The Inorganic Chemistry of Carbon Difluoride

Sir:

The organic chemistry of divalent carbon has received much attention and has been proportionately rewarding. We now wish to describe some inorganic reactions of CF_2 at moderate temperatures; to this purpose we have prepared a new class of CF_2 transfer reagents, the trifluoromethyl fluorophosphoranes.

The new compound $(CF_3)_3PF_2$ (b.p. 20°, m.p. -102° , infrared absorption at 1240, 1195, and 855 cm.⁻¹) is made by the action of SF_4^1 on $(CF_3)_3P^2$ at 25°. $(CF_3)_2$ - PF_3 (b.p. -5° , m.p. -74° , infrared absorption at 1240, 1195, 952, 890, and 790 cm.⁻¹) can be made by SbF_3 fluorination of $(CF_3)_2PCI_{3,3}$ or more directly by the vigorous attack of SF_4 on $(CF_3)_2PI^2$ below room temperature. CF_3PF_4 (b.p. -35° , m.p. -117° , infrared absorption at 1240, 1190, 1018, 990, 915, and 900 cm.⁻¹) is formed in the reaction of $CF_3PCl_4^4$ with SbF_3 .

The trifluoromethyl fluorophosphoranes are convenient sources of CF_2 . Elision of CF_2 occurs stepwise and reversibly

$$(CF_3)_3 PF_2 \rightleftharpoons (CF_3)_2 PF_3 + CF_2$$

 $(CF_3)_2 PF_2 \rightleftharpoons CF_3 PF_4 + CF_2$
 $CF_3 PF_4 \rightleftharpoons PF_5 + CF_2$

(

The reversibility is demonstrated by the reorganization of $(CF_3)_2PF_3$ (10% per day at 25°) to give $(CF_3)_3PF_2$ and CF_3PF_4 . CF_3PF_4 disproportionates (5% per month at 25°) to give $(CF_3)_3PF_2$, $(CF_3)_2PF_3$, and PF_5 , and the reaction of excess PF_5 with $(CF_3)_3PF_2$ (100°, 4 hr.) is a good synthesis method for CF_3PF_4 .

In the absence of other reagents the CF₂ disappears irreversibly by forming dimer (tetrafluoroethylene), trimer (hexafluorocyclopropane), and high polymer. Trimer is favored by slow decomposition ((CF₃)₃PF₂ at 120° for 24 hr. gave 10% (CF₂)₂, 80% (CF₂)₃, and 10% (CF₂)_x), while dimer is the major product when CF₂ is generated rapidly ((CF₃)₃PF₂ at 200° for 10 min. gave 80% (CF₂)₂, 10% (CF₂)₃, and 10% (CF₂)_x).

 $(CF_8)_8PF_2$ decomposes at 25° in the gas phase at 0.5 atm. at the rate of 0.5% per month and at the same rate in the pure liquid. At 100° in the gas phase, CF₃ groups are destroyed to the same extent (40% in 17 hr.) in experiments with 4 and 0.25 atm. of starting material. This pressure and phase independence argues for a monomolecular elision process which suggests that the CF₂ is a true intermediate.

When $(CF_3)_3PF_2$ is decomposed in the presence of

other reagents (120° for 24 hr. are convenient conditions) the CF₂ may be intercepted. For example with iodine, CF₂I₂ is formed in 30% yield in addition to $ICF_2CF_2I_5$ $ICF_2CF_2CF_2I_6$ and $(CF_2)_8$. The new compound CF₂I₂ (*Anal.* Calcd.: I, 83.55; mol. wt., 304. Found: I, 83.40; mol. wt. (gas density), 298) is a yellow liquid: m.p. -72° ; 0° vapor tension 14 mm. the ultraviolet absorption maximum is at 2980 Å. in the gas phase; infrared absorption of the gas is strong at 1120, 1070, and 745 cm.⁻¹. F¹⁹ magnetic resonance shows a single line, 100 p.p.m. downfield from CF₃-COOH. CF₂I₂ reacts with mercury at room temperature to give tetrafluoroethylene.

CF₂ generated at 100° adds to HCl to give HCF₂Cl, which is of interest because it is probably the reverse of the reaction whereby C₂F₄ is formed from the pyrolysis of HCF₂Cl above 650°.⁷ CF₂ generated in the presence of oxygen gives carbonyl fluoride, but hydrogen does not react with CF₂ at 100°. CF₂ is a reducing agent in its reaction with UF₆ or MoF₆, giving CF₄ and reduced metal fluorides.

The reaction with chlorine is complicated by a competing attack directly on $(CF_3)_3PF_2$. The products are CF_2Cl_2 (70%), CF_3Cl (20%), and $CFCl_3$ (10%). The elision of CF_2 accounts for the formation of CF_2Cl_2 and the direct cleavage of a C-P bond by chlorine gives rise to CF_3Cl . These events could account for the observed $CFCl_3$

$$(X = CF_{3} \text{ or } F)$$

$CF_3PX_4 \longrightarrow FPX_4 + CF_2$	elision of CF_2
$\mathrm{CF}_3\mathrm{PX}_4 + \mathrm{Cl}_2 \longrightarrow \mathrm{CF}_3\mathrm{Cl} + \mathrm{Cl}\mathrm{PX}_4$	C-P cleavage
$CF_2 + ClPX_4 \longrightarrow ClCF_2PX_4$	insertion of CF ₂
$CiCF_2PX_4 \longrightarrow FCC1 + FPX_4$	elision of FCC1
$FCC1 + C1_2 \longrightarrow FCC1_3$	

No reaction with CF_2 was observed when $(CF_3)_3PF_2$ was pyrolyzed at 120° in the presence of BF₃, CO, NF₃, N₂O, PF₃, CS₂, SO₂, or CF₃I. The CF₂ appeared as dimer, trimer, and high polymer and the reagents were recovered unchanged.

Our surmise that the CF_2 here described is a free molecule is supported by the constancy of reaction conditions for various reagents, the kinetics, and the nature of the products (especially CF_2I_2). We are seeking conclusive evidence by physical methods.

(5) D. D. Coffman, M. S. Raasch, G. W. Rigby, P. L. Barrick, and W. E. Hanford, J. Org. Chem., 14, 747 (1949).

(6) M. Hauptschein and A. V. Grosse, J. Am. Chem. Soc., 73, 2461 (1951).

(7) J. D. Park, A. F. Benning, F. B. Downing, J. F. Laucius, and R. C. McHarness, Ind. Eng. Chem., 39, 354 (1947).

EXPLOSIVES DEPARTMENT EXPERIMENTAL STATION WALTER MAHLER

E. I. DU PONT DE NEMOURS AND COMPANY

WILMINGTON, DELAWARE

⁽¹⁾ W. C. Smith, J. Am. Chem. Soc., 82, 6167 (1960).

⁽²⁾ F. W. Bennett, H. J. Emeléus, and R. N. Haszeldine, J. Chem. Soc., 1565 (1953).

⁽³⁾ H. J. Emeléus, R. N. Haszeldine, and R. C. Paul, ibid., 563 (1955).

⁽⁴⁾ W. Mahler and A. B. Burg, J. Am. Chem. Soc., 80, 6161 (1958).