as a function of pH show that water ligand deprotonation is the only acid-base preequilibrium. In other words, if expression 20 is generally valid, then in the case of the alkyl cobaloximes it must be $k_b K_2 \ll k_a (K_1 + K_2)$.

Registry No. $\{C_6H_5Co[(DO)(DOH)pn]H_2O\}^+$, 26334-77-0;

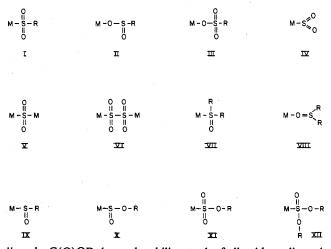
 ${CH_3Co[(DO)(DOH)pn]H_2O}^+$, 26334-78-1; ${C_2H_5Co[(DO)-(DOH)pn]H_2O}^+$, 26317-25-9; ${C_6H_5Co[(DO)(DOH)pn]NH_3}^+$, 74779-51-4; {CH₃Co[(DO)(DOH)pn]NH₃}⁺, 47021-87-4; {C₂H₅Co[(DO)(DOH)pn]NH₃}⁺, 74764-00-4; {C₂H₅Co[(DO)-(DOBF₂)pn]H₂O⁺ClO₄, 74764-02-6; CH₃Co[(DO)(DOH)pn]OH, 41975-58-0; NH₃, 7664-41-7.

> Contribution from the McPherson Chemical Laboratory, The Ohio State University, Columbus, Ohio 43210

Synthesis of (Alkyl sulfito)dicarbonyl(η^5 -cyclopentadienyl)iron(II) Complexes and Reactions of Ligated Alkyl Sulfite¹

CRAIG A. POFFENBERGER and ANDREW WOJCICKI*

Received April 24, 1980


A series of alkyl sulfito complexes, $(\eta^5-C_5H_5)Fe(CO)_2[S(O)_2OR]$, have been prepared by substitution reactions of $[(\eta^5 - C_5H_5)Fe(CO)_2H_2O]BF_4$ with Na[S(O)₂OR] in ROH (R = CH₃, C₂H₅), Na[S(O)₂OR'] (R' = C₂H₅) in ROH (R = 1-C₃H₇, 2-C₃H₇), and Na₂SO₃ in ROH (R = C_2H_3), as well as by treatment of K[(η^5 - C_3H_3)Fe(CO)₂SO₂]-0.5SO₂ with ROSO₂F or R₃OPF₆ (R = CH₃). However, attempts at similar substitution reactions of various other organometallic complexes were largely unsuccessful and furnished only $Mn(CO)_3(bpy)[S(O)_2OCH_3]$. The alkyl sulfito ligand in $(\eta^5-C_5H_5)Fe$ - $(CO)_2[S(O)_2OR]$ undergoes transesterification with the formation of $(\eta^5-C_5H_5)Fe(CO)_2[S(O)_2OR']$ on heating in R'OH at reflux or on storage in R'OH in the presence of HBF₄ at room temperature. By use of $(+)_{589}$ -2-octanol, it was shown that this exchange proceeds with cleavage of the S-OR bond. Reaction of $(\eta^5-C_5H_5)Fe(CO)_2[S(O)_2OR]$ with R_2NH (R = CH₃, C_2H_5) leads to the formation of $R_2NH_2[(\eta^5-C_5H_5)Fe(CO)_2SO_3]$, whereas hydrolysis of $(\eta^5-C_5H_5)Fe(CO)_2[S(O)_2OR]$ affords the hydrogen sulfito complex, $(\eta^5-C_5H_5)Fe(CO)_2[S(O)_2OH]$, which is a strong acid. The hydrolysis is reversible, and the regeneration of $(\eta^5-C_5H_5)Fe(CO)_2[S(O)_2OR]$ occurs at ambient temperature via scission of the S-OH bond. Treatment of $(\eta^5-C_5H_5)Fe(CO)_2[S(O)_2OR]$ with $(C_2H_5)_3OPF_6$ affords the dialkyl sulfite complexes, $[(\eta^5-C_5H_5)Fe(CO)_2[S(O)-(OC_2H_5)OR]]PF_6$, whereas reactions of $(\eta^5-C_5H_5)Fe(CO)_2[S(O)_2OR]$ with the acids HCl and CF₃CO₂H furnish $(\eta^5-C_5H_5)Fe(CO)_2[OC(O)CF_3]$, respectively. Where possible, these reactions are compared with the corresponding reactions of the organic sulfonic esters, $RS(O)_2OR'$.

Introduction

Organometallic complexes containing diverse sulfur-oxygen ligands have been reported in recent years. Some of them, viz., metal sulfinates-S (I) and -O (II) and metal sulfonates (III), are accessible by insertion of $SO_2^{2,3}$ and SO_3^{4} respectively, into metal-carbon σ bonds. Other types of compounds have been obtained by a variety of methods to provide derivatives with terminal and bridging SO₂^{5,6} (IV, V), dithionito⁷ (VI), sulfoxide^{8,9} (VII, VIII), sulfenato¹⁰ (IX), alkoxysulfenato¹⁰ (X), alkyl sulfito^{11,12} (XI), and dialkyl sulfite⁸ (XII) ligands (η^2 -bonded ligands are not included).

In the course of an investigation of comparative chemistry of organometallic compounds containing sulfur-oxygen ligands, our attention was directed to alkyl sulfito complexes (XI). Such complexes are of considerable interest in that the $S(O)_2OR$ ligand may be viewed as the product of reaction of coordinated SO₂ with alkoxide. This presumed behavior finds a striking analogy in the observed formation of carboalkoxy

- (1) Presented in part at the IXth International Conference on Organometallic Chemistry, Dijon, France, Sept 1979; see Abstracts, P 19 T. Wojcicki, A. Adv. Organomet. Chem. 1974, 12, 31 and references
- (2) therein.
- Severson, R. G.; Wojcicki, A. J. Am. Chem. Soc. 1979, 101, 877.
- (4) Lindner, E.; Grimmer, R. Chem. Ber. 1971, 104, 544.
 (5) Kubas, G. J. Inorg. Chem. 1979, 18, 182 and references therein.
 (6) Reich-Rohrwig, P.; Clark, A. C.; Downs, R. L.; Wojcicki, A. J. Organomet. Chem. 1978, 145, 57.
- (7) Poffenberger, C. A.; Tennent, N. H.; Wojcicki, A. J. Organomet. Chem.
- 1980, 191, 107. (8) Strohmeier, W.; Popp, G.; Guttenberger, J. F. Chem. Ber. 1966, 99, 165 and references therein.
- (9) Fergusson, J. E.; Page, C. T.; Robinson, W. T. Inorg. Chem. 1976, 9, 2270.
- George, T. A.; Watkins, D. D., Jr. Inorg. Chem. 1973, 12, 398. (10)
- (11) Dobson, A.; Robinson, S. D. Inorg. Chem. 1977, 16, 1321.
 (12) Critchlow, P. B.; Robinson, S. D. Inorg. Chem. 1978, 17, 1902.

ligands, C(O)OR, by nucleophilic attack of alkoxide on ligated $CO.^{13}$ Treatment of coordinated C(O)OR with acid regenerates the carbonyl ligand. From the foregoing comparison, neutral complexes XI represent possible precursors of cationic metal- SO_2 species, which may exhibit interesting and novel reactions with nucleophiles.

Although examples of alkyl sulfito complexes are known for nickel,14 palladium,15-17 platinum,16-18 cobalt,14 and rutheni-

- Angelici, R. J. Acc. Chem. Res. 1972, 5, 335 and references therein. Ghilardi, C. A.; Midollini, S.; Sacconi, L. Inorg. Chem. 1977, 16, 2377. (13)
- (15) Graziani, M.; Ros, R.; Carturan, G. J. Organomet. Chem. 1971, 27, C19.
- (16) Ros, R.; Carturan, G.; Graziani, M. Transition Met. Chem. (Weinheim, Ger.) 1975, 1, 13. v. Werner, K.; Beck, W.; Böhner, U. Chem. Ber. 1974, 107, 2434.
- (17) Barlex, D. M.; Kemmitt, R. D. W. J. Chem. Soc., Dalton Trans. 1972, (18)
- 1436.

um,^{11,12} no general synthetic routes to such compounds have been developed. Metal-sulfur bonding was established in $[Ni(S(O)_2OC_2H_5)(np_3)]BF_4.0.5C_2H_5OH.0.5H_2O$ (np₃ = tris(2-(diphenylphosphino)ethyl)amine) by X-ray crystallography.¹⁴

In this paper we report synthesis of a number of organometallic alkyl sulfito complexes, largely of the type $(\eta^{5}-C_{5}H_{5})Fe(CO)_{2}[S(O)_{2}OR]$. Reaction chemistry of the alkyl sulfito ligand was investigated and, where possible, compared with known chemistry of structurally analogous organic compounds. In some of these reactions $(\eta^{5}-C_{5}H_{5})Fe(CO)_{2}[S-(O)_{2}OR]$ functions as a useful precursor of complexes with other sulfur-oxygen ligands, such as dialkyl sulfite, hydrogen sulfite, and sulfite. Certain aspects of this study were disclosed in a preliminary form.¹⁹

Results and Discussion

Synthesis and Characterization of Metal-Alkyl Sulfito Complexes. The alkyl sulfito complexes $(\eta^5-C_5H_5)Fe(CO)_2$ -[S(O)₂OR] were prepared by several methods. The most direct and convenient procedure involved ligand substitution (eq 1) where R = CH₃ and C₂H₅. Since only the methyl and

ethyl salts $Na[S(O)_2OR]$ are sufficiently stable to isolation,²⁰ the aforementioned procedure was slightly modified (eq 2) for

the synthesis of 1- and 2-propyl sulfito complexes ($R = 1-C_3H_7$, 2-C₃H₇). The reactions in eq 2 undoubtedly proceed via an equilibrium (eq 3) as evidenced by the complete intercon-

$$[S(O)_2OC_2H_5]^- + ROH \rightleftharpoons [S(O)_2OR]^- + C_2H_5OH \quad (3)$$

version of $[S(O)_2OCH_3]^-$ and $[S(O)_2OC_2H_5]^-$ through dissolution and storage for ca. 24 h at room temperature in excess ethanol and methanol, respectively. However, when the synthesis according to eq 2 was attempted at 50–55 °C with ROH = phenol, the only isolated organometallic product was $(\eta^5-C_5H_5)Fe(CO)_2[S(O)_2OC_2H_5]$. Thus, in this case, equilibrium 3 evidently lies far on the left. The ethyl sulfito complex was also prepared by another modification of the ligand substitution reaction, i.e., eq 4.

$$\bigoplus_{k=0}^{c} \sum_{h=0}^{c} \sum_{h=0}^{h+k} BF_{4}^{-} + No_{2}SO_{3} + C_{2}H_{5}OH (excess) \xrightarrow{25^{\circ}C} \bigoplus_{k=0}^{c} \sum_{h=0}^{c} O-C_{2}H_{5}$$

+ NoBF_{4} + NoOH + H_{2}O (4)

It was recently reported²¹ that reaction of K[(η^5 -C₅H₅)-Fe(CO)₂SO₂]·0.5SO₂ with CH₃OSO₂F affords the methoxysulfenato complex, (η^5 -C₅H₅)Fe(CO)₂[S(O)OCH₃], in addition to [(η^5 -C₅H₅)Fe(CO)₂SO₂]₂. The apparent availability of a synthetic procedure for (η^5 -C₅H₅)Fe(CO)₂[S(O)OR] presented another potential entry into iron–alkyl sulfito complexes, (η^5 -C₅H₅)Fe(CO)₂[S(O)₂OR], via expected oxidation with, e.g., *m*-ClC₆H₄C(O)OOH. Accordingly, the literature preparation of (η^5 -C₅H₅)Fe(CO)₂[S(O)OCH₃] was repeated and found to be entirely reproducible. However, the ¹H NMR and infrared spectra of the supposed (η^5 -C₅H₅)Fe(CO)₂[S-(O)OCH₃], prepared here and earlier,²¹ match exactly those of the $(\eta^5-C_5H_5)Fe(CO)_2[S(O)_2OCH_3]$ obtained according to eq 1. This leaves little doubt that the purported methoxysulfenato complex is actually the corresponding methyl sulfito complex. It would appear that the former is the initial product of the alkylation seen in eq 5 but is then readily

$$\begin{bmatrix} \kappa^{+} \bigoplus_{\substack{i=1\\c}}^{Q} \frac{\beta_{i}}{r_{0}} - s_{0}^{\varphi^{-}} \end{bmatrix} \cdot 0.5 \operatorname{SO}_{2} + \operatorname{CH}_{3} \operatorname{OSO}_{2}^{F} \longrightarrow \bigoplus_{\substack{i=1\\c}}^{Q} \frac{\beta_{i}}{r_{0}} - s_{-} \operatorname{O}_{-} \operatorname{CH}_{3} + \operatorname{KOSQ}_{2}F + 0.5 \operatorname{SO}_{2} \quad (5)$$

oxidized to the isolable $(\eta^5-C_5H_5)Fe(CO)_2[S(O)_2OCH_3]$ (eq 6). The nature of this oxidation process remains obscure.

$$\bigoplus_{\substack{l \in I \\ l \in I$$

Both $(\eta^5-C_5H_5)Fe(CO)_2[S(O)_2OCH_3]$ and $[(\eta^5-C_5H_5)Fe(CO)_2SO_2]_2$ also arise from reaction of $K[(\eta^5-C_5H_5)Fe(CO)_2SO_2] \cdot 0.5SO_2$ with $(CH_3)_3OPF_6$ in CH_2Cl_2 at reflux.

