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Shown in Figure 5 is a stereoscopic view of the unit-cell Hamilton and Ibers’O suggested as a criterion for existence of 
a hydrogen bond, it excludes the resulting C-H--0, N-He-0, packing. 
and O-H-.O angles of less than 126O, a value which is con- 
sidered to be unrealistically small. It can be seen in Figure 
4 that oxygens of the non-metal-bonding nitrate ion [containing 
N(33)] act as acceptor sites through H( l )  and H(6a) of the 
adeninium moiety and the H(a) atom of the water molecule. 
The existence of this weakly binding nitrate ion in the molecule 
may explain in part the rather unstable nature of the crystal 
to X irradiation. It is noted that the imidazole carbon atom 
C(8) is also involved in a short contact with one of the nitrate 
oxygen atoms. This type of weak interaction involving the 
C(8)-H group has previously been observed in a number of 
structures (see ref 43c, and references cited therein, and ref 
55). 
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The point groups of three-dimensional polyhedra with n vertices including those of importance as coordination polyhedra 
in ML, complexes are considered as subgroups of the fully symmetric permutation group P,, with n! elements. The terms 
in the cycle index of P, are first classified into those forbidden and those allowed for threedimensional symmetry operations. 
Subsets of the allowed cycle index terms of P,, can then be chosen in different ways to correspond to the permutations 
representing symmetry operations in different families of polyhedra with n vertices. Thus the point groups D3+ C,, and 
D, for the five-vertex figures trigonal bipyramid, square pyramid, and planar pentagon, respectively, can be obtained from 
the fully symmetric group Ps by deletion of the (4 + 5)-fold, the (3 + 5)-fold, and the (3 + 4)-fold rotation terms, respectively. 
For coordination numbers 6, 8, and 9, subgroups Q, of the fully symmetric group P,, can be found which span all of the 
symmetries of the chemically feasible polyhedra for these coordination numbers. Thus for coordination number 6 ,  the 
octahedral group Oh or P3[P2] is an effective Q6 since it spans the symmetries of all possible six-coordinate polyhedra except 
for the pentagonal pyramid, which is not feasible as a coordination polyhedron. Similarly, for coordination number 8, the 
wreath product group P4[P2] with 384 elements corresponding to the symmetries of the four-dimensional analogue of the 
octahedron is an effective Qs since it spans the symmetries of all of the chemically reasonable eight-coordinate polyhedra 
including the cube, square antiprism, and hexagonal bipyramid. For coordination number 9, the pair group P2[P3](*) with 
only 72 elements spans as well as the fully symmetric P9 group with 9! = 362 880 elements the symmetries of the chemically 
feasible nine-coordinate polyhedra. 

Introduction 
In 1969 I published a topological method for generating 

possible polyhedra for coordination numbers 4-9, inclusive.2 
This approach considered maximum symmetry polyhedra with 
numbers of vertices ( u ) ,  edges (e), and faces u> satisfying the 
relationships e + 2 = u + f (Euler’s relationship), 2e 1 3f, 3u 
I 2e, and 4 I u I 9 and avoiding polyhedra containing one 
or more pentagonal or higher polygonal faces. Among such 
polyhedra those corresponding to the various possible sp3d” 
hybrids were next examined. Such polyhedra with minimum 
flexibilities (number of possible different sp3dn hybrids), 
maximum symmetries, and maximum numbers of faces were 
found to be favored in actual ML, complexes. 

This topological approach for generating polyhedra is at- 
tractive since a small number of rather elementary principles 
and assumptions provides a basis for extracting from the large 
numbers of possible polyhedra3a4 those of chemical significance. 

(1) For part 8 of this series see R. B. King, Theor. Chim, Acta, 56, 269 
(1980). 

(2) R. B. King, J .  Am. Chem. Soc., 91, 7211 (1969). 
(3) B. GrBnbaum, “Convex Polytopes”, Interscience, New York, 1967. 
(4) P. J. Federico, J.  Comb. Theory, 7,  155 (1969). 

