$ , having one carbonyl ligand and a formal Rh-Rh bond. The low value for  $\nu(CO)$  is consistent with a ketonic carbonyl formulation, being comparable to the values observed in  $[Pd_2Cl_2(\mu-CO)(DAM)_2]^{1,4}$  and  $[Rh_2Cl_2 (\mu$ -CO) $(\mu$ -DMA) $(DPM)_2$ ],<sup>1,5</sup> which contain ketonic carbonyl ligands, and the <sup>31</sup>P<sup>1</sup>H NMR spectrum is very similar to that of other symmetric dirhodium species which have no metalmetal bond.<sup>6,7</sup> Furthermore its reaction with SO<sub>2</sub> yields the dicarbonyl species  $[Rh_2(CO)_2(\mu-Br)(\mu-SO_2)(DPM)_2][Br]$  as one of the final products. However, these data can also be interpreted in terms of the monocarbonyl formulation. An analogous SO<sub>2</sub>-bridged compound,<sup>8,9</sup> [Rh<sub>2</sub>Cl<sub>2</sub>(µ-SO<sub>2</sub>)(DPM)<sub>2</sub>], has a low value for  $\nu(SO)$  and has <sup>31</sup>P<sup>1</sup>H NMR parameters very similar to those in the present carbonyl species, although it has a formal Rh-Rh bond. In addition, the formation of a dicarbonyl product in the reaction with  $SO_2$  can be explained by CO transfer from one molecule to another since a carbonyl-free product,  $[Rh_2Br_2(\mu-SO_2)(DPM)_2]$ , is also observed.

The structure determination of the title complex was therefore undertaken in order to unambiguously establish the mode of carbonyl bonding.

### **Experimental Section**

All solvents were dried and degassed prior to use under an atmosphere of dinitrogen. Reactions were routinely performed under Schlenk conditions with an atmosphere of either dinitrogen or carbon

- (1) Abbreviations used: DPM, bis(diphenylphosphino)methane; DAM, bis(diphenylarsino)methane; DMA, dimethyl acetylenedicarboxylate; Ph, phenyl.
- Cowie, M.; Dwight, S. K. Inorg. Chem., in press.
- (3) The term ketonic carbonyl refers to a carbonyl ligand which bridges two metal centers which are not bonded to each other. (4) Holloway, R. G.; Penfold, B. R.; Colton, R.; McCormick, M. J. J.
- (1) Honoway, K. G.; Pentold, B. R.; Colton, R.; McCormick, M. J. J. Chem. Soc., Chem. Commun. 1976, 485. Colton, R.; McCormick, M. J.; Pannan, C. D. Aust. J. Chem. 1978, 31, 1425.
  (5) Cowie, M.; Southern, T. G. J. Organomet. Chem., in press.
  (6) Cowie, M.; Dwight, S. K. Inorg. Chem. 1979, 18, 2700.
  (7) Sanger, A. R. J. Chem. Soc., Chem. Commun. 1975, 893; J. Chem. Soc., Dalton Trans. 1977, 122.
  (8) Cowie, M.; Dwight, S. K. Inorg. Chem. 1999, 16, 200.

- Cowie, M.; Dwight, S. K. Inorg. Chem. 1980, 19, 209.
- Cowie, M.; Dwight, S. K.; Sanger, A. R. Inorg. Chim. Acta 1978, 31, L407.

Table I. Summary of Crystal Data and Intensity Collection

| compd                                | $Rh_{a}Br_{a}(\mu-CO)(DPM)_{a}$                                                                                 |
|--------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| fw                                   | 1162.4                                                                                                          |
| formula                              | C., H., Br, OP, Rh,                                                                                             |
| cell parameters                      |                                                                                                                 |
| 2                                    | 20.429 (2) Å                                                                                                    |
| b                                    | 11.895 (1) A                                                                                                    |
| c                                    | 18.865 (2) A                                                                                                    |
| 3                                    | $100.275(9)^{\circ}$                                                                                            |
| -<br>V                               | 4510.7 Å <sup>3</sup>                                                                                           |
| 7                                    | 4                                                                                                               |
| density                              | 1.711 (calcd) g cm <sup>-3</sup>                                                                                |
| space group                          | $C_{1-P2}^{s}$ /n (nonstandard setting of P2 /c)                                                                |
| cryst dimens                         | $0.240 \times 0.088 \times 0.301 \text{ mm}$                                                                    |
| cryst shape                          | monoclinic prism $\{010\}, \{100\}, \{001\}$                                                                    |
| i jot bilar                          | $\{\overline{1}02\}, \{\overline{2}0\overline{1}\}, \{\overline{2}\overline{1}\overline{1}\}, \{110\}, \{101\}$ |
| cryst vol                            | 0.004 42 mm <sup>3</sup>                                                                                        |
| temp                                 | 20 °C                                                                                                           |
| radiatn                              | Cu Ka                                                                                                           |
| ú                                    | 98.229 cm <sup>-1</sup>                                                                                         |
| range in abs cor                     | 0.190-0.476                                                                                                     |
| factors                              | *<br>1                                                                                                          |
| eceiving aperture                    | 6 × 6 mm                                                                                                        |
| takeoff angle                        | 3.9°                                                                                                            |
| scan speed                           | 2° min <sup>-1</sup>                                                                                            |
| scan range                           | 1.00° below K $\alpha_1$ to 1.00° above K $\alpha_2$                                                            |
| bkgd counts, s                       | $10 (3 \le 2\theta \le 45^{\circ}), 20 (45 < 2\theta \le 96), 40$                                               |
| •                                    | $(96 < 2\theta < 120^{\circ})$                                                                                  |
| 2θ limits                            | 3-120°                                                                                                          |
| unique data used                     | 4718                                                                                                            |
| $(F_{0}^{2} \ge 3\sigma(F_{0}^{2}))$ |                                                                                                                 |
| final no. of                         | 205                                                                                                             |
| variables                            | · · · · ·                                                                                                       |
| error in observn of                  | 1.392                                                                                                           |
| unit weight                          |                                                                                                                 |
| R                                    | 0.045                                                                                                           |
| Rw                                   | 0.055                                                                                                           |
|                                      |                                                                                                                 |

monoxide. Infrared spectra were recorded on a Perkin-Elmer Model 467 spectrometer using Nujol mulls on KBr plates. <sup>31</sup>P{<sup>1</sup>H} and <sup>13</sup>C<sup>31</sup>P<sup>1</sup>H) NMR spectra were recorded by using a Bruker HFX-90 spectrometer.