Attempts at extending the range of organometallic alkyl sulfito complexes beyond $(\eta^5-C_5H_5)Fe(CO)_2[S(O)_2OR]$ have met with only very limited success. Thus, interaction between $Mn(CO)_3(bpy)Cl (bpy = 2,2'-bipyridine) and Na[S(O)_2OC H_3$ in methanol resulted in the isolation of $Mn(CO)_3$ - $(bpy)[S(O)_2OCH_3]$; however, other attempted ligand substitution reactions proved fruitless. $(\eta^5-C_5H_5)Cr(NO)_2Cl$, (n-C₄H₉)₄N[W(CO)₅I], [Mn(CO)₅NCCH₃]PF₆, and Mn(C- $O_{3}[P(C_{6}H_{5})_{3}]_{2}Cl$ failed to react with $Na[S(O)_{2}OCH_{3}]$ in methanol at reflux within 3-4 h. Furthermore, all efforts at obtaining the phosphine-substituted monocarbonyl (η^5 - C_5H_5)Fe(CO)[P(C_6H_5)₃][S(O)₂OCH₃] proved unsuccessful. Reactions of $(\eta^5-C_5H_5)Fe(CO)_2[S(O)_2OCH_3]$ with $P(C_6H_5)_3$ in benzene under irradiation and in CHCl₃ in the presence of $(CH_3)_3NO$, which oxidizes ligated CO,²² as well as reaction of $(\eta^5-C_5H_5)Fe(CO)[P(C_6H_5)_3]I$ with $Na[S(O)_2OCH_3]$ in methanol at reflux, afforded extensive decomposition and no isolable organometallic products.

Of the aforementioned routes to $(\eta^5-C_5H_5)Fe(CO)_2[S-(O)_2OR]$, the most convenient and the highest yield (32-51%) after purification) methods are those represented by eq 1 and 2. The alkylation of K[$(\eta^5-C_5H_5)Fe(CO)_2SO_2$].0.5SO₂ is more tedious, and the yields are low ($\leq 23\%$).

The complexes $(\eta^5-C_3H_5)Fe(CO)_2[S(O)_2OR]$ and Mn-(CO)₃(bpy)[S(O)₂OCH₃] (facial isomer) were isolated as yellow or orange, air-stable solids, which are soluble in partly chlorinated hydrocarbons and common polar organic solvents. Their composition was generally ascertained by elemental analysis or mass spectrometry, or by both. Thus, for example, the mass spectra of $(\eta^5-C_3H_5)Fe(CO)_2[S(O)_2OR]$ (R = CH₃, C₂H₅) exhibit peaks corresponding to (P – CO)⁺ and (P – 2CO)⁺, although the parent ion, P⁺, is either absent or barely discernible.

Metal-sulfur bonding in the new alkyl sulfito complexes was inferred with the aid of the infrared spectra, which are set out in Table I. The spectrum of $(\eta^5-C_5H_5)Fe(CO)_2[S(O)_2OCH_3]$ in the 1300-800-cm⁻¹ region is reproduced in Figure 1. For each complex, strong absorptions are observed at 1214–1198 and 1095–1077 cm⁻¹. These bands match well those observed for known metal-alkyl sulfito complexes^{11,12,14-18} and are assigned to the $\nu_{as}(SO_2)$ and $\nu_s(SO_2)$ modes, respectively. They occur at higher frequencies (20–50 cm⁻¹) than the corresponding absorptions of the analogous metal-sulfinato-*S* complexes,²³ indicating that replacement of an R group in M-S(O)₂R with an OR group in M-S(O)₂OR increases the extent of S=O π bonding in the S(O)₂ moiety. The carbonyl

⁽²²⁾ Blumer, D. J.; Barnett, K. W.; Brown, T. L. J. Organomet. Chem. 1979,

 ^{(23) (}a) Bibler, J. P.; Wojcicki, A. J. Am. Chem. Soc. 1966, 88, 4862. (b) Hartman, F. A.; Wojcicki, A. Inorg. Chim. Acta 1968, 2, 351.

Table I. Infrared Spectra (cm⁻¹) of Metal-Alkyl Sulfito and Related Sulfur-Oxygen Compounds^a

compd	<i>ν</i> (C≡O)	$\nu(SO_2)$ or $\nu(S=O)$	$\nu(C-0)$	$\nu(S-O)$	other
$(\eta^{5}-C,H_{s})Fe(CO),[S(O),OCH_{3}]$	2064 (vs), 2007 (vs)	1214 (s), 1095 (s)	971 (s)	636 (s)	
$(\eta^{5}-C_{s}H_{s})Fe(CO)_{2}[S(O)_{2}OC_{2}H_{s}]$	2062 (vs), 2000 (vs)	1214 (s), 1088 (s)	971 (s)		
$(\eta^{5}-C_{s}H_{s})Fe(CO)_{2}[S(O)_{2}OC_{3}H_{\gamma}-1]$	2068 (vs), 2014 (vs)	1211 (s), 1087 (s)	973 (m)		
$(\eta^{5}-C_{s}H_{s})Fe(CO)_{2}[S(O)_{2}OC_{3}H_{7}-2]$	2070 (vs), 2010 (vs)	1211 (s), 1112 (s), 1084 (s)	918 (s)	640 (s)	
$(+)_{586} - (\eta^{5} - C_{5}H_{5})Fe(CO), [S(O), OC_{8}H_{1,7} - 2]$	2065 (vs), 2010 (vs)	1212 (s), 1088 (s)	966 (m)	634 (s)	
$Mn(CO)_3(bpy)[S(O)_2OCH_3]$	2054 (s), 1940 (vs)	1198 (s), 1077 (s)		656 (s)	
$(\eta^{5} - C_{5}H_{5})Fe(CO)_{2}[S(O)_{2}CH_{3}]^{b}$	2059 (vs), 2002 (vs)	1193 (s), 1051 (s)			
$(\eta^{5}-C_{5}H_{5})Fe(CO)_{2}[S(O)_{2}C_{2}H_{5}]^{c}$	2061 (vs), 2055 (vs), 2016 (vs), 2011 (vs) ^f	1185 (s), 1051 (s) ^h			
$Mn(CO)_{3}(bpy)[S(O)_{2}CH_{3}]^{d}$	2033 (s), 1952 (s), 1931 (s) ^g	1148 (s), 1044 (s) ^h			
$(\eta^{5}-C_{5}H_{5})Fe(CO)_{2}[S(O)_{2}OH]$	2062 (vs), 2018 (vs)	1184 (s), 1038 (s)		811 (s)	2940 (w, br) ^{k}
$(\eta^{5} - C_{s}H_{s})Fe(CO)_{2}[S(O)_{2}OD]$	2062 (vs), 2018 (vs)	1184 (s), 1038 (s)		807 (s)	2230 (w, br) ^{l}
$Na[(\eta^{5}-\tilde{C}_{5}H_{5})Fe(\tilde{C}O)_{2}SO_{3}]$	2050 (vs), 1994 (vs)	1129 (sh), 1107 (sh), 1084 (s), 1072 (s), 984 (s)			
$(\eta^{5}-C_{5}H_{5})Fe(CO)_{2}[S(O)_{2}N(CH_{3})_{2}]$	2045 (vs), 1985 (vs) ^h	1220 (s), 1064 (s) ^{h}			
$[(\eta^{5}-C_{5}H_{5})Fe(CO)_{2}[S(O)(OC_{2}H_{5})OCH_{3}]]PF_{6}$	2085 (vs), 2050 (vs) ⁱ	1228 $(s)^h$	988 (m) ^h		
$[(n^{5}-C_{s}H_{s})Fe(CO)_{2}[S(O)(OC_{2}H_{s})_{2}]]PF_{6}$ OS(OC_{2}H_{s})_{2} ^e	2085 (vs), 2050 (vs) ^{i}	1224 (s) ^h 1205 (s) ^j	990 (s) ^h 1010 (s) ^j		
$[(\eta^{5}-C_{5}H_{5})Fe(CO)_{2}[S(O)(OC_{2}H_{5})CH_{3}]]PF_{6}$	2077 (vs), 2040 (vs)	1190 (s)	980 (s)		
$[(\eta^{5}-C_{5}H_{5})Fe(CO)[P(C_{6}H_{5})_{3}][S(O)(OC_{2}H_{5})CH_{3}]]PF_{6}$	1990 (vs)	1188 (s)	968 (s)		

^a KBr pellet except as noted. Abbreviations: vs, very strong; s, strong; m, medium; w, weak; sh, shoulder, br, broad. ^b Reference 21. ^c Reference 23a. ^d Reference 23b. ^e Reference 34. Simon, A.; Kriegsmann, H.; Dutz, H. *Chem. Ber.* 1956, 89, 2390. ^f CHCl₃ solution. ^g CH₂Cl₂ solution. ^h Nujol mull. ⁱ Hexachlorobutadiene mull. ^j Neat liquid. ^k ν (OH). ^l ν (OD).

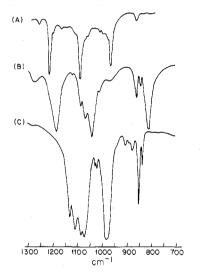


Figure 1. Infrared spectra (KBr pellet) in the 1300-700-cm⁻¹ region of (A) (η^{5} -C₅H₅)Fe(CO)₂[S(O)₂OCH₃], (B) (η^{5} -C₅H₅)Fe(CO)₂[S-(O)₂OH], and (C) Na[(η^{5} -C₅H₅)Fe(CO)₂SO₃].

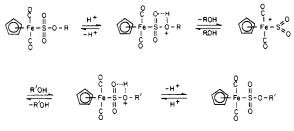
stretching frequencies, ν (C==O), of the alkyl sulfito complexes are somewhat higher than those of the analogous sulfinato-S complexes,²³ reflecting slightly better metal π -electron acceptor properties of S(O)₂OR compared to those of S(O)₂R. Both phenomena are explicable by an electronegative OR group lowering the energy of the 3d orbitals of sulfur. The ¹H NMR spectra of the alkyl sulfito complexes, listed in the Experimental Section, display no unusual features, being entirely consistent with the assigned structures.

Reactions of Ligated Alkyl Sulfite. Coordination to a metal can profoundly affect chemical reactivity of a ligand.^{13,24} In this section we describe our studies on reactions of ligated alkyl sulfite and, to the extent possible, draw comparisons with the corresponding chemistry of structurally similar organic sulfonic esters, $RS(O)_2OR'$.

(24) Anderson, B.; Milburn, R. M.; Harrowfield, J. M.; Robertson, G. B.; Sargeson, A. M. J. Am. Chem. Soc. 1977, 99, 2652 and references therein. A. Transesterification Reactions. Heating sulfonic esters and alcohols results in the formation of sulfonic acids and ethers (eq 7).²⁵ By way of contrast, when alcohol ($R' = CH_3$,

$$RS(O)_2OR' + R'OH \xrightarrow{a} RS(O)_2OH + ROR''$$
 (7)

 C_2H_5) solutions of the iron-alkyl sulfito complexes ($R = C_2H_5$, CH₃) are heated at reflux for ca. 24 h, transesterification occurs to afford the exchanged iron-alkyl sulfito products as seen in eq 8. Some decomposition was observed in these


$$\bigoplus_{\substack{l=1\\l\neq 0}}^{l} \bigcap_{\substack{n=1\\l\neq 0}}^{l} O = R + R'OH (excess) \longrightarrow \bigoplus_{\substack{l=1\\l\neq 0}}^{l} \bigcap_{\substack{n=1\\l\neq 0}}^{l} P_{0} - S - C - R' + ROH (8)$$

reactions, which accounts for the less than quantitative yields of 52–65%. The exchange does not take place at 25 °C with or without added benzoyl peroxide, a radical initiator. However, in the presence of small amounts of HBF₄ ((η^5 -C₅H₅)-Fe(CO)₂[S(O)₂OR]:HBF₄ molar ratio \geq 30:1), transesterification of the alkyl sulfito complexes was accomplished in shorter reaction times (10 h), under milder conditions (25 °C), and in higher yields (ca. 84%) than in the absence of the acid. This acid-promoted exchange is general for alcohols, but both phenol and *p*-toluenethiol failed to react under similar conditions. Furthermore, no transesterification was observed at ambient temperatures between (η^5 -C₃H₅)Fe(CO)₂[S-(O)₂OC₂H₅] and NaOCH₃ or between the ethyl sulfito complex and CH₃OH in the presence of KOH.