Furthermore, combination of this topological approach2 with 
rather elementary interligand electrostatic repulsion calcula- 
tions in ML, removes the need for some of the 
more difficultly justifiable assumptions of the topological 
treatment2 including particularly the assumptions of flexibility 
minimization and avoidance of faces with five or more edges. 
Nevertheless, the topological approach of my earlier paper,2 
despite possible improvements, has the following inherent 
limitations for generating chemically significant coordination 
polyhedra. (1) In the cases of less symmetrical coordination 
complexes the question of which of several relatively unsym- 
metrical idealized coordination polyhedra most closely rep- 
resents that found in an actual structure (such as that found 
by an X-ray diffraction study) may be ambiguous. (2) Ste- 

( 5 )  D. L. Kepert, Prog. Inorg. Chem., 25, 42 (1979). 
(6) D. L. Kepert, Prog. Inorg. Chem., 24, 179 (1978). 
(7) J. L. Hoard and J. V. Silverton, Inorg. Chem., 2, 235 (1963). 
(8) D. G. Blight and D. L. Kepert, Theor. Chim. Acta, 11, 51 (1968). 
(9) D. G. Blight and D. L. Kepert, Inorg. Chem., 11, 1556 (1972). 

(10) D. L. Kepert, J .  Chem. Soc., 4736 (1965). 
(1 1) R. V. Parish and P. G. Perkins, J .  Chem. SOC. A ,  345 (1967). 
(12) R. B. King, J.  Am. Chem. Soc., 92, 6455 (1970). 
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Table I. Cycle Indices Z (P,) for the Symmetric Permutation Groups up to P, 
n f t* cycle index 

2 2 2  
3 3 3  
4 5 5  
5 7 7  
6 11 9 
I 15 9 

8 22 12 

9 30 12 

2Z(P3=x1Z + x 2  
6Z(P,)=x13 + 3x,x, + 2r, 
24Z(P4) = x 1 4  + 6x,2xa + 8xlx, + 3xZ2 + 6x, 
12OZ(P,)=xl5 + 1 0 x l ~ ,  + 20x1’x, + 1 5 x , ~ , ~  + 30x1x, + 20xp3 + 24x, 
72OZ(P6)=xl6 + 1 5 ~ , ~ x ,  + 40x,%, + 45x1’x,’ + 90x,’x, + 120x1xp3 + 144x,x, + 15xZ3 + 9Oxp, + 40x,, + 120x6 
504OZ(P,)=xl7 + 21x15x, t 7Oxl4x, + 1 0 5 ~ , ~ x ~ ’  + 2IOxl3x, + 420x,’x,x, + 5 0 4 ~ , ~ x ,  t ~ O ~ X , X , ~  + 630xlx2x, + 

280x1x: + 840x1x6 + 210x2’x, + 504xp5 + 420x9, + 720x, 
40 320Z(P,) =xl’ + 28xI6x2 + l l2r I5x3 + 2lOxI4xd + 42Oxl4x, + l l 2 O ~ , ~ x p ,  + 1344xl3xX, + 420~ , ’x ,~  + 2520~,~x,x, + 

I l 2 O x l 2 x ~  + 336Ox,’x, + 1680.x,x~x3 + 4 0 3 2 r , x ~ ,  t 3360xlx,x,+ 5760x1x, + 1 0 5 ~ ~ ‘  + 1260x,’x, + 1120x ,~ ,~  + 
336Ox,x, + 2688x,x, + 1 2 6 0 ~ ~ ~  + 504Ox, 

362 880Z(P9) =x19  + 36xI7x2 + 168x16x, + 3 7 & ~ , ~ x ~ ’  + l56xl5x, t 252Oxl4xp3 + 3O24xl4x, + 1 2 6 0 ~ ~ ~ ~ ~ ~  + 
7560xl3tp, + 336Oxl3x,1 t 7560x,’x,?r, + 945x1x; t 1 0 0 8 0 ~ , % ~  + 18 144xI2xp5 + 15 120x12x,x, + 25 920x,’x, + 
11 ~ ~ O X , X , ~ X ,  + 100SOxlx,x,’ + 30240xlx,x, + 24 192x,x,x, + 11 3 4 0 ~ ~ ~ ~ ~  + 45 360x1x, + 252Oxz3x3 + 9072x,Zx, + 
15 120xZx3x4 + 25 920x2x, + 2 2 4 0 ~ ~ ’  + 20 160x,x6 + 18 144x,x5 + 40 320x, 

reochemical nonrigidity13-15 may obscure the real distinctions 
between some of the less symmetrical coordination polyhedra. 
Thus interchange of equivalent structures in stereochemically 
nonrigid systems involves breaking and making edges between 
various vertex pairs. The topology of stereochemically nonrigid 
systems thus is not invariant. The topological approach thus 
may overemphasize the importance of edges connecting pairs 
of L ligands in the coordination polyhedra of ML, complexes 
where, in general, except for three-membered ring chelates 
(e.g., metallacyclopropanes), there are no direct chemical 
bonds between the donor atoms of ligand pairs. 