Crystallization of  $[Rh_2Br_2(\mu-CO)(DPM)_2]$ . A 50-mg sample of  $[Rh_2Br_2(\mu-CO)_x(DPM)_2]$  (x = 1 or 2), prepared as described previously,<sup>2</sup> was dissolved in 3 mL of  $CH_2Cl_2$  from which well-formed crystals were obtained by slow diethyl ether diffusion. The crystals were analyzed spectrally as either  $[Rh_2Br_2(\mu-CO)(DPM)_2]$  or  $[Rh_2Br_2(\mu-CO)_2(DPM)_2].$ 

Data Collection. A clear red plate of the title complex was mounted on a glass fiber. Preliminary film data showed that the crystal belonged to the monoclinic system with extinctions (h0l, h + l odd; 0k0, k odd) characteristic of the centrosymmetric space group  $P2_1/n$ , a nonstandard setting of  $P2_1/c$ . Accurate cell parameters were obtained by a least-squares analysis of 12 carefully centered reflections chosen from diverse regions of reciprocal space ( $60^{\circ} \le 2\theta \le 70^{\circ}$ , Cu K $\alpha$ , radiation)

# $[Rh_2Br_2(\mu-CO)((C_6H_5)_2PCH_2P(C_6H_5)_2)_2]$

|  | Table II. | Positional | l and Therma | l Parameters for | the Nongroup | Atoms of [ | Rh,E | $\operatorname{Br}_{2}(\mu-\operatorname{CO})(\operatorname{DPM})_{2}$ |
|--|-----------|------------|--------------|------------------|--------------|------------|------|------------------------------------------------------------------------|
|--|-----------|------------|--------------|------------------|--------------|------------|------|------------------------------------------------------------------------|

| atom  | xa           | , y         | Z           | U11 <sup>b</sup> | U22      | $U_{33}$ | U12       | U <sub>13</sub> | U 23      |
|-------|--------------|-------------|-------------|------------------|----------|----------|-----------|-----------------|-----------|
| Rh(1) | 0.580 04 (3) | 0.09336 (5) | 0.32748 (3) | 2.10 (3)         | 2.26 (3) | 2.89 (3) | 0.06 (2)  | 0.98 (2)        | -0.06 (3) |
| Rh(2) | 0.448 67 (3) | 0.15824 (5) | 0.31124 (3) | 1.99 (3)         | 2.13 (3) | 3.44 (4) | -0.01(2)  | 0.61 (2)        | 0.25 (3)  |
| Br(1) | 0.692 72 (4) | 0.03208 (8) | 0.31204 (6) | 3.03 (4)         | 3.94 (5) | 5.79 (6) | 0.57 (4)  | 1.96 (4)        | -0.37 (5) |
| Br(2) | 0.331 05 (5) | 0.20589 (9) | 0.26417 (8) | 2.60 (5)         | 3.90 (5) | 13.0 (1) | 0.10 (4)  | -0.32 (5)       | 1.93 (7)  |
| P(1)  | 0.616 19 (9) | 0.2724 (2)  | 0.3085 (1)  | 2.35 (9)         | 2.56 (9) | 2.7 (1)  | -0.21 (8) | 1.02 (8)        | -0.01 (8) |
| P(2)  | 0.473 70 (9) | 0.3473 (2)  | 0.3022 (1)  | 2.36 (9)         | 2.32 (9) | 3.2 (1)  | 0.10 (8)  | 0.67 (8)        | 0.06 (9)  |
| P(3)  | 0.550 03 (9) | -0.0946 (2) | 0.3208 (1)  | 2.5 (1)          | 2.31 (9) | 3.8 (1)  | 0.14 (8)  | 1.02 (8)        | 0.15 (9)  |
| P(4)  | 0.407 93 (9) | -0.0248 (2) | 0.3104 (1)  | 2.31 (9)         | 2.37 (9) | 3.3 (1)  | -0.26 (8) | 0.57 (8)        | 0.45 (9)  |
| 0     | 0.5269 (3)   | 0.1498 (6)  | 0.4559 (3)  | 4.0 (3)          | 6.5 (4)  | 2.7 (4)  | 0.9 (3)   | 1.3 (3)         | -0.9 (3)  |
| C(1)  | 0.5210 (4)   | 0.1375 (6)  | 0.3938 (5)  | 2.5 (4)          | 2.2 (4)  | 4.6 (6)  | -0.5 (3)  | 1.3 (4)         | -0.3 (4)  |
| C(2)  | 0.5613 (4)   | 0.3818 (6)  | 0.3346 (4)  | 2.4 (4)          | 2.7 (4)  | 3.0 (5)  | -0.2 (3)  | 0.5 (3)         | -0.6 (3)  |
| C(3)  | 0.4716 (4)   | -0.1243 (6) | 0.3513 (4)  | 3.0 (4)          | 2.5 (4)  | 3.1 (5)  | 0.4 (3)   | 1.2 (3)         | 0.3 (3)   |
|       |              |             |             |                  |          |          |           |                 |           |

<sup>a</sup> Estimated standard deviations in the least significant figure(s) are given in parentheses in this and all subsequent tables. <sup>b</sup> The form of the thermal ellipsoid is  $\exp[-2\pi^{*2}(a^{*2}U_{11}h^2 + b^{*2}U_{22}k^2 + c^{*2}U_{33}l^2 + 2a^*b^*U_{12}hk + 2a^*c^*U_{13}hl + 2b^*c^*U_{23}kl)]$ . The quantities given in the table are the thermal coefficients  $\times 10^2$ .



Figure 1. A stereoview of the cell of  $[Rh_2Br_2(\mu-CO)(DPM)_2]$ . The x axis is horizontal to the right, the z axis runs from bottom to top, and the y axis goes into the page; 20% thermal ellipsoids are used with the exception of the methylene hydrogen atoms which are drawn artificially small.

and obtained by using a narrow X-ray source. The width at half-height of several strong reflections ( $\omega$  scan; open counter) lay in the range 0.12–0.17° (see Table I for pertinent crystal data).

Data were collected on an automated Picker four-circle diffractometer equipped with a scintillation counter and pulse-height analyzer tuned to accept 90% of the Cu K $\alpha$  peak. Background counts were measured at both ends of the scan range with crystal and counter stationary. The intensities of three standard reflections were measured every 100 reflections throughout the data collection. A second set of four standards were monitored twice a day. All remained constant to within 1% of the mean throughout the data collection.