In order to obtain some insight into the mechanism of the aforementioned transesterifications, a reaction was carried out between $(\eta^5 \cdot C_5H_5)Fe(CO)_2[S(O)_2OCH_3]$ and $(+)_{589}$ -2-octanol $([\alpha]^{22.5}_{589} = +8.75^{\circ})$ in the presence of HBF₄. The isolated optically active $([\alpha]^{22.5}_{589} = +23.8^{\circ})$ $(+)_{589}$ - $(\eta^5 \cdot C_5H_5)Fe(CO)_2[S(O)_2OC_8H_{17}-2]$ was converted by the action of CH₃OH and HBF₄ back to $(\eta^5 \cdot C_5H_5)Fe(CO)_2[S(O)_2OCH_3]$ and 2-octanol, which exhibited essentially unchanged rotation $([\alpha]^{21}_{589} = +8.60^{\circ})$. Furthermore, maintaining at reflux a methanol solution of the above optically active $(+)_{589}$ - $(\eta^5 \cdot C_5H_5)Fe(CO)_2[S(O)_2OC_8H_{17}-2]$ led to the isolation of 2-oc-

⁽²⁵⁾ Noller, C. R. "Chemistry of Organic Compounds", 3rd ed.; W. B. Saunders: Philadelphia, Pa., 1966; p 315.

Scheme I

tanol with $[\alpha]^{26}_{589} = +8.40^{\circ}$. These results indicate that the integrity of the O-C (asymmetric) linkage in the 2-octoxy group is substantially (\gtrsim 96%) preserved in the reacting alcohol under acid conditions and in the iron-alkyl sulfito complex under both acid and thermal conditions.²⁶

A particularly attractive mechanism for the acid-promoted exchange which leaves intact the O-C bond of the alkoxy group is depicted in Scheme I. In the absence of HBF₄, cleavage of the S-OR bond of the alkyl sulfite may be initiated by interaction of the OH proton of the reacting alcohol with the oxygen of the $S(O)_2OR$.

A feature of considerable interest in the mechanism in Scheme I is the involvement of the iron-sulfur dioxide cation $[(\eta^5-C_5H_5)Fe(CO)_2SO_2]^+$. The formation of such a species is not unreasonable since cationic manganese- and rheniumsulfur dioxide complexes, $[M(CO)_5SO_2]AsF_6$ (M = Mn, Re), have recently been synthesized.²⁷

As a test of the viability of Scheme I we undertook to synthesize $[(\eta^5-C_5H_5)Fe(CO)_2SO_2]^+$ and show that it reacts readily with alcohols to give $(\eta^5 - C_5 H_5) Fe(CO)_2[S(O)_2 OR]$. In that vein, a reaction analogous to that for the preparation of $[M(CO)_5SO_2]$ AsF₆ (M = Mn, Re) was carried out (eq 9).

After the original purple solution of $(\eta^5 - C_5 H_5) Fe(CO)_2 I$ had changed to bright red, a characteristic color of many cations $[(\eta^5 - C_5 H_5)Fe(CO)_2 L]^+$,^{28,29} the reaction mixture was treated with methanol. Usual workup afforded $(\eta^5-C_5H_5)Fe(CO)_2$ - $[S(O)_2OCH_3]$ (eq 10), thus indicating a facile nucleophilic attack of CH₃OH on the ligated SO₂ and lending strong support to the mechanism in Scheme I.

It is noteworthy that the in situ synthesis of the cation $[(\eta^{5}-C_{5}H_{5})Fe(CO)_{2}SO_{2}]^{+}$ completes the series $[(\eta^{5}-C_{5}H_{5}) Fe(CO)_2SO_2$ ⁿ (n = 1-, 0, 1+). The previously prepared²¹ anion $[(\eta^5-C_5H_5)Fe(CO)_2SO_2]^-$ represents an isolable entity, whereas the 17-electron radical $(\eta^5-C_5H_5)Fe(CO)_2SO_2$ appears to be a short-lived species which dimerizes readily to $[(\eta^5-C_5H_5)Fe(CO)_2SO_2]_2$.⁷ As would be expected, $[(\eta^5-C_5H_5)Fe(CO)_2SO_2]^+$ and $[(\eta^5-C_5H_5)Fe(CO)_2SO_2]^-$ are susceptible to attack by nucleophilic and electrophilic reagents, respectively.

B. Hydrolysis. Synthesis, Characterization, and Reactions of $(\eta^5 - C_5 H_5)$ Fe(CO)₂[S(O)₂OH]. Hydrolysis of sulfonic esters

proceeds according to eq 11.^{30,31} Except when $R' = aryl^{32,33}$ this reaction occurs with scission of the O-C(R') bond and inversion at the alkoxy carbon.^{30,31}

$$RS(O)_2OR' + H_2O \rightarrow RS(O)_2OH + R'OH$$
 (11)

Stirring an aqueous solution of $(\eta^5-C_5H_5)Fe(CO)_2[S-$ (O)₂OR] at room temperature for 16 h followed by evaporation to dryness affords $(\eta^5 - C_5 H_5) Fe(CO)_2[S(O)_2 OH]$ as an air-stable, yellow solid in high yield (eq 12). The deuterium analogue of the hydrogen sulfite was obtained similarly by hydrolysis in D_2O .

The hydrogen sulfito product was characterized by elemental analysis and infrared (Table I) and ¹H NMR spectroscopy. The positions of the two ν (C=O) bands at 2062 and 2018 cm⁻¹ match well those of the corresponding absorptions of $(\eta^5$ - C_5H_5)Fe(CO)₂[S(O)₂OR], and the ν (SO₂) bands at 1184 and 1038 cm⁻¹, shown in Figure 1, are in the range expected for the assigned structure. A broad peak at 2940 cm⁻¹ is due to ν (OH); consistent with this assignment, the above absorption disappears and a new one ($\nu(OD)$) appears at 2230 cm⁻¹ for $(\eta^5-C_5H_5)Fe(CO)_2[S(O)_2OD]$. Organic sulfonic acids exhibit the corresponding band at ca. 2900 cm⁻¹, with shifts to ca. 2225 cm⁻¹ upon deuteration.³⁴ The ¹H NMR spectrum of (η^{5} - C_5H_5)Fe(CO)₂[S(O)₂OH] in (CD₃)₂SO shows, in addition to a sharp signal of the C_5H_5 protons (τ 4.70), a broad resonance of the OH proton $(\tau - 1.16)$ in the range reported³⁵ for the sulfonic acids.

The complex $(\eta^5-C_5H_5)Fe(CO)_2[S(O)_2OH]$ represents the first well-characterized organometallic analogue of sulfonic acids,³⁶ and, consistent with this analogy, it furnishes a titration curve typical of strong acids on neutralization with NaOH in aqueous solution. When the titration was conducted to a pH of 7.00, an equivalent weight of 260 was obtained, which compares well with the calculated value of 258 for the assigned formula.

Removal of water from an aqueous solution of $(\eta^5 - C_5 H_5)$ - $Fe(CO)_2[S(O)_2OH]$ neutralized with NaOH affords a yellow, air-stable solid Na[$(\eta^5$ -C₅H₅)Fe(CO)₂SO₃]. This iron-sulfito complex is a 1:1 electrolyte in methanol,³⁷ and its infrared spectrum in the 1300-700-cm⁻¹ region (Table I and Figure 1) is consistent with the presence of a sulfur-bonded $SO_3^{2-}(C_{3v})$ local symmetry).³⁸ The recent synthesis of $[(\eta^5-C_5H_5)Fe-(CO)_2SO_2]^-$ from $[(\eta^5-C_5H_5)Fe(CO)_2]^-$ and SO_2^{21} permits a comparison of nucleophilicity to be made between this anion and $[(\eta^5-C_5H_5)Fe(CO)_2SO_3]^-$. The latter may be viewed as a 1:1 adduct of $[(\eta^5-C_5H_5)Fe(CO)_2]^-$ and SO₃, a much stronger acid than SO₂. Consistent with such an analogy, $[(\eta^5 \cdot \tilde{C}_5 H_5) Fe(CO)_2 SO_3]^-$ was found to be a weaker nucleophile than $[(\eta^5-C_5H_5)Fe(CO)_2SO_2]^-$. Whereas the latter

(30) March, J. "Advanced Organic Chemistry"; McGraw-Hill: New York, 1977; p 450.

- Kenyon, J.; Phillips, H.; Turley, H. G. J. Chem. Soc., Trans. 1925, 127, (31)
- 399.

- (32) Bender, M. L.; Dewey, R. J. J. Am. Chem. Soc. 1956, 78, 317.
 (33) Oae, S.; Fukumoto, T.; Kiritani, R. Bull. Chem. Soc. Jpn. 1963, 36, 346.
 (34) Detoni, S.; Hadzi, D. Spectrochim. Acta 1957, 11, 601.
 (35) Dyer, J. R. "Applications of Absorption Spectroscopy of Organic Compounds"; Prentice-Hall: Englewood Cliffs, N.J., 1965; p 85.
 (36) The formulations of (AD CH) Esc(O) EscO. U.U.O. Esco. U.U.O. Esco. U.U.O. Esco. U.U.O. Esco. U.U.O. Esco. Compounds and the set of the set of
- (36) The formulation of $(\eta^5 - C_5 H_5)Fe(CO)_2FeSO_3H + H_2O$, made solely on the basis of elemental analysis and an infrared spectrum, is to be regarded as tentative: Field, D. S.; Newlands, M. J. J. Organomet. Chem. 1971, 27, 221.
- (37) Typical values of Λ_m for ca. 10^{-3} M solutions of 1:1 electrolytes in methanol and nitromethane are given by: Geary, W. J. Coord. Chem. Rev. 1971. 7. 81.
- (38) Newman, G.; Powell, D. B. Spectrochim. Acta 1963, 19, 213.

⁽²⁶⁾ The only alternative to the proposed two retentions at the OC carbon of the 2-octoxy moiety on going from $(+)_{589}$ -2-octanol to $(+)_{589}$ - $(\eta^5 - C_5H_5)Fe(CO)_2[S(O)_2OC_8H_{17}-2]$ and back to $(+)_{589}$ -2-octanol is two inversions. However, the latter scheme would necessitate backside nucleophilic displacement of the 2-octyl group from the alcohol and then from the alkyl sulfito complex-a sequence that must be regarded as extremely unlikely. Mews, R. Angew. Chem., Int. Ed. Engl. 1975, 14, 640. Dombeck, B. D.; Angelici, R. J. Inorg. Chim. Acta 1973, 7, 345.

⁽²⁸⁾

⁽²⁹⁾ Reger, D. L.; Coleman, C. J. Organomet. Chem. 1977, 131, 153.

readily undergoes reaction with CH₃I,²¹ the former failed to react with CH₃I, even on heating at reflux in acetone-ethanol for 10 h.

The hydrolysis reaction in eq 12 is reversible, and the alkyl sulfito complexes $(\eta^5 - C_5 H_5) Fe(CO)_2[S(O)_2 OR]$ (R = CH₃, C_2H_5 , 2- C_8H_{17}) can be obtained in high yield by treatment of $(\eta^5 - C_5H_5)Fe(CO)_2[S(O)_2OH]$ with the appropriate alcohol at 25 °C. This alkylation reaction, like the transesterification, proceeds with the preservation of the O-C bond of the alcohol. This conclusion derives from the observations that treatment of $(\eta^{5}-C_{5}H_{5})Fe(CO)_{2}[S(O)_{2}OH]$ with $(+)_{589}$ -2-octanol $([\alpha]^{22.5}_{589} = +8.75^{\circ})$ affords $(+)_{589}$ - $(\eta^{5}-C_{5}H_{5})Fe(CO)_{2}[S-(O)_{2}OC_{8}H_{17}-2]$, which on reaction with methanol regenerates $(+)_{589}$ -2-octanol with only slightly lower rotation ($[\alpha]^{28}_{589}$ = +8.20°). Since the second transformation was shown earlier to proceed with retention at the OC carbon of the 2-octoxy group, the first reaction must also lead to substantial retention.

Attempts were made at conversion of $(\eta^5 - C_5 H_5) Fe(CO)_2$ - $[S(O)_2OH]$ to $(\eta^5-C_5H_5)Fe(CO)_2[S(O)_2Cl]$ by action of $SOCl_2$ in CHCl₃ and ClC(O)C(O)Cl in benzene at 25 °C. However, in each case, the only organometallic product obtained was $(\eta^5 - C_5 H_5) Fe(CO)_2 Cl$.