This paper presents an alternative and complementary ap- 
proach to the generation of coordination polyhedra. This 
approach considers in a well-defined manner the symmetries 
rather than the topologies of the coordination polyhedra. Thus 
a search for possible polyhedra for an n-coordinate complex 
ML, starts with the symmetric group P, of n! permutations 
for the n ligands. Appropriate maximum symmetry subgroups 
of P, are then selected which can be isomorphic with three- 
dimensional point groups16 representing polyhedra with n 
vertices. These polyhedra are regarded as the fundamental 
polyhedra for coordination number n. They represent the most 
symmetrical possible polyhedra for n-coordinate complexes 
ML, provided that they can be formed by hybrids of the 
available M orbitals (generally sp3dn). Less symmetrical 
polyhedra may be formed by distortions of the fundamental 
polyhedra and therefore have symmetry point groups which 
are subgroups of those of the corresponding fundamental 
polyhedra. A fundamental polyhedron with n vertices together 
with possible lower symmetry polyhedra formed by its dis- 
tortion may be considered as a family of polyhedra for co- 
ordination number n .  The treatment discussed in this paper 
thus seeks to classify the possible polyhedra for coordination 
numbers 4-9 into a limited number of polyhedron families. 
Those families where the fundamental polyhedron (or a dis- 
tortion thereof retaining some characteristic symmetry) is 
realizable by a hybridization of the available M orbitals 
correspond remarkably closely to the polyhedra found in actual 
ML, coordination complexes. 
Permutation Groups and Cycle Indices 

For an ML, complex consider a 2 X n matrix 

where the top row represents vertex labels in the polyhedral 
skeleton and the bottom row represents ligand labels. The 

number p , ,  p2 ,  ..., p n  can be taken to run through the integers 
1,2, ..., n in some sequence. Such a matrix P, can represent 
a given configuration or isomer of an ML, complex; such 
configurations or isomers are frequently called permutational 
isomers.” For a given n there are n! possible different P, 
matrices. Now consider the matrix Po, where the bottom row 
p1,p2,  ..., pn has the integers in the natural order 1, 2, 3, ..., 
n (i.e., the bottom row of Po, is identical with the top row). 
This matrix Po, can be taken to represent the reference isomer. 

A group16J8 can be defined relating the P, matrices for a 
given n by considering permutation isomerizations. l9 First 
redefme the rows of P, so that the top row represents the ligand 
labels of the reference isomer Po,  and the bottom row rep- 
resents the ligand labels in any of the n! possible permutations 
of its ligands. These permutations form a group of order n! 
with the permutation leaving the reference isomer unchanged 
(i.e., that represented by Po, as so redefined) corresponding 
to the identity operation. This permutation group is called 
the symmetric group of degree n and is conventionally18 
represented as S,. However, in this paper the symbol P, rather 
than S, will be used to represent the symmetric group of degree 
n in order to avoid confusion with the symbols used for im- 
proper rotations.16 

Now consider the nature of the operations in a symmetric 
permutation group P,. These operations are permutations of 
labels which can be written as a product of cycles which op 
erate on mutually exclusive sets of labels, e.g., eq 1.  The cycle 

structure of a given permutation in the group P, can be rep 
resented by a sequence of indexed variables, Le., ~ 1 ~ 2 x 3  for 
the permutation in eq 1. A characteristic feature of the 
symmetric permutation groups P, for all n is that all permu- 
tations with the same cycle structure belong to the same 
conjugacy class.20 Furthermore, no two permutations with 
different cycle structures can belong to the same conjugacy 
class. Therefore, for the symmetric permutation group P, (but 
not necessarily for any of its subgroups) the cycle structures 
of permutations are sufficient to define their conjugacy classes. 
Furthermore, the number of conjugacy classes of the sym- 
metric group P, corresponds to the number of different par- 
titions of n where a partition of n is defined as a set of positive 
integers i l ,  iz ,  ..., i k  whose sumZo 

X i j  = n 
k 

j =  1 

(13) E. L. Muetterties, J .  Am. Chem. SOC., 91, 1636 (1969). 
(14) J. M. F. Gilles and J. Philippot, Int. J .  Quanrum Chem., 14,299 (1978). 
(15)  T. D. Bouman, C. D. Duncan, and C. Trindle, Inf .  J .  Quantum Chem., 

11, 399 (1977). 
(16) F. A. Cotton, “Chemical Applications of Group Theory”; Wiley, New 

York, 1971. 

