

the atmosphere, it was observed that this, in fact, occurs.

It is concluded that in $Y_2O_3 \cdot WO_3$, the oxygen content is variable. The magnitude of this variation is too small to have any significance with respect to the phase dia gram.

The Ternary Composition Diagram $W-Y-O$.—The data given above allow one to construct the ternary composition diagram of the system W-Y-0, Fig. 3. From this it is evident that no phases, other than the five reported, form from the elements tungsten, yttrium, and oxygen in the temperature range 1100- 1400" at 1 atmosphere total pressure. Excluded from this conclusion are compositions in the range WO_{3} -WOz-phase I, which were not investigated.

Properties of Tungsten-Yttrium Oxides.—Properties of the several tungsten-yttrium oxides are summarized

Fig. 4.-Spectral energy emission characteristics of $Y_2O_3 \cdot WO_3$ and CaWOa. Mode of excitation: 2537 **A.** ultraviolet light from a filtered low pressure Hg discharge. Detector: DuMont 6292 photomultiplier tube.

TABLE IV SOME PROPERTIES OF NEW PHASES

				Weighted
				mean
			Density,	density of
Phase	Melting point	Color	g /cc.	$WOs-Y_2Os$
1	$1495 \pm 5^{\circ}$, congruent	White	4.85	6.64
$_{\rm II}$	$1700 \pm 20^{\circ}$, incongruent	White	6.63	6.11
III	$>2200^\circ$, congruent	White	6.08	5.78
IV	$>2200^\circ$, congruent	White	5.95	5.70
v	$>2200^\circ$, congruent. undergoes phase change	White	6.00	5.57

in Table IV. It is interesting to note that whereas the normal tungstate $(Y_2O_3.3WO_3)$ has a much lower density than the weighted mean density of the constituent oxides, all the new phases have higher densities. $Y_2O_3 \cdot WO_3$ is a new photoluminescent material. It emits a bright blue-white light when excited with 2540 **8.** ultraviolet light. Its emission spectrum is quite similar to that of the well known phosphor, $CaWO₄$, Fig. 4. More details on the luminescent properties of $Y_2O_3 \cdot WO_3$ will be published at a later date.

CONTRIBUTION No. 799 FROM THE CENTRAL RESEARCH DEPARTMENT, EXPERIMENTAL STATION, E. I. DU PONT DE NEMOURS AND COMPANY, WILMINGTON, DELAWARE

The Preparation of Difluoroamino Sulfur Pentafluoride

BY A. L. LOGOTHETIS, G. N. SAUSEN, AND R. J, SHOZDA

Received July 21, 1962

Difluoroamino sulfur pentafluoride (SF₆NF₂) has been synthesized by the ultraviolet irradiation of N₂F₄ and sulfur tetrafluoride or sulfur chloride pentafluoride, or by the thermal reaction of N_2F_4 with elemental sulfur. Similarly, trifluoromethyl difluoroamino sulfur tetrafluoride (CF_8 SF₄NF₂) has been prepared by ultraviolet irradiation of N₂F₄ and trifluoromethyl sulfur trifluoride.

fluorine, and nitrogen, *i.e.*, $S_4N_4F_4$, SN_2F_2 , $F_3 \cong N$, and there are no examples of compounds in the literature N=S-F, reported by Glemser and co-workers,¹⁻⁵ where sulfur is bonded directly to an NF₂ group.

In contrast to the many compounds containing sulfur, where the fluorine is exclusively bonded to the sulfur, 1) O. Glemser, H. Schröder, and H. Haereler, Z. anorg. allgem. Chem., **KODETLS** recently has suggested SP₅NP-CP₃ as the product of the fluorination of the product of the fluorination of methyl thiocyanate with elemental fluorine, although $Roberts⁶$ recently has suggested $SF₆NF-CF₃$ as the

⁽²⁾ H. Schrdder and *0.* **Glemser,** *ibid.,* **298, 78 (1950).**

^{(3) 0.} Glemser and H. **Schrdder,** *ibrd.,* **284, 97 (1956).**

^{(4) 0.} Glemser and H. Haereler, *\$bid.,* **287, 54 (1956).**

⁽⁵⁾ H. Rickert and *0.* **Glemser, Angew.** *Chew.,* **78, 585 (1960). (6)** H **L. Roberts,** *Quart Rev* **(London), 15, 55 (1961).**

the actual workers⁷ proposed the alternative structure $SF_6CF_2NF_2$. This lack of representation of such an interesting class of compounds has prompted us to investigate reactions of the recently reported $N_2F_4^s$ with sulfur and derivatives.