The intensities of 7071 unique reflections  $(3^{\circ} \le 2\theta \le 120^{\circ})$  were measured by using nickel-filtered Cu K $\alpha$  radiation. Data were processed in the usual manner with a value of 0.05 for p.<sup>10</sup> Absorption corrections were applied to the data using Gaussian integration.<sup>11</sup>

Structure Solution and Refinement. The positions of the Rh, Br, and P atoms were obtained by direct methods using MULTAN.<sup>12</sup> The remaining atoms were located from subsequent least-squares refinements and difference Fourier calculations. Atomic scattering factors were taken from Cromer and Waber's<sup>13</sup> tabulations for all atoms except hydrogen for which the values of Stewart et al.<sup>14</sup> were used. Anomalous dispersion terms<sup>15</sup> for Rh, Br, and P were included in  $F_c$ . All carbon atoms of the phenyl rings were refined as rigid groups having  $D_{6h}$  symmetry and C–C distances of 1.392 Å. The hydrogen atoms were included as fixed contributions and were not refined. Their idealized positions were calculated from the geometries about their attached carbon atom by using C–H distances of 0.95 Å. Hydrogen

(10) Doedens, R. J.; Ibers, J. A. Inorg. Chem. 1967, 6, 204.

- (11) Besides local programs the following were used in solution and refinement of the structure: FORDAP, the Fourier summation program by A. Zalkin; SFLS-5, structure factors and least-squares refinement by C. J. Prewitt; ORFFE, for calculating bond lengths, angles, and associated standard deviations by W. Busing and H. A. Levy; ORTEP, plotting program by C. K. Johnson; AGNOST, the Northwestern University absorption program which includes the Coppens-Leiserowitz-Rabinowvich logic for Gaussian integration.
- (12) Germain, G.; Main, P.; Woolfson, M. M. Acta Crystallogr., Sect. A 1971, A27, 368.
- (13) Cromer, D. T.; Waber, J. T. "International Tables for X-ray Crystallography"; Kynoch Press: Birmingham, England, 1974; Vol. IV, Table 2.2A.
- (14) Stewart, R. F.; Davidson, E. R.; Simpson, W. G. J. Chem. Phys. 1965, 42, 3175.
- (15) Cromer, D. T.; Liberman, D. J. Chem. Phys. 1970, 53, 1891.



Figure 2. A perspective view of  $[Rh_2Br_2(\mu-CO)(DPM)_2]$  showing the numbering scheme. The numbering on the phenyl carbon atoms starts at the carbon bonded to the phosphorus and increases sequentially around the ring. 50% thermal ellipsoids are used, except for hydrogens which are artificially small.

atoms were assigned isotropic thermal parameters of  $1 \text{ Å}^2$  greater than those of their attached carbon atom. All other nongroup atoms were refined individually with anisotropic thermal parameters.

The final model with 205 parameters varied converged to R = 0.045and  $R_w = 0.055$ .<sup>16</sup> In the final difference Fourier map the highest 20 peaks were in the vicinities of either the phenyl groups or the Rh and Br atoms (0.45–0.25 e/Å<sup>3</sup>). A typical carbon atom on earlier syntheses had an electron density of about 3.5 e/Å<sup>3</sup>.

The final positional and thermal parameters of the nonhydrogen atoms and the group atoms are given in Tables II and III, respectively. The derived hydrogen positions and their thermal parameters and a listing of the observed and calculated structure amplitudes used in the refinements are available.<sup>17</sup>

(16)  $R = \sum ||F_o| - |F_o|| / \sum |F_o|; R_w = [\sum w(|F_o| - |F_o|)^2 / \sum wF_o^2]^{1/2}.$ 

| e | Ш |
|---|---|
|   | e |

Derived Parameters for the Rigid-Group Atoms of [Rh, Br, (µ-CO)(DPM),]