(17) W. G. Klemperer, J .  Chem. Phys., 56, 5478 (1972). 
(18) F. J.  Budden, “The Fascination of Groups”, Cambridge University 

Press, London, 1972. 
(19) W. G. Klempcrer, J .  Am. Chem. SOC., 94, 6940 (1972). 
(20) C. D. H. Chisholm, “Group Theoretical Techniques in Quantum 

Chemistry”, Academic Press, New York, 1976, Chapter 6. 



Symmetries of Coordination Polyhedra 

More detailed indications of the conjugacy classes of the 
symmetric groups P, are given by their cycle indices.21.22 A 
cycle index Z(P,) for a permutation group P, is a polynomial 
of the form in eq 2 ,  where c = number of classes (partitions 

( 2 )  

of n), ai = number of elements of P, in class i, xi = dummy 
variable referring to cycles of length j ,  and cij = exponent 
indicating the number of cycles of length j in class i. These 
parameters in the cycle indices of the symmetric groups P, 
must satisfy the following relationships. (1) Each of the n! 
permutations of P, must be in some class (eq 3). (2) Each 

i=c 

i=l  
Z(  P,) = E aiXlc'lXZc'2. ..X"C'" 
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therefore order n ! / 2 .  However, A ,  (n I 5 )  has no normal 
subgroups. Therefore A ,  (n I 5 )  is simple and cannot be 
expressed as a direct product of cyclic subgroups. 
Permutations of Three-Dimensional Symmetry Point 
Groups 

In constructing coordination complexes ML, we are inter- 
ested in polyhedra in which the vertices representing the n 
ligands L can be placed on the surface of a sphere with the 
metal atom at the center of the sphere. In the case of less 
symmetrical ML, complexes with different M-L bond dis- 
tances this sphere may be distorted somewhat to an ellipsoid 
or an ovoid. However, such a distortion will not alter the 
topology of the sphere. In other words, the coordination 
polyhedron of any ML, complex must be inscribed inside a 
surface topologically homeomorphicZ5 to the sphere so that all 
of its vertices are located on the surface. 

The standard three-dimensional symmetry operationsI6 can 
now be applied to a polyhedron which has n vertices on a 
sphere or a surface homeomorphicZS to a sphere. These sym- 
metry operations will be represented by the following terms 
in the cycle index representing vertex permutations. (1) The 
identity operation E corresponds to the term xln and always 
has a coefficient of 1 since any group by definition has a unique 
identity element.16~18 This relates to the fact that under the 
identity operation all vertices remain fned. ( 2 )  The inversion 
i corresponds to a term bxZn/* ( b  is an integer coefficient) and 
is only possible for a polyhedron with an even number of 
vertices. No fixed points are possible since a vertex of the 
polyhedron cannot be located at the center of inversion. (3) 
A proper rotation C, can correspond to a term CX,"~', cxlxr(""-l)/r, 
or cx12x,("2)/' (c is a positive integer coefficient) depending 
upon whether 0, 1, or 2 vertices, respectively, are located on 
the proper rotation axis. Since a rotation axis can intersect 
a sphere at only two points, the exponent of x I  in this term 
cannot exceed 2.  (4) An improper rotation S,  where r is euen 
can correspond to a term d x j '  or ~ X ~ X ( " ~ ) / '  (d is a positive 
integer coefficient) depending upon whether there is a pair of 
vertices on the improper rotation axis. Only a single pair of 
vertices can be on the improper rotation axis because of the 
topology of the sphere. ( 5 )  An improper rotation S,  where 
r is odd can correspond to a term ex,Yx2; or ex2xiyxzrw (e is 
a positive integer coefficient) depending upon whether there 
is a pair of vertices on the odd improper rotation axis. The 
parameter y refers to the number of rotationally related groups 
of r points located in the reflection plane of the S,  improper 
rotation. Furthermore, ry + 2rz = n and 2 + ry + 2nv = n. 
The only case where y # 0 is encountered in this paper is the 
x3x6 term in cycle indices of nine-vertex systems (e.g., the 
4,4,4-tricapped trigonal prism2) representing an S3 operation. 
(6) A reflection plane u can correspond to a termfxlax2(n-u)/2 
v i s  a positive integer coefficient), where a is the number of 
vertices in the reflection plane. 