C. Reactions with Amines. In general, organic sulfonic esters alkylate amines in a 1:1 reaction²⁵ as illustrated in eq 13 for secondary amines.

$$RS(O)_2OR' + R''_2NH \rightarrow R''_2R'NH[RSO_3] \quad (13)$$

Dissolution of $(\eta^5 - C_5 H_5) Fe(CO)_2[S(O)_2 OR]$ in excess R_2NH (R = CH₃, C_2H_5) at 25 °C leads to the formation of a yellow, air-stable precipitate in high yield (eq 14). Added

$$\bigoplus_{\substack{k \in \mathbb{S}^{n} \\ k \in \mathbb{S}^{n}}}^{k} \stackrel{\circ}{\underset{k \in \mathbb{S}^{n}}{\operatorname{Fe}}} \stackrel{\underset$$

benzoyl peroxide does not affect the rate of this reaction when $R = C_2H_5$. The precipitate was characterized by infrared and ¹H NMR spectroscopy (Experimental Section) as R_2NH_2 -[(η^5 -C₅H₅)Fe(CO)₂SO₃]. The identity of the anion was further ascertained by conversion of the product to the previously prepared (vide supra) $Na[(\eta^5-C_5H_5)Fe(CO)_2SO_3]$ via metathesis with NaB(C₆H₅)₄. Furthermore, when $R = C_2H_5$, the same organoiron salt was obtained by neutralization of $(\eta^5-C_5H_5)Fe(CO)_2[S(O)_2OH]$ with $(C_5H_5)_2NH$ in acetonitrile.

The anomalous 1:2 alkylation in eq 14 finds some precedent in the organic chemistry of $C_6H_5S(O)_2OR$ (R = CH=CH₂, $CH_2C(CH_3) = CH_2, CH_2CH = CHC_6H_5).^{39,40}$ These compounds react with 2 mol of various R'NH₂ compounds according to eq 15. In both reactions, transamination is involved.

$$C_{6}H_{5}S(O)_{2}OR + 2R'NH_{2} \rightarrow R'RNH + R'NH_{3}[C_{6}H_{5}SO_{3}] (15)$$

Such transamination appears to be essential to the transformation in eq 14 since $(\eta^5-C_5H_5)Fe(CO)_2[S(O)_2OC_2H_5]$ failed to react with neat $(C_2H_5)_3N$ even at reflux.

It is noteworthy that the reaction of $(\eta^5-C_5H_5)Fe(CO)_2[S (O)_2OR$] with R_2NH , unlike that with R'OH, proceeds with cleavage of the O-C bond of the alkyl sulfito ligand. In this respect, the behavior toward the amines of $(\eta^5-C_5H_5)$ Fe- $(CO)_2[S(O)_2OR]$ differs from that of $(\eta^5-C_5H_5)Fe(CO)_2[C-$ (O)OR]. The carboalkoxy complexes and R_2NH react to afford $(\eta^5 - C_5 H_5) Fe(CO)_2 [C(O)NR_2]$,¹³ i.e., with nucleophilic displacement of OR^- from C(O)OR.

An analogous displacement of OR⁻ from $(\eta^5-C_5H_5)$ Fe- $(CO)_2[S(O)_2OR]$ by R_2NH would have afforded the sulfonamido complexes $(\eta^5 - C_5 H_5) Fe(CO)_2[S(O)_2 NR_2]$. Although no evidence was obtained for the formation of $(\eta^5-C_5H_5)Fe$ - $(CO)_2[S(O)_2NR_2]$ in the aforementioned reactions, this type of complex can be prepared, albeit in very low yield, by treatment of $Na[(\eta^5-C_5H_5)Fe(CO)_2]$ with $ClS(O)_2NR_2$ (R = CH₃) according to eq 16. The characterization of $(\eta^{5} C_5H_5)Fe(CO)_2[S(O)_2N(CH_3)_2]$ by infrared and ¹H NMR spectroscopy is detailed in the Experimental Section.

$$N_{0}^{+} \bigoplus_{r \in \mathcal{C}_{0}} F_{e} \begin{pmatrix} c^{0} \\ c_{0} \end{pmatrix} + C_{1} - \frac{s}{s} - NR_{2} \longrightarrow \left[\bigoplus_{r \in \mathcal{C}_{0}} F_{e} (C_{0})_{2} \right]_{2}$$

$$+ \bigoplus_{r \in \mathcal{C}_{0}} F_{e} - C_{1} + \bigoplus_{r \in \mathcal{C}_{0}} F_{e} - \frac{s}{s} - N\zeta_{R}^{R} \qquad (16)$$

D. Reactions with Protic Acids. Since the rate of the reaction between $(\eta^5 - C_5 H_5) Fe(CO)_2[S(O)_2 OR]$ and R'OH is enhanced by the presence of HBF₄, it was of interest to examine interaction of the alkyl sulfito complexes with various protic acids.

Treatment of $(\eta^5 - C_5 H_5)$ Fe(CO)₂[S(O)₂OR] with HCl (R = C_2H_5) and CF_3CO_2H (R = CH_3) at ambient temperature resulted in the formation of $(\eta^5-C_5H_5)Fe(CO)_2Cl$ and $(\eta^5-C_5H_5)Fe(CO)_2Cl$ C_5H_5)Fe(CO)₂[OC(O)CF₃], respectively, in high yield. These substitution reactions probably proceed by protonation of the alkyl sulfito ligand and loss of ROH (Scheme I), followed by replacement of SO₂ in $[(\eta^5-C_5H_5)Fe(CO)_2SO_2]^+$ with Cl⁻ or $CF_3CO_2^-$. Somewhat surprisingly, no reaction was observed between $(\eta^5-C_5H_5)Fe(CO)_2[S(O)_2OC_2H_5]$ and HF in CHCl₃ at 25 °C, possibly owing to an insufficient acid strength of HF to effect loss of alcohol from the alkyl sulfito complex.

Reaction of $(\eta^5-C_5H_5)Fe(CO)_2[S(O)_2OCH_3]$ with equimolar HBF₄·(C_2H_5)₂O in CDCl₃ at 25 °C was monitored by ¹H NMR spectroscopy and reached completion in ca. 75 min. Although no organoiron product was isolated and fully characterized, the NMR data (Experimental Section) appear to be compatible with the presence of $(\eta^5-C_5H_5)Fe(CO)_2FBF_3$ in solution. Similar organometallic complexes containing coordinated PF_6^- ion have recently been reported.^{41,42} The formation of $(\eta^5-C_5H_5)Fe(CO)_2Cl$, $(\eta^5-C_5H_5)Fe(CO)_2[OC-C_5H_5)Fe(CO)_2[OC-C_5H_5)Fe(CO)_2]OC-C_5H_5$ (O)CF₃], and possibly $(\eta^5-C_5H_5)Fe(CO)_2FBF_3$ from $(\eta^5-C_5H_5)Fe(CO)_2FBF_3$ C_5H_5)Fe(CO)₂[S(O)₂OR] and the appropriate acid would seem to indicate considerable lability of ligated SO_2 in $[(\eta^{5}-C_{5}H_{5})Fe(CO)_{2}SO_{2}]^{+}.$

E. Alkylation Reactions. The alkyl sulfito ligand in $(\eta^5$ - C_5H_5)Fe(CO)₂[S(O)₂OR] (R = CH₃, C₂H₅) can be alkylated with $(C_2H_5)_3OPF_6$ in CH_2Cl_2 at 25 °C according to eq 17.

$$\bigoplus_{\substack{i=1\\j \in I\\j \in I\\j$$

The resultant yellow, air-stable solids $[(\eta^5-C_5H_5)Fe(CO)_2]$ S- $(O)(OC_2H_5)OR]$ PF₆ represent the first examples of organoiron complexes containing a dialkyl sulfite ligand. The new complexes were characterized by elemental analysis, conductivity measurements in nitromethane which show them to be 1:1 electrolytes,³⁷ and infrared (Table I) and ¹H NMR spectroscopy. The infrared spectra prominently exhibit two ν (C=O) bands at 2085 and 2050 cm⁻¹, characteristic of cationic $[(\eta^5-C_5H_5)Fe(CO)_2L]^+$,^{28,29} and a single $\nu(S=O)$ band at 1228–1224 cm⁻¹. In the ¹H NMR spectra, the C₅H₅ resonance is, as expected, shifted ca. 0.5 ppm downfield from the corresponding resonance of the parent $(\eta^5-C_5H_5)Fe$ - $(CO)_2[S(O)_2OR]$. Another noteworthy feature in the ¹H NMR spectra of the dialkyl sulfite complexes is the appearance of the CH₂ signal as a multiplet at τ 5.45-5.67. The CH₂

⁽³⁹⁾ Vizgert, R. V.; Sendega, R. V.; Zhovnirchuk, V. M. J. Org. Chem. USŠR (Engl. Transl.) 1969, 5, 914. (40) Freundenberg, K.; Hess, H. Liebigs Ann. Chem. 1926, 448, 121.

⁽⁴¹⁾ Beck, W.; Schloter, K. Z. Naturforsch. B, Anorg. Chem., Org. Chem. 1978, 33B, 1214. (42) Regina, F. J.; Wojcicki, A. Inorg. Chem., following paper in this issue.

protons of the C_2H_5 group in the two complexes (R = CH₃, C_2H_5) are diastereotopic, in each case giving rise to the (incompletely resolved) AB part of an ABX₃ type of spectrum. A similar spectrum has been reported⁴³ for the CH_2 protons of diethyl sulfite.

Storage of a solution of $[(\eta^5-C_5H_5)Fe(CO)_2[S(O)-(OC_2H_5)_2]]PF_6$ in ethanol for 16 h at 25 °C results in the formation of $(\eta^5-C_5H_5)Fe(CO)_2[S(O)_2OC_2H_5]$ and $(C_2H_5)_2O$ according to eq 18. In contrast, no alkylation of acetone by $[(\eta^{5}-C_{5}H_{5})Fe(CO)_{2}[S(O)(OC_{2}H_{5})OR]]PF_{6}(R = CH_{3}, C_{2}H_{5})$ was observed under comparable conditions.

$$\bigoplus_{\substack{c \in I, \\ c \in I$$

The complexes $(\eta^5 - C_5 H_5) Fe(CO)(PR_3)[S(O)_2 CH_3]$ (R = C_4H_9 , C_6H_5) behave as Lewis bases in undergoing protonation and/or interaction with BF₃ at the sulfinate oxygen.^{44,45} Therefore, it was of interest to extend the alkylation reaction of $(\eta^5 - C_5 H_5) Fe(CO)_2[S(O)_2 OR]$ to the analogous sulfinato-S complexes $(\eta^5 - C_5 H_5) Fe(CO)(L)[S(O)_2 R]$.

Treatment of $(\eta^5 - C_5 H_5) Fe(CO)(L)[S(O)_2 R]$ (L = CO, $P(C_6H_5)_3$) with $(C_2H_5)_3OPF_6$ in CH_2Cl_2 at 25 °C was found to proceed according to eq 19 to afford yellow, air-stable

complexes containing the novel ethyl methanesulfinate ligand. The characterization of these complexes by elemental analysis, conductivity measurements, and infrared and ¹H NMR spectroscopy is detailed in the Experimental Section. Prominent features of the infrared spectra parallel those of the previously considered spectra of $[(\eta^5-C_5H_5)Fe(CO)_2[S(O) (OC_2H_5)OR$]]PF₆ and need not be discussed further; they are provided for comparison in Table I.

Summary of Reactions. Reactions of the alkyl sulfito ligand in $(\eta^5 - C_5 H_5) Fe(CO)_2[S(O)_2 OR]$ proceed with heterolytic cleavage of either the S-OR bond or the O-R bond. The former mode of scission occurs on treatment of the complex with alcohols and results in transesterification, whereas the latter mode of scission takes place on reaction with secondary amines, R_2NH , and yields $R_2NH_2[(\eta^5-C_5H_5)Fe(CO)_2SO_3]$. The alkyl sulfite undergoes alkylation by $R'_{3}OPF_{6}$ to afford the corresponding dialkyl sulfite complex $[(\eta^5-C_5H_5)Fe (CO)_{2}[S(O)(OR)OR']]PF_{6}$ and substitution by the anion of strong acids, HX, to give $(\eta^5-C_5H_5)Fe(CO)_2X$. Hydrolysis of $(\eta^5 - C_5 H_5) Fe(CO)_2[S(O)_2 OR]$ yields the hydrogen sulfito complex $(\eta^5 - C_5H_5)Fe(CO)_2[S(O)_2OH]$, a strong acid, which affords the anion $[(\eta^5-C_5H_5)Fe(CO)_2SO_3]^-$ on neutralization.

Experimental Section

General Procedures. All reactions that did not involve use of oxygen were conducted under an atmosphere of dry nitrogen. Standard techniques were employed for the manipulation of air-sensitive compounds.⁴⁶ Irradiation experiments were carried out in Pyrex tubes with use of a Rayonet Model RPR-100 photochemical reactor with 350-nm lamps. Chromatography was performed on columns packed with 60-100 mesh Florisil. Melting points were measured in vacuo on a Thomas-Hoover capillary melting point apparatus and are uncorrected. Titrations were performed by using a Radiometer Copenhagen Model ABU12 autoburette, Model No. 11 titrator, and Model No. 26 pH meter. Elemental analyses were done by Galbraith Laboratories, Inc., Knoxville, Tenn.

(44)

McGraw-Hill: New York, 1969.