| <br>     |            | the second s | and the second se |                           |           |            |             |            |                           |
|----------|------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-----------|------------|-------------|------------|---------------------------|
| <br>atom | x          | у                                                                                                              | Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <i>B</i> , A <sup>2</sup> | atom      | x          | у           | Z          | <i>B</i> , A <sup>2</sup> |
| C(11)    | 0.6232 (3) | 0.3053 (5)                                                                                                     | 0.2153 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.5 (1)                   | C(51)     | 0.6042 (3) | -0.2070 (4) | 0.3643 (5) | 3.1 (2)                   |
| C(12)    | 0.6298 (3) | 0.4160 (4)                                                                                                     | 0.1937 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.8 (2)                   | C(52)     | 0.5958 (5) | -0.2493 (5) | 0.4308 (3) | 3.8 (2)                   |
| C(13)    | 0.6387 (3) | 0.4391 (4)                                                                                                     | 0.1238 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.3 (2)                   | C(53)     | 0.6360 (5) | -0.3367 (5) | 0.4626 (4) | 5.2 (2)                   |
| C(14)    | 0.6412 (3) | 0.3515 (5)                                                                                                     | 0.0754 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.6 (2)                   | C(54)     | 0.6846 (3) | -0.3817(4)  | 0.4278 (5) | 5.0 (2)                   |
| C(15)    | 0.6347 (3) | 0.2407 (4)                                                                                                     | 0.0970 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.8 (2)                   | C(55)     | 0.6931 (5) | -0.3393 (5) | 0.3612 (3) | 5.4 (3)                   |
| C(16)    | 0.6257 (3) | 0.2176 (4)                                                                                                     | 0.1670 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.5 (2)                   | C(56)     | 0.6529 (5) | -0.2520 (5) | 0.3295 (4) | 4.3 (2)                   |
| C(21)    | 0.6969 (3) | 0.3113 (5)                                                                                                     | 0.3614 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.3 (1)                   | C(61)     | 0.5346 (3) | -0.1274 (6) | 0.2240 (3) | 3.0 (2)                   |
| C(22)    | 0.7070 (4) | 0.2903 (4)                                                                                                     | 0.4352 (8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.1 (2)                   | C(62)     | 0.5191 (4) | -0.0366 (4) | 0.1774 (4) | 3.6 (2)                   |
| C(23)    | 0.7674 (6) | 0.3183 (5)                                                                                                     | 0.4783 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.6 (2)                   | C(63)     | 0.5057 (4) | -0.0540 (5) | 0.1033 (3) | 5.1 (2)                   |
| C(24)    | 0.8177 (3) | 0.3672 (5)                                                                                                     | 0.4478 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.4 (2)                   | C(64)     | 0.5078 (3) | -0.1622 (6) | 0.0757 (3) | 5.8 (3)                   |
| C(25)    | 0.8076 (4) | 0.3882 (4)                                                                                                     | 0.3740 (8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.4 (2)                   | C(65)     | 0.5233 (4) | -0.2530 (4) | 0.1222 (4) | 6.1 (3)                   |
| C(26)    | 0.7472 (6) | 0.3603 (5)                                                                                                     | 0.3308 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.9 (2)                   | C(66)     | 0.5367 (4) | -0.2356 (5) | 0.1963 (3) | 4.7 (2)                   |
| C(31)    | 0.4569 (3) | 0.3856 (5)                                                                                                     | 0.2071 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.4(1)                    | C(71)     | 0.3700 (3) | -0.0935 (5) | 0.2259 (2) | 2.4 (1)                   |
| C(32)    | 0.4441 (3) | 0.4956 (4)                                                                                                     | 0.1836 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.5 (2)                   | C(72)     | 0.3549 (3) | -0.2076 (5) | 0.2272 (3) | 3.7 (2)                   |
| C(33)    | 0.4321 (3) | 0.5198 (4)                                                                                                     | 0.1103 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.7 (2)                   | C(73)     | 0.3229 (3) | -0.2606 (4) | 0.1648 (3) | 4.0 (2)                   |
| C(34)    | 0.4329 (3) | 0.4338 (5)                                                                                                     | 0.0603 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.0 (2)                   | C(74)     | 0.3059 (3) | -0.1997 (5) | 0.1011 (2) | 4.3 (2)                   |
| C(35)    | 0.4458 (3) | 0.3238 (4)                                                                                                     | 0.0838 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.7 (2)                   | C(75)     | 0.3211 (3) | -0.0857 (5) | 0.0999 (3) | 5.0 (2)                   |
| C(36)    | 0.4578 (3) | 0.2996 (4)                                                                                                     | 0.1572 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.7 (2)                   | C(76)     | 0.3531 (3) | -0.0326 (4) | 0.1623 (3) | 3.9 (2)                   |
| C(41)    | 0.4304 (3) | 0.4574 (4)                                                                                                     | 0.3449 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.4 (1)                   | C(81)     | 0.3454 (4) | -0.0352 (5) | 0.3681 (5) | 2.1 (1)                   |
| C(42)    | 0.3636 (3) | 0.4783 (5)                                                                                                     | 0.3176 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.9 (2)                   | C(82)     | 0.3619 (2) | 0.0074 (4)  | 0.4378 (5) | 3.3 (2)                   |
| C(43)    | 0.3301 (2) | 0.5628 (5)                                                                                                     | 0.3475 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.5 (2)                   | C(83)     | 0.3157 (5) | 0.0042 (4)  | 0.4837 (7) | 4.2 (2)                   |
| C(44)    | 0.3633 (3) | 0.6264 (4)                                                                                                     | 0.4048 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.1 (2)                   | C(84)     | 0.2529 (4) | -0.0415 (5) | 0.4601 (5) | 3.8 (2)                   |
| C(45)    | 0.4301 (3) | 0.6054 (5)                                                                                                     | 0.4321 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.9 (2)                   | C(85)     | 0.2363 (2) | -0.0840 (4) | 0.3904 (5) | 3.8 (2)                   |
| C(46)    | 0.4636 (2) | 0.5209 (5)                                                                                                     | 0.4021 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.3 (2)                   | C(86)     | 0.2825 (5) | -0.0809 (4) | 0.3445 (7) | 2.9 (2)                   |
|          |            |                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Rigid <b>-</b> Group      | Parameter | 18         |             |            |                           |
|          | -          | X <sub>c</sub> <sup>a</sup>                                                                                    | Υ <sub>c</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Z                         | c         | δ          | e           | η,         | 1                         |
| <br>ring | 1 0.63     | 322 (2)                                                                                                        | 0.3284 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.145                     | 54 (2)    | 3.201 (4)  | 1.450 (4)   | 2.94       | 3 (3)                     |
| ring     | 2 0.7:     | 573 (2)                                                                                                        | 0.3393 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.404                     | 6 (2)     | 4.279 (4)  | 2.126 (9)   | 0.60       | 5 (8)                     |
| ring     | 3 0.44     | 449 (2)                                                                                                        | 0.4097 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.133                     | 37 (2)    | 2.992 (4)  | 1.717 (4)   | 2.93       | 1 (3)                     |
| ring     | 4 0.39     | 968 (2)                                                                                                        | 0.5419 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.374                     | 8 (2)     | -0.720 (4) | 2.782 (5)   | 4.42       | 9 (5)                     |
| ring     | 5 0.64     | 444 (2)                                                                                                        | -0.2943 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.396                     | i0 (2)    | -0.728 (4) | 1.086 (6)   | 1.55       | 3 (5)                     |
| ring     | 6 0.52     | 212 (2)                                                                                                        | -0.1448 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.149                     | 8 (3)     | 3.023 (4)  | 1.786 (4)   | 3.29       | 2 (4)                     |
| ring     | 7 0.33     | 380 (2)                                                                                                        | -0.1466 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.163                     | 35 (2)    | 0.224 (4)  | 2.000 (4)   | 2.65       | 8 (3)                     |
| ring     | 8 0.2      | 991 (2)                                                                                                        | -0.0383 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.414                     | 1(2)      | 1.119 (4)  | 0.895 (8)   | 6.34       | 5 (8)                     |

 ${}^{a}X_{c}$ ,  $Y_{c}$ , and  $Z_{c}$  are the fractional coordinates of the centroid of the rigid group.  ${}^{b}$  The rigid-group orientation angles  $\delta$ ,  $\epsilon$ , and  $\eta$  (radians) are the angles by which the rigid body is rotated with respect to a set of axes X, Y, and Z. The origin is the center of the ring: X is parallel to  $a^*$ , Z is parallel to c, and Y is parallel to the line defined by the intersection of the plane containing  $a^*$  and  $b^*$  with the plane containing b and c.

### **Description of Structure**

The unit cell of  $[Rh_2Br_2(\mu-CO)(DPM)_2]$ , shown in Figure 1, contains discrete well-separated molecules of the complex. Figure 2 presents a perspective view of the compound including the numbering scheme (phenyl hydrogen atoms have the same number as their attached carbon atom). The inner coordination sphere is shown in Figure 3 along with some relevant bond lengths.

The coordination about each Rh atom is quasi trigonal bipyramidal. Two transoid DPM ligands bridge the Rh atoms in the axial positions with the bridging carbonyl ligand, a terminal bromo ligand on each Rh atom, and a formal Rh-Rh bond completing the coordination in the equatorial plane. The resulting distorted "A-frame" geometry is similar to that observed in  $[Rh_2Cl_2(\mu-SO_2)(DPM)_2]$ .<sup>7,8</sup> The distortions of the "A-frame" geometry arise due to steric interactions between the terminal bromo ligands and the phenyl rings of the DPM ligands (Table IV) and due to the presence of a metal-metal bond, both resulting in a flattening of the "A" configuration. Angles about each Rh atom in the equatorial plane clearly show the distortions from trigonal-bipyramidal coordination (Rh-Rh-Br, Rh-Rh-C(1), and Br-Rh-C(1): 167.06 (4), 45.3 (2), and 147.6 (2)°, respectively).