Inspection of the terms in the cycle indices given in Table 
I for the symmetric groups P, (n I 6)24 indicates that some 
of the terms (e.g., 40xl3x3 for P6) are of none of the above six 
types. These cycle index terms are thus forbidden terms for 
three-dimensional point groups. 

The forbidden terms of the cycle indices may be classified 
into the following four types. (1) xIaxp (a  > 2 ,  b 1 1, and 
r 1 3)  since no more than two vertices can be on a rotation 
axis C,. Thus 70xI4x3 is a forbidden term in Z(P,) (Table I) 
since four vertices (represented by x14) cannot be fmed points 
in a threefold rotation represented by x3 (i.e., four points 
cannot lie on a C3 axis). ( 2 )  xZaxP (a > 1, b 1 1, and r 1 
3) since an improper rotation axis (S,)  can only have zero or 

i = C  

i = l  
Eai = n! (3)  

of the n ligands must be in some cycle of each permutation 
in P, (counting, of course, "fixed points" of cycles of length 
1 represented by xlCl) (eq 4). The cycle indices Z(P,) for 4 

j = n  

j =  1 
Ejqj = n for 1 I i I c (4) 

I n I 9 are given in Table IZ4 since these cycle indices are 
important to the treatment in this paper. 

Several basic concepts and definitions of group theory16J8 
will now be reviewed since they are important to the subse- 
quent treatment in this paper. A subgroup of a group G is 
a subset H which is itself a group under the group opera- 
tion.l6?l8 The fact that H is a subgroup of G is written H C 
G. If IGI and lfl are the numbers of elements in G and H ,  
respectively, then the quotient lGl / lq (which must be an 
integer by Lagrange's theorem18) is the index of the subgroup 
H in the group G. If a and x are two elements of group G 
then x-lax will be equal to some element of the group, e.g., 
b. The elements a and b are then said to be conjugate.I6 A 
complete set of elements of a group which are conjugate to 
one another is called a class of the group. A normal subgroup 
N of a group G, written N -4 G, is a subgroup which consists 
only of entire conjugate classes of G.18,23 A normal chain of 
a group G is a sequence of normal subgroups C1 4 N,, d N,, 
Q N,, Q ... Q No, 4 G, where s is the number of normal 
subgroups (besides C1 and G) in the normal chain. If such 
a chain starts with the identity group C1 and leads to G and 
if all of the quotient groups18 N, , /C ,  = C,,, N,,/N,, = CO2, 
..., GIN = C,+ are cyclic, then G is a composite or soluble 
group. &herwise G is a simple group. A soluble group can 
be expressed as a direct product of the factor groups C,, X 

We can illustrate these group theoretical concepts with some 
properties of the symmetric permutation groups P, which will 
be used in the subsequent sections of this paper. The per- 
mutation group P4 has the normal chain C1 6 C, Q DZ Q A4 
4 P4 with the respective quotient groups C2/C, = C,, D2/Cz  
= C2, A4/D2 = C3, and P4/A4 = C2.I8 The permutation group 
P4 can thus be expressed as the direct product C2 X C, X C, 
X C,. The permutation group P4 is isomorphic to the full 
tetrahedral group Td whereas its normal subgroup A4 of index 
2 corresponds to the pure rotational subgroup T .  The only 
normal subgroup of the permutation group P, (n  2 5 )  of order 
n! is the corresponding alternating group A, of index 2 and 

c,, x ... x c,,,. 

(21) G. Pblya, Acta Math., 68, 145 (1937). 
(22) N.  G. De Bruin in "Applied Combinatorial Mathematics", E. F. 

Beckenbach, Ed., Wiley, New York, 1964, Chapter 5 .  
(23) J. K. G. Watson, Mol. Phys., 21, 577 (1971). 
(24) F. Harary and E. M. Palmer, "Graphical Enumeration", Academic 

Press, New York, 1973. 
(25) M. J. Mansfield, "Introduction to Topology", Van Nostrand, Princeton, 