(46)

Physical Measurements. ¹H NMR spectra were recorded on Varian Associates A-60A and EM360L spectrometers with use of Me₄Si as an internal reference. ¹⁹F NMR spectra were measured on a Bruker HX-90 spectrometer at 84.6 MHz with the assistance of Dr. C. E. Cottrell.

Poffenberger and Wojcicki

Infrared (IR) spectra were recorded on Beckman IR-9 and Perkin-Elmer Model 337 spectrophotometers. Mass spectra were obtained at 70 eV on an AEI Model MS-9 spectrometer by Mr. C. R. Weisenberger. Specific rotations were measured on a Perkin-Elmer Model 241 polarimeter in a 10-cm cell. Conductivity data were obtained on ca. 10⁻³ M solutions by using a Lab-Line No. 11200 beaker-type conductivity cell in conjunction with an Industrial Instruments, Inc., Model RC 16B2 conductivity bridge.

Materials. Chloroform was distilled first from P₄O₁₀ and then from K_2CO_3 . Dichloromethane was purified by distillation from P_4O_{10} . Acetonitrile was distilled three times from P4O10 and once from K2CO3. Nitromethane was dried over CaCl₂ and then distilled from CaSO₄. Methanol was distilled from magnesium turnings and I2.47 1-Propanol and 2-propanol were distilled from CaSO₄. All of these solvents were stored over 4-A molecular sieves. THF was distilled from Na/K and benzophenone immediately before use. Cyclohexane was purified by distillation from LiAlH₄. Benzene was dried by passage through a column of alumina.⁴⁸ Other solvents were of reagent grade quality and were used as received.

Sulfur dioxide, from Matheson, was purified before use by passage through concentrated H_2SO_4 and a column packed with P_4O_{10} . Dimethylamine, diethylamine, and triethylamine, from Fisher, were stored over 4-A molecular sieves. $(+)_{589}$ -2-Octanol, from Aldrich, was distilled at 86 °C (20 torr) before use. Dimethylsulfamoyl chloride was distilled at 114 °C (75 torr) prior to use. Silver tetrafluoroborate, from Alfa, was dehydrated by heating at 120 °C (1 torr) for 24 h and then at 145 °C (1 torr) for 1.5 h. $(C_2H_5)_3OPF_6$, $P(C_6H_5)_3$, and $NaB(C_6H_5)_4$ were recrystallized from CH_2Cl_2 , benzene, and $CHCl_3$, respectively. Other commercially procured chemicals were of reagent grade or equivalent quality and were used without further purification.

The compounds $Na[S(O)_2OR]$ (R = CH₃, C₂H₅) were prepared by slow passage of gaseous SO_2 into a cooled (0 °C) alcoholic solution of NaOR, obtained by reaction of Na with ROH.^{20,49} (CH₃)₃NO was synthesized as reported.50

Literature procedures were used to prepare the following metal $[(\eta^{5}-C_{5}H_{5})Fe(CO)_{2}H_{2}O]BF_{4}^{28}$ K $[(\eta^{5}-C_{5}H_{5})Fe$ complexes: complexes: $[(\eta^{-}C_{5}H_{5})Fe(CO)_{2}H_{2}O]BC_{4}$, $K_{1}(\eta^{-}C_{5}H_{5})Fe(CO)_{2}SO_{2}]\cdot 0.5SO_{2},^{21}(\eta^{5}-C_{5}H_{5})Fe(CO)_{2}[S(O)_{2}CH_{3}],^{23a}(\eta^{5}-C_{5}H_{5})-Fe(CO)[P(C_{6}H_{5})_{3}][S(O)_{2}CH_{3}],^{44}Mn(CO)_{3}(bpy)Cl,^{51}[Mn(CO)_{5}I]\cdot CCH_{3}]PF_{6},^{52}Mn(CO)_{3}[P(C_{6}H_{5})_{3}]_{2}Cl,^{51}and(n-C_{4}H_{6})_{4}N[W(CO)_{5}I].^{53}Ms. G. Arzaga provided (\eta^{5}-C_{5}H_{5})Fe(CO)_{2}I and (\eta^{5}-C_{5}H_{5})Fe($ $(CO)[P(C_6H_5)_3]Cl$, and Mr. F. J. Regina furnished $(\eta^5 - C_5H_5)Cr$ - $(NO)_2Cl.$

Preparation of $(\eta^5-C_5H_5)Fe(CO)_2[S(O)_2OR]$. A. By Reaction of $[(\eta^5 - C_5H_5)Fe(CO)_2H_2O]BF_4$ with Na[S(O)_2OR] (R = CH_3, C_2H_5). Passage of oxygen through a solution of 1.00 g (2.83 mmol) of $[(\eta^{5}-C_{5}H_{5})Fe(CO)_{2}]_{2}$ and 1.05 g (6.00 mmol) of 48% aqueous HBF₄ in 50 mL of acetone resulted in a gradual change of color from purple to bright red. Acetone and H₂O were removed by rotary evaporation, and the residual red-purple oil was dissolved in 70 mL of CH₃OH and treated with 0.8 g (7 mmol) of $Na[S(O)_2OCH_3]$. The resulting solution was stirred for 12 h at 25 °C, during which time it changed color from red to yellow. Methanol was removed under reduced pressure, and the residue was extracted with 30 mL of CHCl₃. The extract was chromatographed on Florisil eluting with 5:1 (v/v)CHCl₃-acetone to remove a long yellow band. Concentration of the effluent to 15 mL and addition of 30 mL of cyclohexane with stirring afforded 0.78 g (51% yield) of $(\eta^5-C_5H_5)Fe(CO)_2[S(O)_2OCH_3]$ as yellow crystals: mp 156 °C dec; ¹H NMR (CDCl₃) τ 4.79 (s, C₅H₅), 6.41 (s, CH₃); IR (KBr) 3106 (m), 2942 (m), 2064 (vs), 2007 (vs), 1988 (sh), 1426 (m), 1214 (s), 1173 (sh), 1095 (s), 1061 (s), 995 (sh),

- (47) Vogel, A. "Practical Organic Chemistry", 3rd ed.; Longmans, Green and Co.: London, 1956; p 169. (48) Burfield, D. R.; Lee, K.-H.; Smithers, R. H. J. Org. Chem. 1977, 42,
- 3060.
- Rosenheim, A.; Liebknecht, O. Ber. Dtsch. Chem. Ges. 1898, 31, 405. (49) Hickinbottom, W. J. "Reactions of Organic Compounds"; Longmans, (50)
- Green, and Co.: London, 1948; p 309. Abel, E. W.; Wilkinson, G. J. Chem. Soc. 1959, 1501. (51)
 - Drew, D.; Darensbourg, D. J.; Darensbourg, M. Y. Inorg. Chem. 1975, 14, 1579. (52)

 - (53) Abel, E. W.; Butler, I. S.; Reid, J. G. J. Chem. Soc. 1963, 2068.

Seel, F.; Gombler, W.; Budenz, R. Ann. Chem. 1970, 735, 1. Graziani, M.; Wojcicki, A. Inorg. Chim. Acta 1970, 4, 347. Ross, D. A.; Wojcicki, A. Inorg. Chim. Acta 1971, 5, 6. Shriver, D. F. "The Manipulation of Air-Sensitive Compounds"; (43)

(Alkyl sulfito)iron(II) Complexes

971 (s), 913 (m), 868 (m), 686 (s), 636 (s), 604 (s), 579 (s), 566 (m), 558 (s) cm⁻¹; mass spectrum (70 °C, relative intensities in parentheses), prominent peaks at m/e 242 (P - CO)⁺ (4), 216 (P - 2CO)⁺ (16), 186 (C₅H₅)₂Fe⁺ (62), 177 (P - SO₃CH₃)⁺ (32), 149 (P - CO -SO₃CH₃)⁺ (42), 121 (P - 2CO - SO₃CH₃)⁺ (100), 64 SO₂⁺ (>100).

Similarly, reaction of $[(\eta^5-C_5H_5)Fe(CO)_2H_2O]BF_4$, prepared from 2.00 g (5.65 mmol) of $[(\eta^5-C_5H_5)Fe(CO)_2]_2$ and 2.10 g (12.0 mmol) of 48% aqueous HBF₄ in 100 mL of acetone and freed of the solvent, with 1.77 g (14.4 mmol) of Na[S(O)_2OC_2H_5] in 120 mL of C_2H_5OH afforded 1.67 g (51% yield) of $(\eta^5-C_5H_5)Fe(CO)_2[S(O)_2OC_2H_5]$ as yellow crystals: mp 96 °C; ¹H NMR (CDCl₃) τ 4.60 (s, C₅H₅), 5.99 (q, J = 7 Hz, CH₂), 8.77 (t, J = 7 Hz, CH₃); IR (KBr) 3120 (m), 3110 (sh), 2984 (w), 2938 (w), 2906 (w), 2062 (vs), 2000 (vs), 1434 (m), 1424 (sh), 1388 (w), 1214 (s), 1105 (sh), 1088 (s), 1020 (s), 971 (s), 904 (s), 891 (m), 869 (s), 839 (m), 731 (s), 615 (s), 592 (s), 578 (s), 568 (s), 505 (m), 494 (sh) cm⁻¹; mass spectrum (80 °C, relative intensities in parentheses), prominent peaks at m/e 287 P⁺ (2), 258 (P - CO)⁺ (10), 230 (P - 2CO)⁺ (40), 186 (C₅H₅)₂Fe⁺ (80), 177 (P - SO₃C₂H₅)⁺ (100), 64 SO₂⁺ (>100). Anal. Calcd for C₉H₁₀FeO₅S: C, 37.87; H, 3.52. Found: C, 37.17; H, 3.46.

B. By Reaction of $[(\eta^5-C_5H_5)Fe(CO)_2H_2O]BF_4$ with Na[S(O)₂O- C_2H_5] and ROH (R = 1- C_3H_7OH , 2- C_3H_7OH). [(η^5 - C_5H_5)Fe- $(CO)_{2}H_{2}O]BF_{4}$, prepared from 1.00 g (2.83 mmol) of $[(\eta^{5}-C_{5}H_{5})-$ Fe(CO)₂]₂ and 1.05 g (6.00 mmol) of 48% aqueous HBF₄ in acetone and freed of the solvent, was treated with 0.86 g (6.5 mmol) of $Na[S(O)_2OC_2H_2]$ in 100 mL of 1-C₃H₇OH. The resulting solution was stirred for 16 h at 25 °C and then evaporated to dryness. After extraction with CHCl3 and chromatography on Florisil, 0.82 g (48% yield) of $(\eta^5 - C_5 H_5) Fe(CO)_2 [S(O)_2 OC_3 H_7 - 1]$, mp 94–96 °C, was obtained as a yellow powder upon evaporation of the solvent: ¹H NMR $(CDCl_3) \tau 4.68 (s, C_5H_5), 6.14 (t, J = 6 Hz, OCH_2C), 8.14 (m, J)$ J' = 6 Hz, CCH₂C), 9.08 (t, J' = 6 Hz, CH₃); IR (KBr) 3112 (m), 2966 (m), 2938 (m), 2890 (w), 2828 (sh), 2068 (vs), 2052 (sh), 2014 (vs), 1427 (m), 1418 (m), 1388 (w), 1249 (m), 1211 (s), 1087 (s), 1050 (sh), 1013 (w), 993 (w), 973 (m), 940 (m), 906 (w), 873 (w), 793 (m), 733 (m), 709 (m), 672 (w), 639 (m), 608 (m), 574 (m), 558 (m), 520 (w), 515 (sh) cm⁻¹; mass spectrum (120 °C), no peaks corresponding to SO₃C₃H₇-containing species.

 $(\eta^5-C_5H_5)Fe(CO)_2[S(O)_2OC_3H_7-2]$ was obtained similarly as a yellow-orange powder by using 2-C_3H_7OH in place of 1-C_3H_7OH: 32% yield; mp 164–165 °C dec; ¹H NMR (CDCl₃) τ 4.83 (s, C₅H₅), 5.10 (apparent septet with only five component peaks discernible, J = 6.1 Hz, CH), 8.25 (d, J = 6.1 Hz, 2CH₃); IR (KBr) 3120 (m), 2990 (sh), 2978 (s), 2930 (w), 2070 (vs), 2052 (sh), 2010 (vs), 1420 (m), 1401 (m), 1370 (w), 1352 (w), 1342 (w), 1211 (s), 1208 (sh), 1178 (w), 1112 (s), 1084 (s), 1065 (m), 918 (s), 865 (sh), 845 (s), 718 (m), 640 (s), 606 (m), 581 (s), 560 (m), 524 (m) cm⁻¹; mass spectrum (120 °C), no peaks corresponding to SO₃C₃H₇-containing species.