The Rh-Br distances of 2.481 (1) and 2.474 (1) Å are not unusual and compare well with other determinations.<sup>18</sup>



Figure 3. The inner coordination sphere of  $[Rh_2Br_2(\mu-CO)(DPM)_2]$ showing some relevant bond lengths. Only the first carbon atom of each phenyl ring is shown, and 50% thermal ellipsoids are used, except for hydrogens.

Within the Rh-DPM framework most parameters are as expected. The Rh-P distances (average 2.317 (11) Å) and the P-C distances, both methylene and phenyl (average 1.833 (7))

<sup>(17)</sup> Supplementary material.

Churchill, M. R.; Julis, S. A. Inorg. Chem. 1978, 17, 3011. Nave, C.; (18)Truter, M. R. J. Chem. Soc., Dalton Trans. 1973, 2202.

# Table IV. Selected Distances (Å) in $[Rh_2Br_2(\mu-CO)(DPM)_2]$

|                |            | Bonded Dist | ances      |                          |             |
|----------------|------------|-------------|------------|--------------------------|-------------|
| Rh(1)-Rh(2)    | 2.7566 (8) |             | P(1)-C(2)  | 1.841 (8)                | )           |
| Rh(1)-Br $(1)$ | 2.481 (1)  |             | P(2)-C(2)  | 1.832 (7)                | (1 022 (0)  |
| Rh(2)-Br(2)    | 2.474 (1)  |             | P(3)-C(3)  | 1.830 (8)                | (1.052 (0)  |
| Rh(1)-C(1)     | 1.958 (8)  |             | P(4)-C(3)  | 1.825 (7)                | ) .         |
| Rh(2)-C(1)     | 1.961 (8)  |             | P(1)-C(11) | 1.831 (5)                | 1           |
| Rh(1)-P(1)     | 2.303 (2)  |             | P(1)-C(21) | 1.828 (4)                |             |
| Rh(1)-P(3)     | 2.316 (2)  | (11)9       | P(2)-C(31) | 1.824 (5)                | 1           |
| Rh(2)-P(2)     | 2.319(2)   | (11)        | P(2)-C(41) | 1.844 (4)                | 1 0 2 2 (7) |
| Rh(2)-P(4)     | 2.330 (2)  |             | P(3)-C(51) | 1.833 (5)                | 1.833 (1)   |
| C(1)-0         | 1.167 (9)  |             | P(3)-C(61) | 1.840 (5)                | 1           |
| $C(1)-O^{b}$   | 1.192 (9)  |             | P(4)-C(71) | 1.835 (4)                | 1           |
|                |            |             | P(4)-C(81) | 1.826 (4)                | 1           |
|                |            | Nonbonded D | istances   |                          |             |
| P(1)-P(2)      | 3.026 (3)  | C(56)-H(66) | 2.68       | H2C2-H(46)               | 2.06        |
| P(3) - P(4)    | 2.992 (3)  | C(72)-H(86) | 2.61       | H1C3-H(52)               | 2.19        |
| Rh(1)-H(62)    | 2.65       | Br(1)-H(56) | 3.15       | H2C3-H(72)               | 2.15        |
| Rh(2)-H(36)    | 2.81       | Br(2)-H(42) | 2.75       | H(33)-H(65) <sup>c</sup> | 2.21        |
| C(12)-H(26)    | 2.59       | H1C2-H(12)  | 2.17       | H(35)-H(65) <sup>d</sup> | 2.25        |

single observation as calculated from the mean. <sup>b</sup> Riding motion corrected; atom O riding on atom C(1). <sup>c</sup> Atom located at x, 1 + y, z. <sup>d</sup> Atom located at 1 - x,  $\overline{y}$ ,  $\overline{z}$ . <sup>a</sup> For averaged quantities, the estimated standard deviation is the larger of an individual standard deviation or the standard deviation of a

and 1.832 (8) Å, respectively), compare well with other determinations.<sup>2,6,8,9,19-21</sup> The Rh-P vectors as viewed down the Rh-Rh axis are slightly staggered (see P-Rh-Rh-P torsion angles in Table V and least-squares planes in Table VI). This skewing of the Rh-DPM framework results in phenyl rings 3 and 6 being forced into the open coordination site opposite the carbonyl ligand, giving rise to close contacts between Rh and the ortho hydrogen atoms (2.65 and 2.81 Å). An almost identical skewing was observed in the chloro/SO<sub>2</sub> analogue  $[Rh_2Cl_2(\mu-SO_2)(DPM)_2]^{.8.9}$  The Rh-P-C angles, with the exceptions of those for rings 4 and 5 are close to the expected tetrahedral values. In contrast, the Rh-P-C angles involving rings 4 and 5 (121.8 (2)° and 123.1 (2)°, respectively) are significantly larger than the expected tetrahedral values. These distortions seem to arise from steric interactions between the bromo ligand and the phenyl rings, as evidenced by the short Br-H distances involving these rings (Br(1)-H(56) and Br-(2)-H(42): 3.15 and 2.75 Å, respectively) which are less than the sums of the van der Waals radii.<sup>22</sup> In the structure of  $[Rh_2Cl_2(\mu-SO_2)(DPM)_2]^8$  where the bromo ligand is replaced by the less bulky chloro ligand these distortions are somewhat less pronounced, with a maximum Rh-P-C angle of 118.9 (2)°. The bromo ligands, in the present compound, are staggered with respect to the DPM phenyl groups, in order to minimize nonbonded contacts between these groups. This staggering is evident in the phenyl-P-Rh-Br torsion angles which range from 40.7 (3) to  $80.0 (2)^{\circ}$  (Table V).