N.J., 1963, Chapter 3. 
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two collinear vertices. Thus ~ I O X ~ ~ X ~  is a forbidden term in 
Z(P7) since the threefold improper rotation axis can only have 
zero or two collinear points. ( 3 )  xupxbq ( a  2 3 ,  b 2 3 ,  and a 
# b, 26, or b / 2 )  since the same rotation axis cannot be of 
different orders. Thus 420x3x4 is a forbidden term in Z(P,) 
since the same rotation axis cannot both be a threefold ( r e p  
resented by x 3 )  and a fourfold (represented by x4)  rotation 
axis at the same time. ( 4 )  xlex2bx; (a ,  b, and c # 0 and r 
2 3)  since the same axis cannot be both a proper (C,) and an 
improper (S,) rotation axis at the same time. Thus 630xIx2x4 
is a forbidden term in Z(P7) since the fourfold axis represented 
by x4 cannot simultaneously be a proper (represented by x i )  
and an improper (represented by x 2 )  axis. 

A term of the cycle index Z(P,J that is not a forbidden term 
in an allowed term (relative to realization in three-dimensional 
space). In Table I t represents the total number of terms in 
the cycle index Z(P,) and t* represents the number of allowed 
terms. As n rises, t* rises only slightly so that, for the cases 
of P, discussed in this paper ( 5  I n I 9), t* - n = 3 f 1. This 
indicates that as the number of vertices n of polyhedra is 
increased, the number of possible families of polyhedra of 
different symmetries does not rise drastically. 

The fact that cycle index terms of the types xiux: and x i x ;  
( a  > 2, b 1 3 ,  c > 1, and r 2 3 )  are forbidden in three-di- 
mensional point groups leads directly to the following concept 
of forbidden axes: rotation axes C, and S, when n/2  < r < 
n - 2 are forbidden for three-dimensional polyhedra with n 
vertices. Thus a polyhedron with seven vertices cannot have 
a fourfold C4 or S4 rotation axis. 

The following more specific features of the three-dimen- 
sional point groupslS are of interest. (1) All of the three-di- 
mensional point groups except for the icosahedral groups I and 

are isomorphic to direct products18 of single generator” 
cyclic groups C, X C, X ... X C,. ( 2 )  The symmetric groups 
P, (n  2 6) have one or more forbidden terms in their cycle 
indices (Le,, t - t* > 0). The groups P, (n 2 6) therefore 
cannot be isomorphic to three-dimensional point groups. Thus 
three-dimensional polyhedra with six or more vertices must 
have fewer than n! symmetry elements (Le., be of “lower 
symmetry” than P,). In practice such polyhedra with n ver- 
tices ( n  2 6) will be of much lower symmetry than P,. ( 3 )  
The symmetric group P5 has no forbidden terms in its cycle 
index. However, it cannot be isomorphic to the point group 
of a polyhedron with five vertices. In terms of graph theory26 
the group P5 is the automorphism group of the complete 
graph2628 with five vertices (designated as Ks). However, the 
complete graph Ks is nonplanar by Kuratowski’s theorem29 
and therefore cannot be realized as a three-dimensional 
polyhedron. (Actually K5 is the analogue of the tetrahedron 
in four dimensions.) Nevertheless, the symmetric group Ps 
is isomorphic except for realignments of the conjugacy classes 
to the icosahedral point group I h  permuting a minimum Of  12 
points. 

If n 2 5, a collection of n points with the permutation group 
P, (i.e., the automorphism g r 0 u p ~ 9  of the nonplanar complete 
graph K,) cannot be placed on the surface of the sphere. This 
collection of n points therefore must be distorted in order for 
it to fit on the surface of the sphere. In making this distortion 
of P, (n 2 5) some of the n! permutations of P, will be lost 
to give a smaller permutation group G isomorphic with a 
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realizable three-dimensional point group. Minimally all of the 
permutations of P, will be lost which correspond to forbidden 
terms in its cycle index. In addition, some of the permutations 
of P, which correspond to allowed terms in its cycle index may 
also be lost in order to retain all of the group properties of G. 
Thus in a crude sense three-dimensional space as represented 
as points on a surface of a sphere (topological genus zero31) 
is not fully symmetrical. Some distortion of an ensemble of 
n 2 5 points with the highly symmetrical P, automorphism 
groups is necessary for this ensemble to “fit” into three-di- 
mensional space. 

The concept of distortion can be given a more precise 
meaning which is useful for treatments such as those presented 
in this paper. Thus a process where symmetry elements are 
removed from a polyhedron with a point group G of order g 
or a graph with an automorphism group G of order g to give 
a new less symmetrical figure with a symmetry or automor- 
phism group H of order h ( h  < g) is called a distortion if H 
is a subgroup of G. By Lagrange’s theorem18 the quotient g / h  
is an integer k which can be called the index of the distortion. 
This paper discusses distortions of P, which remove the sym- 
metry elements corresponding to forbidden terms in the cycle 
index Z(P,). 