C. By Reaction of $[(\eta^5-C_5H_5)Fe(CO)_2H_2O]BF_4$ with Na₂SO₃ and ROH (R = C₂H₅). $[(\eta^5-C_5H_5)Fe(CO)_2H_2O]BF_4$, prepared from 2.00 g (5.65 mmol) of $[(\eta^5-C_5H_5)Fe(CO)_2]_2$ and 2.10 g (12.0 mmol) of 48% aqueous HBF₄ in acetone and freed of the solvent, was treated with 2.5 g (20 mmol) of Na₂SO₃ in 150 mL of C₂H₃OH. The mixture was stirred for 3 days at 25 °C, during which time the color changed from red to yellow. The solvent was removed, the residue was extracted with 100 mL of CHCl₃, and the extract was filtered. The filtrate was chromatographed on Florisil by using 5:1 (v/v) CHCl₃-acetone to elute off first a band containing 0.02 g of $[(\eta^5-C_5H_5)Fe(CO)_2]_2$ and then a band that yielded 1.29 g (40%) of $(\eta^5-C_5H_5)Fe(CO)_2[S-(O)_2OC_2H_5]$ on concentration and addition of cyclohexane.

D. By Reaction of K[$(\eta^5-C_5H_5)$ Fe(CO)₂SO₂]0.5SO₂ with ROSO₂F (**R** = CH₃).⁵⁴ To 4.1 g (14 mmol) of K[$(\eta^5-C_5H_5)$ Fe(CO)₂SO₂]. 0.5SO₂ in a 250-mL round-bottom flask were added 1.8 g (16 mmol) of CH₃OSO₂F and 100 mL of CH₂Cl₂. The resulting solution was maintained at reflux for 2 h and then was cooled to 25 °C and evaporated to dryness. The orange residue was extracted with 70 mL of ethyl acetate, and the extract was chromatographed on Florisil. Elution with ethyl acetate afforded a narrow purple band containing [$(\eta^5-C_5H_5)$ Fe(CO)₂]₂ and a long yellow-orange band which was collected and evaporated to dryness. The residue was dissolved in 60 mL of CHCl₁, and the resulting solution was treated with hexane

Inorganic Chemistry, Vol. 19, No. 12, 1980 3801

until it turned cloudy. Concentration on a rotary evaporator yielded 0.33 g (5.0%) of $[(\eta^5-C_5H_5)Fe(CO)_2SO_2]_2^7$ as orange crystals which were collected by filtration. Evaporation to dryness of the filtrate afforded 0.86 g (23% yield) of $(\eta^5-C_5H_5)Fe(CO)_2[S(O)_2OCH_3]$.

E. By Reaction of $K[(\eta^5-C_5H_5)Fe(CO)_2SO_2]\cdot 0.5SO_2$ with R_3OPF_6 ($R = CH_3$). To 3.88 g (12.4 mmol) of $K[(\eta^5-C_5H_5)Fe(CO)_2SO_2]\cdot 0.5SO_2$ were added 2.00 g (14.1 mmol) of $(CH_3)_3OPF_6$, 125 mL of CH_2Cl_2 , and 5 mL of nitromethane, and the resulting solution was kept at reflux for 3 h. The rest of the procedure was identical with that for the preceding synthesis and led to the isolation of a trace amount of $[(\eta^5-C_5H_5)Fe(CO)_2]_2$, 0.14 g (4.5% yield) of $[(\eta^5-C_5H_5)Fe(CO)_2]_2$, 7 and 0.105 g (2.0% yield) of $(\eta^5-C_5H_5)-Fe(CO)_2[S(O)_2OCH_3]$. A large amount of brown decomposition material remained at the top of the chromatography column.

F. By Reaction of $[(\eta^5 - C_5 H_5)Fe(CO)_2 SO_2]BF_4$ with ROH (R = CH₃). A 100-mL round-bottom flask equipped with a dry-ice condenser was charged with 1.40 g (7.20 mmol) of $AgBF_4$ and 2.17 g (7.20 mmol) of $(\eta^5-C_5H_5)Fe(CO)_2I$. Sulfur dioxide (30 mL of liquid) was then condensed onto the solids, and the resulting solution was maintained at reflux for 8 h, during which time it changed color from dark purple to bright red. The mixture was filtered at -78 °C to remove AgI, and 15 mL of CH₃OH was syringed into the filtrate. The resulting solution was warmed to 25 °C over 12 h as the SO₂ boiled off. Evaporation of the solvent yielded a red-brown oil which was extracted with CH₂Cl₂, and the extract was chromatographed on Florisil to give two bands. The leading orange band was eluted off and solvent was removed to afford 0.24 g of $(\eta^5-C_5H_5)Fe$ - $(CO)_2[S(O)_2OCH_3]$. The second band, dark red, was collected and rechromatographed by using 5:1 (v/v) CH_2Cl_2 -acetone for elution to give a long yellow band and an immobile orange band. The yellow band was collected and evaporated to dryness to give an additional 0.33 g of $(\eta^5 - C_5H_5)Fe(CO)_2[S(O)_2OCH_3]$. Total yield was 0.57 g (29%).

Preparation of Mn(CO)₃(**bpy)**[**S(O)**₂**OCH**₃]. A solution of 1.00 g (3.02 mmol) of Mn(CO)₃(**bpy)**Cl and 0.420 g (3.56 mmol) of Na[S(O)₂OCH₃] in 175 mL of CH₃OH was maintained at reflux for 4 h and then was filtered. The filtrate was evaporated to dryness, the orange residue was extracted with 500 mL of CHCl₃, and the extract was filtered. Concentration of the filtrate to 25 mL resulted in the precipitation of 1.05 g (90% yield) of air-stable Mn(CO)₃-(bpy)[S(O)₂OCH₃] as an orange powder: mp 166–168 °C; ¹H NMR ((CD)₃₂SO) τ 0.19–2.28 (m, C₁₀H₈N₂), 7.33 (s, CH₃); IR (KBr) 3070 (w), 2054 (s), 1940 (vs), 1465 (m), 1435 (m), 1310 (m), 1224 (w), 1198 (s), 1174 (w), 1156 (s), 642 (s), 620 (s), 526 (m) cm⁻¹.

Reactions of $(\eta^5-C_5H_5)$ Fe(CO)₂[S(O)₂OR] with R'OH (R, R' = CH₃, C₂H₅, (+)₅₈₉-2-C₈H₁₇) in the Presence of HBF₄. A solution of $(\eta^5-C_5H_5)$ Fe(CO)₂[S(O)₂OC₂H₃] (0.580 g, 2.02 mmol) and HBF₄ (1 mL of 1.92×10^{-2} M solution in CH₃OH) in 50 mL of CH₃OH was stirred for 10 h at 25 °C. Solvent was then removed, the residue was dissolved in 15 mL of CHCl₃, and the resulting solution was chromatographed on Florisil. Elution with 5:1 (v/v) CHCl₃-acetone removed a yellow band which on evaporation to dryness afforded 0.463 g (84% yield) of $(\eta^5-C_5H_5)$ Fe(CO)₂[S(O)₂OCH₃].

In a similar manner, $(\eta^5-C_5H_5)Fe(CO)_2[S(O)_2OCH_3]$ was converted to $(\eta^5-C_5H_5)Fe(CO)_2[S(O)_2OC_2H_5]$ in 83% yield by the action of C₂H₅OH and HBF₄.

A solution containing 0.252 g (1.00 mmol) of $(\eta^5-C_5H_5)$ Fe-(CO)₂[S(O)₂OCH₃], 4.11 g (31.5 mmol) of $(+)_{589}$ -2- C_8H_{17} OH ([α]²²⁵₅₈₉ = +8.75°, CHCl₃ solution), and 0.011 g (ca. 8 × 10⁻⁶ mmol) of 48% aqueous HBF₄ in 2 mL of CHCl₃ was stirred for 24 h at 25 °C. The volatiles were removed on a vacuum line at 25 °C (0.1 torr), the residue was dissolved in 10 mL of CHCl₃, and 20 mL of cyclohexane was added to produce a small amount of oil. The solution was decanted from the oil, and the decantate was evaporated to dryness to afford $(+)_{589}$ - $(\eta^5$ - C_5H_5)Fe(CO)₂[S(O)₂OC₃H₁₇-2] as a yellow powder: 0.321 g (83% yield); mp 118 °C dec; [α]^{22.5}₅₈₉ = +23.8° (CHCl₃); ¹H NMR (CDCl₃) τ 4.79 (s, C₅H₅), 5.27 (br, CH), 8.70–9.14 (m, (CH₂)₅, 2CH₃); IR (KBr) 3105 (m), 2950 (m), 2925 (m), 2870 (m), 2855 (m), 2070 (sh), 2065 (vs), 2010 (vs), 1470 (m), 1430 (m), 1415 (m), 1375 (m), 1212 (s), 1120 (m), 1088 (s), 1016 (m), 966 (m), 914 (s), 882 (sh), 868 (sh), 850 (m), 838 (sh), 726 (m), 696 (m), 634 (s), 600 (s), 560 (s), 555 (s), 516 (s), 475 (w) cm⁻¹.

After a solution of $(+)_{599}$ - $(\eta^5-C_5H_5)Fe(CO)_2[S(O)_2OC_8H_{17}-2]$ (1.98 g, 5.12 mmol) and HBF₄ (1 mL of 5.32 × 10⁻² M solution in CH₃OH) in 50 mL of CH₃OH had been stirred for 48 h at 25 °C, the solvent

⁽⁵⁴⁾ Adapted from a procedure communicated to C.A.P. by Professor C. R. Jablonski.

was removed by rotary evaporation. 2-Octanol was evaporated at 25 °C (0.1 torr) and collected in a trap at 0 °C: 0.193 g; $[\alpha]^{21}_{589}$ = +8.60° (CHCl₃). The resulting yellow residue was extracted with 10 mL of CHCl₃, the extract was filtered, and the filtrate was evaporated to dryness to yield 1.16 g (83%) of (η^{5} -C₅H₅)Fe(CO)₂-[S(O)₂OCH₃].

Reactions of $(\eta^5-C_5H_5)$ Fe(CO)₂[S(O)₂OR] with R'OH (R, R' = CH₃, C₂H₅, (+)₅₈₉-2-C₈H₁₇) at Reflux. A solution of 0.465 g (1.63 mmol) of $(\eta^5-C_5H_5)$ Fe(CO)₂[S(O)₂OC₂H₅] in 40 mL of CH₃OH was kept at reflux for 24 h and then was cooled to 25 °C and evaporated to dryness. The residue was extracted with CHCl₃, the extract was chromatographed, and a single yellow band was collected and evaporated to dryness to yield 0.233 g (52%) of $(\eta^5-C_5H_5)$ Fe-(CO)₂[S(O)₂OCH₃]. A large amount of brown decomposition material remained at the top of the column.

Under similar conditions, reaction of $(\eta^5-C_5H_5)Fe(CO)_2[S-(O)_2OCH_3]$ with C_2H_5OH afforded $(\eta^5-C_5H_5)Fe(CO)_2[S(O)_2OC_2H_5]$ in 65% yield, and reaction of $(+)_{589}$ - $(\eta^5-C_5H_5)Fe(CO)_2[S-(O)_2OC_8H_{17}-2]$ with CH₃OH gave $(\eta^5-C_5H_5)Fe(CO)_2[S(O)_2OCH_3]$ in 96% yield as well as 2-octanol (51% yield), $[\alpha]^{26}_{589} = +8.40^{\circ}$ (CHCl₃).

Hydrolysis of $(\eta^5 - C_5H_5)$ Fe(CO)₂[S(O)₂OR] (R = CH₃, C₂H₅, 1-C₃H₇, 2-C₃H₇). An aqueous solution (30 mL) of $(\eta^5 - C_5H_5)$ Fe-(CO)₂[S(O)₂OC₂H₅] (0.646 g, 2.26 mmol) was stirred for 16 h at 25 °C, and then volatile matter was removed at 25 °C (0.1 torr). The solid residue was dissolved in 200 mL of CH₃CN, the resulting solution was filtered, and the filtrate was concentrated to afford a yellow, air-stable precipitate identified as $(\eta^5 - C_5H_5)$ Fe(CO)₂[S(O)₂OH]: 0.546 g (94% yield); mp 104 °C; ¹H NMR ((CD₃)₂SO) τ -1.16 (s, br, OH), 4.70 (s, C₅H₅); IR (KBr) 3022 (m), 2940 (w, br), 2510 (w, br), 2062 (vs), 2018 (vs), 1434 (m), 1423 (m), 1275 (m, br), 1184 (s), 1084 (m), 1066 (sh), 1038 (s), 1005 (sh), 859 (s), 839 (w), 811 (s), 610 (sh), 601 (sh), 588 (s), 567 (s), 548 (s), 487 (m), 466 (m) cm⁻¹. Anal. Calcd for C₇H₆FeO₅S: C, 32.58; H, 2.34. Found: C, 32.79; H, 2.51.

This product was also obtained, in comparable yields, by hydrolysis of other alkyl sulfito complexes $(\eta^5-C_5H_5)Fe(CO)_2[S(O)_2OR]$ (R = CH₃, 1-C₃H₇, 2-C₃H₇) under similar conditions.