Formally, the present compound contains a Rh-Rh single bond as suggested by several structural parameters: (i) the Rh-Rh distance of 2.7566 (9) Å falls within the range previously reported for similar Rh-Rh bonded species (2.617 (3)-2.8415 (7) Å)<sup>8,20</sup> and can be contrasted to the distances of 3.1520 (8) and 3.155 (4) Å observed in the "A-frame" species  $[Rh_2(CO)_2(\mu-Cl)(DPM)_2]^{+6}$  and  $[Rh_2(CO)_2(\mu-S)-$ (DPM)<sub>2</sub>],<sup>23</sup> respectively, where no formal metal-metal bond is present; (ii) the Rh-C-Rh bond angle of 89.4 (4)° compares well with other determinations in which a carbonyl ligand bridges a metal-metal bond<sup>19,20,24-27</sup> and is significantly smaller

- Cowie, M.; Dwight, S. K. Inorg. Chem. 1979, 18, 1209. Cotton, F. A.; Wilkinson, G. "Advanced Inorganic Chemistry", 3rd ed.; Interscience: New York, 1972; p 119. (22)
- (23) Kubiak, C. P.; Eisenberg, R. J. Am. Chem. Soc. 1977, 99, 6130.
  (24) Mills, O. S.; Nice, J. P. J. Organomet. Chem. 1967, 10, 337.
  (25) Mills, O. S.; Paulus, E. P. J. Organomet. Chem. 1967, 10, 331.

than the values of 119 (3), 106 (3), and 116.4 (6)° observed in  $[Pd_2Cl_2(\mu-CO)(DPM)_2]^4$ ,  $[Pt_2Cl_2(\mu-CO)(DPM)_2]^{,28}$  and  $[Rh_2Cl_2(\mu-CO)(\mu-DMA)(DPM)_2]^{,1,25}$  respectively, where no metal-metal bond is present; (iii) the Rh-Rh separation is significantly less than the P-P intraligand separations of 3.026 (3) and 2.992 (3) Å as is usually observed in these systems when a Rh-Rh bond is present.<sup> $\delta,20$ </sup>

Although the above structural parameters suggest a direct metal-metal bond, this formulation is by no means unambiguous. Recent molecular orbital calculations<sup>29</sup> on carbonyl-bridged species with short metal-metal distances have shown that in some cases no metal-metal bond is actually present even though the structural parameters suggest otherwise. Furthermore, these calculations have been substantiated by experimental differential electron density determinations<sup>30</sup> on the compounds in question, showing no significant buildup of electron density along the metal-metal axis.

The carbonyl ligand bridges the two Rh atoms symmetrically as evidenced by the Rh-C distances of 1.958 (8) and 1.961 (8) Å. These distances are significantly shorter than those observed in other Rh systems containing bridging carbonyl ligands where the values of 2.104 (7) and 2.034 (7) Å, observed in  $[Rh_2(CO)_2(\mu-CO)(\mu-Cl)(DPM)_2][BPh_4]$ ,<sup>1,20</sup> are more typical. Instead, the observed distances are comparable to the values of 1.90 (6) and 1.97 (9) Å obtained in the Pd<sup>4</sup> and  $Pt^{28}$  analogues  $[M_2Cl_2(\mu-CO)(DAM)_2]$  (M = Pd, Pt) and that of 1.974 (7) Å observed in  $[Rh_2Cl_2(\mu-CO)(\mu-DMA)-$ (DPM)<sub>2</sub>].<sup>5</sup> It is notable that these distances correspond to ketonic carbonyl species which show low values for  $\nu(CO)$  in the infrared spectrum similar to that observed for the present compound. It is also relevant that the analogous  $SO_2$  species  $[Rh_2Cl_2(\mu-SO_2)(DPM)_2]$  has short Rh-S bonds and a low value for  $\nu(SO)$  in the infrared spectrum.<sup>7,8</sup>

In the title compound the C(1)-O distance is not as long as one might expect on the basis of the low value of  $\nu(CO)$ but rather is comparable to that observed in "normal" bridging carbonyl ligands which have  $\nu(CO)$  ca. 100 cm<sup>-1</sup> higher. However, carbonyl C-O distances are not overly sensitive to

- (26) Paulus, E. F.; Fischer, E. O.; Fritz, H. P.; Schuster-Woldan, H. J. Organomet. Chem. 1967, 10, P3. Paulus, E. F. Acta Crystallogr., Sect. B 1969, B25, 2206.
- Wei, C. H. Inorg. Chem. 1969, 8, 2384.
- Brown, M. P.; Keith, A. N.; Manojlovic-Muir, L.; Muir, K. W.; Pud-dephatt, R. J.; Seddon, K. R. *Inorg. Chim. Acta* 1979, 34, L223. Benard, M. *Inorg. Chem.* 1979, 18, 2782. (28)
- (29) (30) Mitschler, A.; Rees, B.; Lehmann, M. S. J. Am. Chem. Soc. 1978, 100,
- 3390.

<sup>(19)</sup> Cowie, M.; Mague, J. T.; Sanger, A. R. J. Am. Chem. Soc. 1978, 100, 3628.

<sup>(20)</sup> Cowie, M. Inorg. Chem. 1979, 18, 286 and references therein.