The essential features of the treatment in this paper for the 
polyhedral skeletons of the coordination complexes ML, can 
be summarized as follows. (1) The t* terms in the cycle index 
Z(P,) of the symmetric group of degree n are selected which 
are allowed terms for threedimensional symmetry operations. 
( 2 )  Sets of these allowed terms are selected in different ways 
to correspond to actual three-dimensional symmetry point 
groups GI, G2, ..., Gr so that Gi C G, for all i # j ,  1 I i, and 
j If,, where f, is the number of families of polyhedra for 
coordination number n. These point groups GI, GS, ..., G, will 
represent the fundamental polyhedra in their respective Tam- 
ilies 1 ,2 ,  ...,f,. These fundamental polyhedra are subject to 
distortion as defined above to form distorted polyhedra Pi’ with 
lower symmetry point groups G; where Gi’ C Gi. Whereas 
two fundamental polyhedra from different families of n vertex 
polyhedra cannot have the same point groups (Le., Gi # G,) 
and even Gi Gj and Gj Gi, distorted polyhedra from 
different families can have the same point group. (3) Only 
at this point in the treatment are constraints introduced to limit 
consideration to chemically feasible polyhedra for ML, com- 
plexes using available M orbitals. In this paper only s, p, and 
d orbitals are assumed to be available, thereby making 9 the 
maximum coordination number of M. In some cases distor- 
tions of the maximum symmetry polyhedra in a given family 
may be necessary to generate chemically feasible polyhedra. 
Thus for coordination number 8 the cube (point group Oh with 
48 symmetry elements) must be distorted to the dodecahedron 
(point group DU with 8 symmetry elements) before an 
eight-vertex polyhedron is obtained which can be found by 
using only metal s, p, and d orbitals. Such hybridization 
questions can be tested by standard methods of chemical group 
theory16 involving the transformation properties of the s, p, 
and d orbitals. The index of this oh - DU distortion is 4818 
= 6, and this distortion essentially involves removal of the 
threefold symmetry elements of oh in such a way that the 
resulting lower symmetry polyhedron can be formed by s, p, 
and d orbitals. Furthermore, a general rule that arises at this 
point in the treatment is the inability to construct in ML, 
complexes by using only M s, p, and d orbitals any coordination 
polyhedra with principal proper rotation axes sixfold and 
higher. Thus within the scope of this treatment polyhedra 
containing c6, C7, and rotation axes are chemically for- 
bidden even though they may be geometrically and topolog- 

(26) M. Behzad and G. Chartrand, “Introduction to the Theory of Graphs”, 
Allyn and Bacon, Boston, 1971. 

(27) R. J. Wilson, “Introduction to Graph Theory”, Oliver and Boyd, Ed- 
inburgh, 1972, p 16. 

(28) N. L. Biggs, “Algebraic Graph Theory”, Cambridge University Press, 
London,-1974. 

(29) K. Kuratowski, Fundum. Murh., 15, 271 (1930). 
(30) N. L. Biggs, “Finite Groups of Automorphism”, Cambridge University 

Press, London, 1971. 
(31) P. J. Giblin, “Graphs, Surfaces, and Homology”, Chapman and Hall, 

London, 1977, p 66. 
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Table 11. Cycle Index of P, and Its Relation to the Symmetry Point Groups of the Maximum Symmetry Five-Vertex Polyhedra 
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~ ~~~ 

cycle index term or corresponding point group symmetry operation 

24x 30x,x4 2 0 x q 3  polyhedron groupP, G I a  x I 5  lox 3~ , 2 0 ~  l i ~  , 1 5 ~  ,x12 

trigonal bipyramid Dh 12  E Oh + 30.4 2C3 3c, ’ 2s3 
square pyramid cw 8 E  20 V c, + 20d 2c, 
planar pentagon D, 10 E 5C,’ 2c5  + 2c,’ 

a For group P,, IC I = 120. 