Difluoroamino sulfur pentafluoride $(SF₅NF₂)$ was prepared in small yields *(6-7%)* by heating equivalent amounts of N_2F_4 and elemental sulfur at 135° in a Hastelloy-lined pressure vessel, the major product of the reaction being sulfur tetrafluoride. Better yields $(30-35\%)$ of SF_5NF_2 were obtained when N₂F₄ and sulfur tetrafluoride⁹ or sulfur chloride pentafluoride¹⁰ were irradiated with a low-pressure mercury resonance lamp at room temperature in a quartz tube or, for preparative purposes, in a nickel container equipped with a calcium fluoride window.

fluoride window.
\n
$$
[SF_4 + N_2F_4 \xrightarrow{h\nu} SF_6NF_2 + \dots
$$
\n
$$
SF_6CI + N_2F_4 \xrightarrow{h\nu} SF_5NF_2 + Cl_2 + \dots
$$

The formation of SF_5NF_2 from SF_5C1 and N_2F_4 is assumed to involve the SF_5 and NF_2 radicals. Johnson and Colburn¹¹ have presented physical evidence for the presence of NF_2 radicals, and Roberts^{6,12} has shown that SF_5 and CI are intermediates in the reactions of $SF₅Cl$ with olefins and oxygen. The reaction of $SF₄$ and N_2F_4 could go either through SF_5 . by direct attack of a fluorine radical on SF4 followed by combination with \cdot NF₂ or through \cdot SF₄NF₂ formed from direct attack of \cdot NF₂ on SF₄ followed by combination with a fluorine radical. In both cases, fluorine radicals are necessary, and they are formed during the irradiation process. The facile formation of \cdot NF₂ from N₂F₄ has been utilized recently to produce $CINF₂¹³ via irradiation$ of chlorine and N_2F_4 , HNF_2^{14} *via* hydrogen abstraction by NF2 from thiophenol, N,N-difluoroamides *via* irradiation of α -diketones¹⁵ and N₂F₄, and N, N-difluoroamines from N_2F_4 and alkyl radicals produced from azoisobutyronitrile, **l5** azoisobu tane, I5 hexaphenylethane, ¹⁵ and alkyl iodides.¹⁶

Difluoroamino sulfur pentafluoride is a colorless gas stable to storage in a stainless steel cylinder at room temperature, and it slowly decomposes on heating. For example, after 4 hr. at 80°, only 47% SF₅NF₂ was recovered, the rest being SF_4 and NF_3 . When a pure sample in a quartz tube was irradiated with a lowpressure mercury lamp, reversal of the reaction occurred to give SF_5NF_2 (48%), SF_4 (11%), and N_2F_4 (6%), with

- *(8)* C. B. Colburn and **A.** Kennedy, *ibid.,* **80,** 5004 (1958).
- (9) (a) F. Brown and P. L. Robinson, *J. Chem. SOG.,* 3147 (1955); (b) C. W. Tullock, F. *S.* Fawcett, W. C. Smith, and D. D. Coffman, *J. Am. Chem. Soc.,* **82,** 539 (1960).
- (10) H. L. Roberts and N. H. Ray, *J. Chem. Soc.,* 605 (1960).
- (11) F. **A. Johnson** and *C.* B. Colburn, *J. Am. Chem.* Soc., **83,** ³⁰⁴³ (1961).
- (12) J. R. Case, N. H. Ray, and H. L. Roberts, *J. Chem.* Soc., 2066, 2070 (1961).
- (13) R. C. Petry, *J. Am. Chem. Scc.,* **82,** 2400 (1960).
- (14) J. P. Freeman, **A.** Kennedy, and C. €3. Colburn, *ibkd.,* **82,** 5304 (1960).
- (15) R. C. Petry and J. P. Freeman, *ibid.,* **83,** 3012 (1960).
- (16) J. W. Frazer, *J. Inorg. Nucl. Chem.*, **16**, 63 (1960).

the simultaneous formation of small amounts of SF_6 , NF_3 , SO_2F_2 , SOF_4 , and N_2O . The physical properties of SF5NF2 are listed in Table I.