Table V. Selected Angles (Deg) in  $[Rh_2Br_2(\mu-CO)(DPM)_2]$ 

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Dond A                                          | n alaa                                                 |                      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------|----------------------|
| $\mathbf{D}h(2)_{\mathbf{m}}\mathbf{D}h(1)_{\mathbf{m}}\mathbf{P}r(1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 167.06 (4)                                      | $\frac{11}{2}$                                         | 1221 (2)             |
| Dh(2) - Nh(1) - Di(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 107.00(-7)<br>03.24(5)                          | $P_{1}(1) - P(3) - C(31)$                              | 123.1(2)             |
| Dh(2) - Dh(1) - D(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 93.27(3)                                        | $R_{1}(1) = P(3) = C(01)$<br>$P_{1}(2) = P(4) = C(71)$ | 104.0(2)             |
| $Rh(2) - Rh(1) - \Gamma(3)$<br>Rh(2) - Rh(1) - C(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 453(2)                                          | $R_{1}(2) = r(4) = C(71)$<br>$P_{1}(2) = P(4) = C(81)$ | 121.2(2)<br>110.3(2) |
| $R_{r}(1) = R_{h}(1) = C(1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 147.6(2)                                        | C(2) = P(1) = C(11)                                    | 10.3(2)<br>105.2(3)  |
| $Br(1) \rightarrow Ph(1) \rightarrow P(1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 85 62 (5)                                       | C(2) = P(1) = C(21)                                    | 103.2(3)<br>1070(3)  |
| $B_{T}(1) = Rh(1) = P(3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 87 25 (5)                                       | C(2) = P(2) = C(21)                                    | 102.0(3)<br>105.8(3) |
| P(1) - Rh(1) - P(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 166 78 (8)                                      | C(2) = P(2) = C(31)                                    | 103.3(3)<br>102.2(3) |
| P(1)-Rh(1)-C(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 95 9 (2)                                        | C(3) - P(3) - C(51)                                    | 102.2(3)<br>102.2(3) |
| P(3)-Rh(1)-C(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 96.1 (2)                                        | C(3)-P(3)-C(61)                                        | 105.5(3)             |
| Rh(1)-Rh(2)-Br(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 165.45 (5)                                      | C(3)-P(4)-C(71)                                        | 103.7(3)             |
| Rh(1)-Rh(2)-P(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 93.24 (5)                                       | C(3)-P(4)-C(81)                                        | 103.1 (3)            |
| Rh(1)-Rh(2)-P(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 94.51 (5)                                       | C(11)-P(1)-C(21)                                       | 104.6 (3)            |
| Rh(1)-Rh(2)-C(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 45.2 (2)                                        | C(31)-P(2)-C(41)                                       | 103.4 (3)            |
| Br(2)-Rh(2)-C(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 149.2 (2)                                       | C(51)-P(3)-C(61)                                       | 105.8 (3)            |
| Br(2)-Rh(2)-P(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 87.96 (5)                                       | C(71)-P(4)-C(81)                                       | 104.8 (3)            |
| Br(2)-Rh(2)-P(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 83.61 (5)                                       | P(1)-C(11)-C(12)                                       | 120.7 (3)            |
| P(2)-Rh(2)-P(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 171.41 (7)                                      | P(1)-C(11)-C(16)                                       | 119.2 (3)            |
| P(2)-Rh(2)-C(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 92.0 (2)                                        | P(1)-C(21)-C(22)                                       | 117.3 (3)            |
| P(4)-Rh(2)-C(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 96.1 (2)                                        | P(1)-C(21)-C(26)                                       | 122.7 (3)            |
| Rh(1)-C(1)-Rh(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 89.4 (4)                                        | P(2)-C(31)-C(32)                                       | 122.7 (3)            |
| Rh(1)-C(1)-O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 135.3 (6)                                       | P(2)-C(31)-C(36)                                       | 117.3 (3)            |
| Rh(2)-C(1)-O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 135.3 (6)                                       | P(2)-C(41)-C(42)                                       | 118.7 (3)            |
| P(1)-C(2)-P(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 111.0 (4)                                       | P(2)-C(41)-C(46)                                       | 121.2 (3)            |
| P(3)-C(3)-P(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 109.9 (4)                                       | P(3)-C(51)-C(52)                                       | 120.4 (4)            |
| Rh(1)-P(1)-C(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 112.6 (3)                                       | P(3)-C(51)-C(56)                                       | 119.6 (4)            |
| Rh(2)-P(2)-C(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 114.1 (2)                                       | P(3)-C(61)-C(62)                                       | 116.2 (4)            |
| Rn(1)-P(3)-C(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 114.0 (2)                                       | P(3)-C(61)-C(66)                                       | 123.8 (4)            |
| Rh(2)-P(4)-C(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 112,1 (2)                                       | P(4)-C(71)-C(72)                                       | 118.7 (3)            |
| Rn(1) - P(1) - C(11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 115.4 (2)                                       | P(4)-C(71)-C(76)                                       | 121.2 (3)            |
| Rn(1) - P(1) - C(21)<br>Rh(2) - P(2) - C(21)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 115.6 (2)                                       | P(4)-C(81)-C(82)                                       | 117.4(3)             |
| $R_{11}(2) = P(2) = C(31)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 108.0(2)                                        | P(4) = C(81) = C(80)                                   | 122.6 (3)            |
| Kii(2) = F(2) = C(41)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 121.8 (2)                                       |                                                        |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Torsion A                                       | Angles                                                 |                      |
| P(1)-Rh(1)-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Rh(2)-P(2)                                      | -5.42 (                                                | 7)                   |
| P(1)-Rh(1)-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Rh(2)-P(4)                                      | 170.87 (                                               | 7)                   |
| P(2)-Rh(2)-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Rh(1)-P(3)                                      | -172.97 (                                              | 7)                   |
| P(3)-Rh(1)-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Rh(2)-P(4)                                      | 3.32 (                                                 | 8)                   |
| C(11)-P(1)-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Rh(1)-Br(1)                                     | 73.8 (2                                                | )                    |
| C(21)-P(1)-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Rh(1)-Br(1)                                     | -48.7 (2                                               | )                    |
| C(31)-P(2)-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Rh(2)-Br(2)                                     | -65.2 (2                                               | )                    |
| C(41)-P(2)-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Rh(2)-Br(2)                                     | 54.1 (2                                                | )                    |
| C(51)-P(3)-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Rh(1)-Br(1)                                     | 40.7 (3                                                | ) .                  |
| C(61) - P(3) - | Rh(1)-Br(1)                                     | -80.0 (2                                               | )                    |
| C(7) - P(4) - C(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Rh(2) - Br(2)                                   | 63.1 (2                                                | )                    |
| C(81)-P(4)-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\operatorname{Rn}(2)$ - $\operatorname{Br}(2)$ | -59.7 (2                                               | ) .                  |
| C(2)-P(1)-R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | h(1)-C(1)                                       | -17.9 (4                                               | ) .                  |
| C(2)-P(2)-R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | h(2)-C(1)                                       | 28.3 (4                                                | )                    |
| C(3)-P(3)-R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | h(1)-C(1)                                       | 17.6 (4                                                | )                    |
| C(3)-P(4)-R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | h(2)-C(1)                                       | -24.8 (4                                               | )                    |
| C(11)-P(1)-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | P(2)-C(31)                                      | 2.6 (3                                                 | )                    |
| C(11) - P(1) - | P(3) = C(61)                                    | -6.5 (3                                                | )                    |
| C(21) - P(1) - C(21) - C(21) - P(1) - C(21) - C(21) - P(1) - C(21) -  | P(2) = C(41)                                    | 5.2 (4                                                 | )                    |
| C(21) - P(1) - I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | P(3) = C(51)                                    | -9.3 (3                                                | )                    |
| C(31) - P(2) - | $\Gamma(4) - C(/1)$                             | - 3.0 (3                                               | )<br>\               |
| C(41)=F(2)=1<br>C(41)=D(2)=1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                 | -0.0 (3                                                | )<br>)               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                 | 50.1 (4                                                | ,                    |

such changes owing to the relatively large uncertainty in the atomic positions. Therefore the present distance is, within experimental error, comparable to the analogous distances in the ketonic carbonyl species of  $[Rh_2Cl_2(\mu-CO)(\mu-DMA)-(DPM)_2]$  and  $[PdCl_2(\mu-CO)(DPM)_2]$  where the  $\nu(CO)$  values of 1700 and 1720 cm<sup>-1</sup>, respectively, are observed. Applying a riding motion correction to the present C(1)–O distance (atom O riding on C(1)) yields a corrected value of 1.192 (9) Å which is closer to the value we had expected on the basis of spectral parameters.