The deuterium analogue of the above, $(\eta^5-C_5H_5)Fe(CO)_2[S-(O)_2OD]$, was prepared similarly by reaction of $(\eta^5-C_5H_5)Fe(CO)_2[S(O)_2OCH_3]$ with D₂O: IR (KBr, >2000 cm⁻¹ only) 3022 (m), 2510 (w, br), 2230 (w, br), 2062 (vs), 2018 (vs) cm⁻¹.

Reaction of $(\eta^5 \cdot C_3 H_5)$ Fe(CO) $[S(O)_2OH]$ with NaOH. To a solution of 0.396 g (1.43 mmol) of $(\eta^5 \cdot C_3 H_5)$ Fe(CO) $_2[S(O)_2OH]$ in 10 mL of H₂O was added dropwise with stirring at 25 °C (14 mL of 0.101 M NaOH. Volatile matter was removed at 25 °C (0.1 torr), the residue was extracted with 10 mL of CH₃CN, and the resulting suspension was filtered to collect 0.390 g (97%) of yellow, air-stable Na[$(\eta^5 \cdot C_3 H_5)$ Fe(CO) $_2$ SO₃]: ¹H NMR (D₂O/(CD₃) $_2$ CO) τ 4.95 (s, C₃H₅); IR (KBr) (prominent absorptions) 2065 (sh), 2050 (vs), 1994 (vs), 1129 (sh), 1107 (sh), 1084 (s), 1072 (s), 1035 (sh), 984 (s), 974 (sh) cm⁻¹; Λ_m (CH₃OH) 69.7 Ω^{-1} cm² mol⁻¹.

Titration of 10 mL of a solution containing 0.0331 g of (η^5 -C₅H₅)Fe(CO)₂[S(O)₂OH] in 25 mL of H₂O to a pH of 7.00 required 1.030 mL of 0.4492 M NaOH (5.14×10^{-2} mmol). Molecular weight for C₇H₆FeO₅S: calcd, 258; found, 260.

Reactions of $(\eta^5 \cdot C_5H_5)Fe(CO)_2[S(O)_2OH]$ with ROH (R = CH₃, C₂H₅, (+)₅₈₉-2-C₈H₁₇). A solution of $(\eta^5 \cdot C_5H_5)Fe(CO)_2[S(O)_2OH]$ (0.213 g, 0.827 mmol) in 30 mL of CH₃OH was stirred for 24 h at 25 °C. Volatile matter was then removed, the solid residue was dissolved in CHCl₃, and the resulting solution was filtered. The filtrate was evaporated to dryness to yield 0.134 g (60%) of $(\eta^5 \cdot C_5H_5)Fe(CO)_2[S(O)_2OCH_3]$.

By an analogous procedure, $(\eta^5-C_5H_5)Fe(CO)_2[S(O)_2OC_2H_5]$ was isolated in 95% yield from the reaction of $(\eta^5-C_5H_5)Fe(CO)_2[S-(O)_2OH]$ with C₂H₅OH.

An acetonitrile solution (25 mL) of $(\eta^5 \cdot \text{C}_5\text{H}_5)\text{Fe}(\text{CO})_2[\text{S}(\text{O})_2\text{OH}]$ (0.651 g, 2.52 mmol), 48% aqueous HBF₄ (0.040 g, ca. 4 × 10⁻² mmol), and (+)₅₈₉-2-C₈H₁₇OH (4.11 g, 31.6 mmol) was stirred for 48 h at 25 °C. Removal of the volatiles, dissolution of the residue in CHCl₃, and chromatography on Florisil led to the isolation of 0.787 g (81% yield) of (+)₅₈₉-($\eta^5 \cdot \text{C}_5\text{H}_5$)Fe(CO)₂[S(O)₂OC₈H₁₇-2]. Treatment of this complex in 50 mL of CH₃OH with 1 mL of 1.92 × 10⁻² M HBF₄ in CH₃OH followed by rotary evaporation resulted in the isolation of 0.123 g of (+)₅₈₉-2-C₈H₁₇OH, [α]²⁸₅₈₉ = +8.20 (CHCl₃). Reactions of $(\eta^5-C_3H_5)Fe(CO)_2[S(O)_2OR]$ with R_2NH ($R = CH_3$, C_2H_3). When 20 mL of $(CH_3)_2NH$ was added to 0.300 g (1.10 mmol) of $(\eta^5-C_5H_5)Fe(CO)_2[S(O)_2OCH_3]$ at 0 °C, the resulting solution darkened within 2 min and a yellow solid precipitated. The mixture was stirred for 1.5 h, excess amine was removed in a stream of N_2 , and the yellow-brown solid was extracted with 10 mL of CHCl₃. The extract was filtered, and the filtrate was treated with 30 mL of cyclohexane. Concentration of the resulting solution to ca. 30 mL afforded (CH₃)_2NH₂[($\eta^5-C_5H_5$)Fe(CO)_2SO₃] as a yellow, air-stable solid: 0.284 g (85% yield); ¹H NMR (CDCl₃) τ 0.92 (br, NH₂), 5.00 (s, C_5H_5), 7.43 (br, 2CH₃); IR (KBr) (prominent absorptions) 2040 (vs), 1980 (vs), 1434 (m), 1430 (m), 1110 (s), 1060 (s), 960 (s), 848 (m), 628 (s), 609 (s), 572 (s), 554 (s), 506 (s) cm⁻¹.

 $(CH_3)_2NH_2[(\eta^5-C_5H_5)Fe(CO)_2SO_3]$ was converted to Na $[(\eta^5-C_5H_5)Fe(CO)_2SO_3]$ on treatment with an equimolar amount of NaB $(C_6H_5)_4$ in CHCl₃ for 24 h at 25 °C. The insoluble product was filtered off and washed thoroughly with CHCl₃ and acetone (yield 74%).

In a similar fashion, $(C_2H_5)_2NH_2[(\eta^5-C_5H_5)Fe(CO)_2SO_3]$ was synthesized in 67% yield as a yellow, air-stable solid from $(\eta^5-C_5H_5)Fe(CO)_2[S(O)_2OC_2H_3]$ and $(C_2H_5)_2NH$: ¹H NMR (CDCl₃) τ 1.88 (br, NH₂), 4.96 (s, C₅H₅), 7.04 (br, CH₂), 8.62 (br, CH₃); IR (KBr) (prominent absorptions) 2030 (vs), 1990 (vs), 1960 (sh), 1432 (m), 1428 (m), 1170 (sh), 1110 (s), 1080 (s), 1055 (sh), 1045 (s), 962 (s), 640 (s), 612 (s), 598 (m), 578 (s), 568 (s), 502 (s), 485

Metathetical reaction between equimolar amounts of $(C_2H_5)_2NH_2[(\eta^5-C_5H_5)Fe(CO)_2SO_3]$ and $NaB(C_6H_5)_4$ in 120:1 (v/v) CHCl₃-acetone for 16 h at 25 °C afforded the precipitate Na- $[(\eta^5-C_5H_5)Fe(CO)_2SO_3]$, which was washed thoroughly with CH₃CN (yield 82%).

Preparation of $(\eta^5 - C_5 H_5)$ Fe(CO)₂[S(O)₂N(CH₃)₂]. A solution of Na[$(\eta^3$ -C₅H₅)Fe(CO)₂], prepared from 2.66 g (7.51 mmol) of $[(\eta^5-C_5H_5)Fe(CO)_2]_2$ and excess 1% sodium amalgam in 200 mL of THF, was treated dropwise with 1.6 mL (15 mmol) of $ClS(O)_2N$ - $(CH_3)_2$ in 20 mL of THF. The resulting red solution was stirred for 14 h at 25 °C, the volatiles were removed at 25 °C (0.1 torr), the purple residue was extracted with 250 mL of CHCl₃, and the extract was filtered. The filtrate was concentrated to 40 mL and chromatographed on Florisil by eluting with CHCl₃. The first band, purple, afforded 1.65 g (62% yield) of $[(\eta^5-C_5H_5)Fe(CO)_2]_2$, whereas the second band, bright red, gave 0.152 g (5.0% yield) of $(\eta^5-C_5H_5)$ Fe- $(CO)_2Cl$. Then removal of a narrow yellow band with 3:1 (v/v) CHCl₃-acetone and evaporation of the solvent yielded 0.075 g (1.8%) of the title compound as a yellow, air-stable solid: ¹H NMR (CDCl₃) τ 4.82 (s, C₅H₅), 7.28 (s, 2CH₃); IR (Nujol) 3095 (m), 2045 (vs), 2002 (sh), 1985 (vs), 1220 (s), 1095 (w), 1075 (sh), 1064 (s), 1025 (w), 1008 (sh), 933 (m), 900 (w), 870 (m), 855 (sh), 655 (s), 612 (s), 555 (s), 498 (m), 460 (m) cm^{-1}

Reactions of $(\eta^5 \cdot C_5H_5)$ **Fe**(CO)₂[S(O)₂OR] (R = CH₃, C₂H₅) with Acids. A. HCl. Gaseous HCl was slowly passed through a solution of 0.301 g (1.05 mmol) of $(\eta^5 \cdot C_5H_5)$ Fe(CO)₂[S(O)₂OC₂H₅] in 30 mL of THF for 10 min. This solution was then stirred for 2 h at 25 °C and concentrated to a red oil. The oil was dissolved in 10 mL of CHCl₃, the resulting solution was filtered, and to the filtrate was added 10 mL of cyclohexane. Slow rotary evaporation of this solution afforded red crystals, identified by infrared and ¹H NMR spectroscopy as $(\eta^5 \cdot C_5H_5)$ Fe(CO)₂Cl, 0.183 g (86% yield).

B. CF₃CO₂H. $(\tau^{5}$ -C₅H₅)Fe(CO)₂[S(O)₂OCH₃] was treated with a fivefold excess of CF₃CO₂H in an NMR tube, and the spectrum of the resulting solution was monitored. The color of the solution gradually changed from yellow to red, and after 7.5 h proton resonances were observed at τ 4.90 (C₅H₅, mainly of $(\tau^{5}$ -C₅H₅)Fe(CO)₂[OC-(O)CF₃]⁵⁵) and 6.46 (very weak, CH₃ of $(\tau^{5}$ -C₅H₅)Fe(CO)₂[S-(O)₂OCH₃]), as well as 5.13 (relative intensity 1) and 6.18 (relative intensity 3).

C. HBF₄. A solution of 0.200 g (0.742 mmol) of $(\eta^5-C_5H_5)$ Fe-(CO)₂[S(O)₂OCH₃] in 2.5 mL of CDCl₃ was treated with 0.1 mL (ca. 0.7 mmol) of HBF₄·(C₂H₅)₂O in an NMR tube. As the reaction progressed, the proton resonance at τ 4.55 (C₅H₅ of $(\eta^5-C_5H_5)$ Fe-(CO)₂[S(O)₂OCH₃]) slowly decreased in intensity and two new signals of equal height appeared at τ 4.67 and 4.73 and increased in intensity. After 75 min, the peak at τ 4.55 was barely detectable but the C₅H₅

(55) De Luca, N.; Wojcicki, A. J. Organomet. Chem. 1980, 193, 359.