The F19 n.m.r. spectrum showed a broad triplet centered at -7428 c.p.s. $(J_{N^{14}-F} \sim 120$ c.p.s.) assigned to the NF_2 group. The broad triplet structure, similar to the triplet in the F^{19} spectrum of NF_3^{17} (due to the quadrupolar relaxation of the N^{14} nucleus¹⁸), collapses to a singlet on cooling to -75° . The SF₅ group gives two sets of multiplets with a relative intensity ratio of $1:4$. Instead, however, of a simple quintuplet expected for an AX_4 type of spectrum, the single fluorine gives rise to nine distinguishable signals centered at -5534 c.p.s. The four fluorines give rise
to two difficultly resolved sextets centered at -5900 and -5756 c.p.s. as is expected for an AB4 type spectrum, with a chemical shift $\delta = 707$ c.p.s. and coupling constant $J = 144$ c.p.s. between the single apex and the four basal fluorines. It is concluded, therefore, that $SF₅NF₂$ exists in a tetragonal, bipyramid structure (Fig. 1) similar to the corresponding $R_f S F_5$ and $ROSF_5$ compounds.¹⁹

Trifluoromethyl difluoroaminosulfur tetrafluoride $(CF₃SF₄NF₂)$ was obtained in yields of $6-8\%$ by irradiation of CF_3SF_3 and N_2F_4 in a quartz tube with a lowpressure mercury lamp. Large amounts of SF_6NF_2 , SF_4 , CF_4 , and SF_6 also were obtained from this reaction. Trifluoromethyl difluoroaminosulfur tetrafluoride was
 $CF_3SF_3 + N_2F_4 \longrightarrow CF_3SF_4NF_2 + SF_3NF_2 + SF_4 + CF_4.$

$$
CF_3SF_3 + N_2F_4 \xrightarrow{\mu\nu} CF_3SF_4NF_2 + SF_5NF_2 + SF_4 + CF_4 \dots
$$

hv

separated by gas chromatography and identified by its mass and F^{19} n.m.r. spectra. The NF₂ peak appears as a broad triplet centered at -7645 c.p.s. $(J \sim 120)$ c.P.s.) because of the quadrupolar relaxation of the nitrogen, and becomes a singlet on cooling to -75° . The SF₄ group appears as an octet $(J_{\mathbf{F}-\mathbf{F}} = 20 \text{ c.p.s.})$ in a ratio of $1:2:4:9:9:4:2:1$ centered at -4822 c.p.s., the splitting being due to the two fluorines on the nitrogen and the three fluorines on the carbon, the four triplets being superimposed. The trifluoromethyl group appears as a quintet centered at 0 c.p.s. $(J_{F-F} = 22 \text{ c.p.s.})$ because of the splitting from the $SF₄$ grouping. It appears, therefore, that $CF_3SF_4NF_2$, like SF_5NF_2 , exists in a tetragonal, bipyramid structure, and that the $NF₂$ and $CF₃$ groups are situated at the two apices as shown in Fig. 2.

- (18) J. **A.** Pople, *Mol. Phys., 1,* 168 (1958); J. D. Roherts, *J. Am. Chem. SOG.,* **78,** 4495 (1956).
- (19) (a) N. Müller, P. C. Lauterbur, and G. F. Sratos, *J. Am. Chem. Soc.*, **79,** 1043 (1957); (b) C. J. Merrill, S. M. Williams, G. H. Cady, and D. F. Eggers, Jr., *Inorg. Chem.,* **1,** 215 (1962).

⁽⁷⁾ J. A. Attaway, R. H. Groth, and L. **A.** Bigelow, *J. Am. Chem. SOC.,* **81,** 3589 (1959).

⁽¹⁷⁾ E. L. Muetterties and W. D. Phillips, *J. Am. Chem.* Soc., **81,** 1086 (1959).

Experimental²⁰

Difluoroamino Sulfur Pentafluoride. (a) From Sulfur Tetrafluoride and N_2F_4 . In a 12-1. nickel tank equipped with a calcium fluoride window were placed 25 g. (0.25 mole) of SF4 and 26 g. (0.25 mole) of N_2F_4 , and the mixture was irradiated for 80 hr. The gaseous products were condensed in a cylinder cooled at -196° . A gas chromatographic analysis of the mixture followed by mass spectrometric analysis of the individual peaks showed the presence of mainly SF_5NF_2 ($\sim 30\%$), N₂F₄, NF₃, SF_6 , and SF_4 . The mixture of gases was passed through a 5% aqueous sodium hydroxide solution using a filter stick with sintered disk of stainless steel, and $SF₆NF₂$ of 95% purity was collected in a trap cooled at -65° . A pure sample was obtained by preparative gas chromatography. The infrared spectrum showed very strong bands centered at 10.58, 10.95, and 11.30 μ (doublet). The mass spectrum of SF_6NF_2 is given in Table II.