19.1 (3)

C(61)-P(3)-P(4)-C(71)

#### Discussion

The structural determination of the title compound has unambiguously established it to be a monocarbonyl species having a formal Rh–Rh bond and not the alternate dicarbonyl

-0.032 (7) 0.2867X + 0.9530Y - 0.0975Z - 3.5520 = 0.00 -0.683 (8)<sup>b</sup> C(3) equation -0.639 (8)<sup>1</sup> C(2) -0.034(7)C(I) plane no. ŝ -0.060 (2) 0.1087X - 0.0040Y - 0.9941Z + 4.8736 = 0.0P(4) 0.063 (2) P(3) Deviation from Planes, Å equation 0.100 (2) P(2) 0.098 (2) P(1) plane no. 2 -0.012 (1) Br(2) 0.0657X - 0.1380Y - 0.9883Z + 5.4452 = 0.00.0037 (9) Br(1) equation 0.0097 (6) 0.0056 (6) 0.0066 (5) Rh(2) -0.0091 (6) -0.0053 (6) -0.0044 (5) Rh(1) plane no. plane no. 2 5

 $^{a}$  X, Y, and Z are orthogonal coordinates (Å) with X along the a axis, Y in the a-b plane and Z along the  $c^{*}$  axis. <sup>b</sup> Not included in least-squares plane calculations

Table VI

Least-Squares Planes Calculations<sup>a</sup>

# $[Rh_2Br_2(\mu-CO)((C_6H_5)_2PCH_2P(C_6H_5)_2)_2]$

species as was originally suggested<sup>2</sup> by the spectral and chemical studies (vide supra). The spectral parameters are consistent with both formulations (mono- and dicarbonyl species), but the reaction of the compound with  $SO_2$ , yielding a dicarbonyl product, at first glance actually favors the dicarbonyl formulation. Prompted by the present structural characterization, however, a reinvestigation of the  ${}^{31}P{}^{1}H$ NMR spectra during the slow stepwise addition of SO<sub>2</sub> indicates<sup>2</sup> that the dicarbonyl species results from CO transfer from one monocarbonyl species to another. In fact tricarbonyl species are also obtained by a similar CO transfer and are observed at intermediate times in the reaction. A somewhat analogous, facile CO transfer has been reported<sup>19,31</sup> between  $[Rh_2(CO)_2(\mu$ -CO)( $\mu$ -Cl)(DPM)\_2]<sup>+</sup> and  $[Rh_2(CO)_2(\mu$ -Cl)-(DPM)\_2]<sup>+</sup>. These results clearly indicate the need for further structural and spectral characterizations of related complexes in order to yield the needed correlations between their structural and spectral parameters.

The complex  $[Rh_2Br_2(\mu-CO)(DPM)_2]$  is only the second structurally characterized example with rhodium<sup>32</sup> in which a carbonyl ligand occupies the bridging site in preference to a halide ligand. Generally the reverse is true;<sup>33</sup> yet in binuclear DPM-,<sup>2,5</sup> DAM-,<sup>4,28</sup> and analogous diphosphazane-bridged<sup>32</sup> complexes of the group 8 metals, several complexes have now been characterized with bridging CO and terminal halide ligands. The closely related, SO<sub>2</sub>-bridged complex [Rh<sub>2</sub>Cl<sub>2</sub>- $(\mu$ -SO<sub>2</sub>)(DPM)<sub>2</sub>] is also anomalous in this regard having bridging  $SO_2$  and terminal chloro groups.<sup>8,9</sup> It seems that in these complexes there is a strong tendency for the better  $\pi$ acceptor ligand to enter the bridging site, even when initial attack by this ligand is terminal.<sup>8</sup> In the bridging site the  $\pi$ -acceptor ligand can accept electron density from both electron-rich metals, which in the present complex would account for the low value of  $\nu(CO)$  and the short rhodiumcarbonyl distances. In addition the buildup of electron density

- Mague, J. T.; Sanger, A. R. Inorg. Chem. 1979, 18, 2060. (31)
- (32)
- Haines, R. J., personal communication. Cotton, F. A.; Wilkinson, G. "Advanced Inorganic Chemistry", 3rd ed.; Interscience: New York, 1972; p 707. (33)

on the carbonyl ligand, resulting from the large degree of back-donation from the metal, is also reflected in the low-field chemical shift (227.5 ppm) of the <sup>13</sup>C carbonyl resonance. The trend in spectral parameters with increasing metal-carbonyl back-bonding is seen clearly in the series of closely related complexes  $[Rh_2(CO)_2(\mu-CO)(\mu-Cl)(DPM)_2]^+$ ,  $[Rh_2I(CO) (\mu$ -CO)(DPM)<sub>2</sub>][I], and [Rh<sub>2</sub>Br<sub>2</sub>( $\mu$ -CO)(DPM)<sub>2</sub>], where we observe that the <sup>13</sup>C chemical shifts for the bridging carbonyl ligands (203.2,<sup>34,35</sup> 212.8,<sup>34</sup> and 227.5 ppm, respectively) directly parallel the corresponding  $\nu$ (CO) values (1850, 1810, and 1745 cm<sup>-1</sup>, respectively).<sup>36</sup> In contrast, however, the ketonic carbonyl complexes  $[Rh_2X_2(\mu-CO)(\mu-DMA)(DPM)_2]$ (X = Cl, Br, I),<sup>1</sup> which have even lower values of  $\nu(CO)$  of ca. 1700 cm<sup>-1</sup> have relatively high-field <sup>13</sup>C shifts of ca. 190 ppm.<sup>37</sup> It is unclear to us at this time why the ketonic carbonyl species have such different <sup>13</sup>C chemical shifts from the present compound when the carbonyl stretching frequencies are comparable, but it is clear that the use of spectral parameters to assign the mode of carbonyl bonding is fraught with difficulties, at least until more complete spectral and structural correlations are available.

Further studies are now under way investigating the chemistry of this interesting carbonyl species in order to obtain further information on the bonding of the carbonyl ligand and other molecules in this and related complexes.

Acknowledgment. The authors thank the University of Alberta and the Natural Science and Engineering Research Council for financial support and the University of Alberta for a scholarship to S.K.D.

**Registry No.**  $Rh_2Br_2(\mu$ -CO)(DPM)<sub>2</sub>, 73687-53-3.

Supplementary Material Available: Table VII showing idealized hydrogen parameters and a listing of the observed and calculated structure amplitudes (15 pages). Ordering information is given on any current masthead page.

- Cowie, M.; Dickson, R. S.; Southern, T. G., unpublished results. (34)
- (35) Similar values have been reported in ref 31.
- All infrared frequencies quoted are for natural-abundance CO. (36)
- Cowie, M.; Southern, T. G., unpublished results. (37)