Reactions of $(\eta^5 - C_5H_5)Fe(CO)_2[S(O)_2OR]$ (R = CH₃, C_2H_5) with $(C_2H_5)_3OPF_6$. A solution of 0.723 g (2.53 mmol) of $(\eta^5-C_5H_5)Fe$ - $(CO)_2[S(O)_2OC_2H_5]$ and 0.613 g (2.47 mmol) of $(C_2H_5)_3OPF_6$ in 35 mL of CHCl₃ was stirred for $\overline{6}$ h at 25 °C, during which time it changed color from yellow to brown. The volatiles were removed, the solid residue was extracted with 25 mL of CH₂Cl₂, and the extract was filtered. Addition of 25 mL of cyclohexane to the filtrate immediately induced the formation of yellow-brown, air-stable crystals. The volume of the solution was reduced to 30 mL, and the crystals were collected by filtration, 0.641 g (60% yield) of $[(\eta^5-C_5H_5)Fe (CO)_{2}[S(O)(OC_{2}H_{5})_{2}]]PF_{6}$ ¹H NMR $((CD_{3})_{2}CO) \tau 4.08$ (s, C₅H₅), 5.25-5.75 (m, $2CH_2$), 8.56 (t, J = 7 Hz, $2CH_3$); IR (hexachlorobutadiene) 3130 (m), 2960 (sh), 2925 (m), 2860 (m), 2085 (vs), 2050 (vs), 1420 (m) cm⁻¹; IR (Nujol) 1264 (m), 1224 (s), 1095 (w), 990 (s), 920 (s), 880 (s), 842-822 (s), 755 (m), 738 (m), 582 (m), 551 (s), 540 (sh) cm⁻¹; Λ_m (CH₃NO₂) 86.5 Ω^{-1} cm² mol⁻¹. Anal. Calcd for $C_{11}H_{15}F_6FeO_5PS$: C, 28.69; H, 3.29. Found: C, 29.09; H, 3.31. In a strictly analogous manner, reaction of $(\eta^5-C_5H_5)Fe(CO)_2[S-$

 $(O)_2OCH_3$ with $(C_2H_5)_3OPF_6$ gave $[(\eta^5-C_5H_5)Fe(CO)_2[S(O) (OC_2H_5)OCH_3]$]PF₆ as yellow, air-stable crystals in 59% yield: ¹H NMR (($(CD_3)_2CO$) τ 4.15 (s, C_5H_5), 5.2–5.7 (m, CH_2), 5.97 (s, OCH_3 , 8.57 (t, J = 7 Hz, CCH_3); IR (hexachlorobutadiene) 3095 (m), 2085 (vs), 2050 (vs) cm⁻¹; IR (Nujol) 1260 (w), 1228 (s), 1152 (w), 1102 (w), 988 (m), 920 (s), 880 (s), 840-820 (s), 770 (m), 602 (sh), 588 (s) cm⁻¹; Λ_m (CH₃NO₂) 89.6 Ω^{-1} cm² mol⁻¹

Reactions of $(\eta^5 - C_5 H_5)$ Fe(CO)(L)[S(O)₂CH₃] (L = CO, P(C₆H₅)₃) with $(C_2H_5)_3OPF_6$. Reaction between equimolar amounts of $(\eta^5 - \eta^5 - \eta^5)$ C_5H_5) Fe(CO)₂[S(O)₂CH₃] and (C₂H₅)₃OPF₆ was conducted analogously to the foregoing syntheses to afford $[(\eta^5-C_5H_5)Fe(CO)_2]$ S- $(O)(OC_2H_5)CH_3]$]PF₆ as a yellow solid in 75% yield: ¹H NMR $((CD_3)_2CO) \tau 4.33$ (br, C₅H₅), 5.66 (br, CH₂), 6.36 (br, SCH₃), 8.56 (br, CCH₃); IR (KBr) (prominent absorptions) 2077 (vs), 2040 (vs),

In a similar manner, $[(\eta^5-C_5H_5)Fe(CO)]P(C_6H_5)_3][S(O) (OC_2H_5)CH_3]$]PF₆ was prepared in 70% yield from $(\eta^5-C_5H_5)$ Fe-(CO)[P(C₆H₅)₃][S(O)₂CH₃] and (C₂H₅)₃OPF₆: ¹H NMR ((C- $D_3)_2CO$ τ 2.38 (m, 3C₆H₅), 4.76 (s, C₅H₅), 6.00 (br, CH₂), 6.55 (br, SCH₃), 8.92 (br, CCH₃); IR (KBr) (prominent absorptions) 1990 (vs), 1435 (s), 1188 (s), 1100 (s), 1008 (m), 968 (s), 888 (s), 850 (s), 842 (s) cm⁻¹; Λ_m (CH₃NO₂) 80 Ω^{-1} cm² mol⁻¹. Anal. Calcd for C₂₇H₂₈F₆FeO₃P₂S: C, 48.81; H, 4.25. Found: C, 48.98; H, 4.45.

Acknowledgment. We are grateful to the National Science Foundation for support of this research through Grant CHE-7911882.

Registry No. $(\eta^{5}-C_{5}H_{5})Fe(CO)_{2}[S(O)_{2}OCH_{3}], 75111-95-4;$ $(\eta^5-C_5H_5)Fe(CO)_2[S(O)_2OC_2H_3], 75111-96-5; (\eta^5-C_5H_5)Fe(CO)_2-[S(O)_2OC_3H_7-1], 75111-97-6; (\eta^5-C_5H_5)Fe(CO)_2[S(O)_2OC_3H_7-2], 75111-98-7; (+)_{589}-(\eta^5-C_5H_5)Fe(CO)_2[S(O)_2OC_3H_17-2], 75172-30-4; (+)_{580}-(\eta^5-C_5H_5)Fe(CO)_2[S(O)_2OC_3H_17-2], 75172-30-4; (+)_{580}-(\eta^5-C_5H_5)Fe(CO)_2[S(O)_2OC_3H_5)-(\eta^5-C_5H_5)Fe(CO)_2[S(O)_2OC_3H_5)-(\eta^5-C_5H_5)Fe(CO)_2[S(O)_3D_5)-(\eta^5-C_5H_5)Fe(CO)_2[S(O)_3D_5)-(\eta^5-C_5H_5)Fe(CO)_2[S(O)_3D_5)-(\eta^5-C_5H_5)Fe(CO)_2[S(O)_3D_5)-(\eta^5-C_5H_5)-(\eta^5-C_5H_5)Fe(CO)_2[S(O)_3D_5)-(\eta^5-C_5H_5)-(\eta^5-C_5H_5)-(\eta^5-C_5H_5)-(\eta^5-C_5H_5)-(\eta^5-C_5H_5)-(\eta^5-C_5H_5)-(\eta^5-C_5H_5)-(\eta^5-C_5H_5)-(\eta^5-C_5H_5)-(\eta^5-C_5H_5)-(\eta^5-C_5H_5)-(\eta^5-C$ $Mn(CO)_3(bpy)[S(O)_2OCH_3], 75111-99-8; (\eta^5-C_5H_5)Fe(CO)_2[S (O)_2OH]$, 69526-44-9; $(\eta^5-C_5H_5)Fe(CO)_2[S(O)_2OD]$, 75112-00-4; Na[$(\eta^5-C_5H_5)$ Fe(CO)₂SO₃], 69363-96-8; $(\eta^5-C_5H_5)$ Fe(CO)₂[S-(O)₂N(CH₃)₂], 75112-01-5; [$(\eta^5-C_5H_5)$ Fe(CO)₂[S(O)(OC₂H₅)-OCH₃]]PF₆, 75112-03-7; [$(\eta^5-C_5H_5)$ Fe(CO)₂[S(O)(OC₂H₅)-DCH₃]]PF₆, 75112-03-7; [$(\eta^5-C_5H_5)$ Fe(CO)₂[S(O)(OC₂H₅)-DCH₃]]PF₆, 75112-03-7; [$(\eta^5-C_5H_5)$ Fe(CO)₂[S(O)(OC₂H₅)-DCH₃]]PF₆, 75112-03-7; [$(\eta^5-C_5H_5)$ Fe(CO)₂[S(O)(OC₂H₅)-DCH₃]]PF₆, 75112-03-7; [$(\eta^5-C_5H_5)$ Fe(CO)₂[S(O)(OC₂H₅)-[S(O)(OC₂H₅)-COH₃]]PF₆, 75112-03-7; [$(\eta^5-C_5H_5)$ Fe(CO)₂[S(O)(OC₂H₅)-[S(O)(OC 75112-30-0; [(7⁵-C₅H₅)Fe(CO)₂[Š(O)(OC₂H₅)CH₃]]PF₆, 75112-32-2; $[(\eta^{5}-C_{5}H_{5})Fe(CO)[P(C_{6}H_{5})_{3}][S(O)(OC_{2}H_{5})CH_{3}]]PF_{6}, 75112-34-4;$ $[(\eta^{5}-C_{5}H_{5})Fe(CO)_{2}SO_{2}]_{2}$, 58657-88-8; $(CH_{3})_{2}NH_{2}[(\eta^{5}-C_{5}H_{5})Fe (CO)_2SO_3$], 75112-35-5; $(C_2H_5)_2NH_2[(\eta^5-C_5H_5)Fe(CO)_2SO_3]$, 75112-36-6; $(\eta^{5}-C_{5}H_{5})Fe(CO)[P(C_{6}H_{5})_{3}][S(O)_{2}CH_{3}], 31811-87-7;$ $[(\eta^{5}-C_{5}H_{5})Fe(CO)_{2}]_{2}, 12154-95-9; K[(\eta^{5}-C_{5}H_{5})Fe(CO)_{2}SO_{2}], 65669-26-3; (\eta^{5}-C_{5}H_{5})Fe(CO)_{2}I, 12078-28-3; Mn(CO)_{3}(bpy)Cl, 14881-43-7; (\eta^{5}-C_{5}H_{5})Fe(CO)_{2}Cl, 12107-04-9; 1-C_{3}H_{7}OH, 71-23-8;$ 2-C3H7OH, 67-63-0; C2H5OH, 64-17-5; (CH3)3OPF6, 12116-05-1; CH₃OH, 67-56-1; (+)₅₈₉-2-C₈H₁₇OH, 6169-06-8; (C₂H₅)₃OPF₆, 17950-40-2; $[(\eta^5-C_5H_5)Fe(CO)_2H_2O]BF_4$, 62077-08-1; ClS(O)₂N-(CH₃)₂, 13360-57-1; CH₃OSO₂F, 421-20-5.

> Contribution from the McPherson Chemical Laboratory, The Ohio State University, Columbus, Ohio 43210

Cationic Cyclopentadienylchromium–Nitrosyl Complexes: Synthesis and Reactions¹

FRANCIS J. REGINA and ANDREW WOJCICKI*

Received May 8, 1980

}

Reaction of η^5 -C₅H₅Cr(NO)₂Cl with AgPF₆ in CH₃CN or of η^5 -C₅H₅Cr(NO)₂CH₃ with HPF₆·(C₂H₅)₂O, also in CH₃CN, affords $[\eta^5-C_5H_5Cr(NO)_2(CH_3CN)]PF_6$ in high yield. However, when the latter reaction takes place in ether, the allords $[\eta^{3}-C_{5}H_{5}Cr(NO)_{2}(CH_{3}CR)]rr_{5}$ in high yield. However, when the latter reaction taxes place in other, the organochromium product is $\eta^{5}-C_{5}H_{5}Cr(NO)_{2}FPF_{5}$. The complexes $[\eta^{5}-C_{5}H_{5}Cr(NO)_{2}(CH_{3}CN)]PF_{6}$ and $\eta^{5}-C_{5}H_{5}Cr(NO)_{2}FPF_{5}$ yield a series of cationic cyclopentadienylchromium dinitrosyls, $[\eta^{5}-C_{5}H_{5}Cr(NO)_{2}L]PF_{6}$, when treated with L (L = an aromatic amine, pyridine, and organic cyanide or isocyanide) in CH₃NO₂ at 25 °C. Treatment of $[\eta^{5}-L_{5}H_{5}Cr(NO)_{2}L]PF_{6}$ and $\eta^{5}-L_{5}H_{5}Cr(NO)_{2}L]PF_{6}$. $C_{3}H_{5}Cr(NO)_{2}(CH_{3}CN)]PF_{6}$ with 2,2'-bipyridine and with 1,10-phenanthroline (L-L) in CH₃NO₂ at reflux affords 17-electron complexes, $[\eta^5-C_5H_5Cr(NO)(L-L)]PF_6$. The isocyanide complex $[\eta^5-C_5H_5Cr(NO)_2(CH_3NC)]PF_6$ reacts with NaOR (R = CH₃, C₂H₅) to give the relatively unstable $\eta^5-C_5H_5Cr(NO)_2[C(OR)NCH_3]$ complexes, which on protonation with $HPF_{6}(C_{2}H_{5})_{2}O$ yield the corresponding carbene complexes $\{\eta^{5}-C_{5}H_{5}Cr(NO)_{2}[C(OR)NHCH_{3}]\}PF_{6}$. In a similar reaction, $[\eta^2-C_5H_5Cr(NO)_2(CH_3NC)]$ PF₆ was converted by action of KOH to the carbamoyl complex $\eta^5-C_5H_5Cr(NO)_2[C(O)NHCH_1]$, which on treatment with HPF₆·(C₃H₅)₂O furnished known [η^5 -C₃H₃Cr(NO)₂(CO)]PF₆. The characterization of all new complexes is described.

Introduction

The paucity of well-characterized cationic complexes $[\eta^5 - C_5 H_5 Cr(NO)_2 L] X$ (L = neutral monodentate ligand, X = uninegative ion)^{2,3} presents a striking contrast with the abundance of their isoelectronic analogues, $[\eta^5-C_5H_5Fe-$ (CO)₂L]X.^{4,5} This is further surprising in view of the existence of corresponding molybdenum and tungsten complexes, $[\eta^5 - C_5 H_5 M(NO)_2 L] X (M = Mo, W)$, for a variety of ligands L.⁶ To fill this void we set out to develop general synthetic routes to $[\eta^5 - C_5 H_5 Cr(NO)_2 L]X$. Reported here are our results

- Reger, D. L.; Coleman, C. J. Organomet. Chem. 1977, 131, 153 and (5) references cited therein.
- Stewart, R. P., Jr.; Moore, G. T. Inorg. Chem. 1975, 14, 2699.

⁽¹⁾ Based on the thesis of F.J.R. submitted in partial fulfillment of the M.S. degree, The Ohio State University, 1980.

Fischer, E. O.; Kuzel, P. Z. Anorg. Allg. Chem. 1962, 317, 226. Herberhold, M.; Smith, R. D. Angew. Chem., Int. Ed. Engl. 1979, 18, (3) 631.

Abel, E. W.; Tyfield, S. P. Adv. Organomet. Chem. 1970, 8, 117 and (4) references cited therein.