Anal. Calcd. for SF₇N: F, 74.30; mol. wt., 179. Found: F, 74.34; mol. wt., 180 (gas density).

(b) From Sulfur Chloride Pentafluoride and N_2F_4 . In a 12-1. nickel tank equipped with a calcium fluoride window were placed 35 g. (0.216 mole) of SF_6Cl^{10} and 14.0 g. (0.135 mole) of N_2F_4 , and the mixture was irradiated for 120 hr. The gaseous products were condensed in a cylinder cooled at -196° and analyzed by gas chromatography, which showed the presence of $SF_5NF_2 (\sim 34\%)$, $N_2F_4 (\sim 15\%)$, $Cl_2 (\sim 30\%)$, and SF_6Cl $(\sim8\%)$, identified by comparison of their retention times with those of authentic samples. The SF_6NF_2 was obtained in 95% purity by scrubbing the mixture of gases with a 5% aqueous sodium hydroxide solution as above and collecting the product in a trap cooled at -65° .

(c) From Sulfur and N_2F_4 . Into an 80-ml. Hastelloy-C lined shaker tube containing 3.2 g. (0.1 mole) of sulfur was condensed 10.4 \mathbf{g} . (0.1 mole) of N₂F₄, and the tube was sealed and heated at 110" for 1 hr., 120" for 1 hr., 130" for 1 hr., and 140' for 3 hr. The gaseous products were condensed in a cylinder cooled at

 -196 ° and analyzed by mass spectrometry and gas chromatography. Both analyses indicated the presence of a mixture of SF₄ (48%), N₂F₄ (30%), SOF₂ (6%), and SF₅NF₂ (6%).

Difluoroamino Trifluoromethyl Sulfur Tetrafluoride (CF3SF4- NF_2).—In a 3-1. flask were placed 8.2 g. (0.052 mole) of $CF_3SF_3^{21}$ and 5.0 g. (0.048 mole) of N_2F_4 , and the mixture was irradiated through a quartz tube well for 7 hr . The gaseous products were condensed in a cylinder cooled at -196° and gas chromatographic analysis followed by mass spectrometric analysis of the individual peaks showed the presence of $CF_8SF_4NF_2$ ($\sim8\%$), $(\sim8\%)$, and CF₃SF₃ ($\sim11\%$). The CF₃SF₄NF₂ was separated by preparative gas chromatography. The infrared spectrum showed strong absorption bands at 7.93, 8.6, 9.55, 10.65, 11.5, 12.5, and 14.0 μ . The mass spectrum of $CF_3SF_4NF_2$ is given in Table 111. $SF_6 (\sim 40\%)$, $N_2F_4 (\sim 9\%)$, $SF_4 (\sim 17\%)$, $SF_5NF_2 (\sim 4\%)$, SO_2

Anal. Calcd. for CF₉NS: mol. wt., 229. Found: mol. wt., 215 (gas density).

Acknowledgments.-We are indebted to Mr. Miller Netson for helpful discussions during the course of this **work,** and to the Physical and Analytical Division for running the gas chromatographs, infrared, n.m.r., and mass spectra.

(21) E. A. Tyczkowski and L. A. Bigelow, *J. Am. Chem.* **Soc.,** *76,* **3523 (1953).**

⁽²⁰⁾ The gas chromatographic analyses were run **on** a 12-ft. column containing **20%** Kel-F ester (trade name **for** ethyl ester of perhalo6ctanolc acid, Kel-F acid 8114, from Minnesota Mining and Manufacturing Co) **on** firebrick at 0' with a helium flow rate of 60 ml./min. The irradiations were carried out with a low-pressure mercury resonance lamp connected to a 60 ma., 6000-volt transformer emitting mostly at **2537 A.** Nuclear magnetic resonance spectra were obtained with *a* high-resolution nuclear magnetic resonance spectrometer and associated electromagnet, both manufactured by Varian Associates, operating at **56.4** Mc./sec. and approximately 14,000 gauss. Spectra were calibrated in terms of displacements in cycles per second (c.p.s.) from the F¹⁰ resonance of 1,2-difluoro-1,1,2,2-tetrachloroethane (Freon 112) Negative frequency displacements are **for** resonances at lower field than the reference.