Table 111. Cycle Index of P, and Its Relation to the Cycle Indices of Lower Symmetry Permutation Groups and the Maximum Symmetry 
Six-Vertex Polyhedra Point Groups 

cycle index terms permutation group 
or polyhedron IC1 x,6 x,4x2 x,3x, Xl2XZ* XIZX, x,x,x, XlX, x13 XTX, x3, X6 

(A) Permutation Groups (Cycle Index Coefficients x IG I Given) 
720 1 15 40 45 90 120 144 15 90  40 120 

48 1 3 0 9  6 0 0 7 6 8 8  
72 1 6 4 9  0 12 0 6 18 4 12 

(B) Maximum Symmetry Polyhedra (Corresponding Symmetry Operations Given) 
octahedron (Oh = P 3 [ P l ] )  48  E %h x 3c, + 60d 6C, X 6C,’ + i 6S, 8C, 8S, 
pentagonal pyramid (C5”) 10 E x 50, X 2c, + 2c5z 

(C) Some Further Distortions of the Octahedron 
trigonal prism (Dh) 12  E x 3a, X 3Cz’ + Oh 2c, 2s, 

planar hexagon (D,) 12 E x c,’ 
square bipyramid (Dh) 16 E Oh + 20, x cz+ 2c,’ f 20d 2c4 x 2C,” + i 2s. 

ically allowed. 
Application to Polyhedra for Coordination Numbers 4-9 

A. Coordination Number 4. The cycle index for P4 has only 
terms which are allowed for three-dimensional point groups. 
The permutation group P4 (lP41 = 4! = 24) is isomorphic with 
the full point group Td of the tetrahedron, the usual polyhedron 
for coordination number 4. The D4 planar square (1D41 = 8) 
found, for example, in d7 and d8 transition-metal complexes 
is formed from the tetrahedron by a distortion of index 3 
involving twisting of a pair of opposite edges until all four 
vertices are coplanar. Thus for coordination number 4 there 
is only a single polyhedron family with the regular tetrahedron 
as the fundamental polyhedron. 

B. Coordination Number 5. The cycle index for P5, like that 
for P4, has only terms which are allowed for three-dimensional 
point groups. However, as noted above, a five-vertex poly- 
hedron is impossible with a symmetry point group isomorphic 
to P5. Thus the P5 permutation group must be distorted (Le., 
some “symmetries” lost by deletion of permutations) before 
it can represent a symmetry point group realizable in three- 
dimensional space. This can be done in three different ways 
as depicted in Table 11. 

(1) D3h Trigonal Bipyramid (Distortion Index = 120/12 = 
10). The fourfold (~1x4) and fivefold (x5) terms are deleted. 

(2) Cb Square Pyramid (Distortion Index = 120/8 = 15). 
The threefold ( ~ 1 ~ x 3  and ~2x3) and fivefold (x5) axis terms 
are deleted. 

( 3 )  D5 Planar Pentagon (Distortion Index = 120/10 = 12). 
The threefold ( ~ 1 ~ x 3  and ~2x3) and fourfold (x1x4) axis terms 
are deleted. In addition, precisely three vertices of a planar 
pentagon cannot be coplanar. Therefore the xI3x2 term is 
forbidden and must also be deleted. 

The three families of five-vertex polyhedra thus correspond 
to deletions of the (4 + 5)-fold, the (3 + 5)-fold, and the (3  
i- 4)-fold rotations from the full P ,  symmetry. Among these 
three families of polyhedra for coordination number 5 only 
the Os planar pentagon can lead to five equivalent ligands. 
However, the planar pentagon is an unfavorable coordination 
polyhedron for ML5 complexes for the following reasons:32 (1) 

(32) E. L. Muetterties and C. M. Wright, Q. Reu., Chem. Soc., 21, 109 
(1967). 

- 
X 3c;’ + c, 2c, 2c, 

excessive interligand repulsion and (2) inability to use all three 
p orbitals of M (i.e., sp2d2 rather than sp3d hybridization is 
required for the planar pentagon). For these reasons the planar 
pentagon is never found in actual ML5 coordination com- 
p l e x e ~ . ~ ~  

C. Coordination Number 6 (Table III). The cycle index 
for P6 (IC1 = 720) has the forbidden terms 4Oxl3x3 and 
1 20x1xg3 and thus cannot represent a three-dimensional point 
group. Thus P6 must be distorted to remove at least the 
permutation symmetries represented by these forbidden terms 
before a point group is obtained suitable for a six-vertex 
polyhedron. The octahedron (oh with IC1 = 48) comes re- 
markably close to achieving this objective since its cycle index 
contains all of the terms of that of P6 except for the two 
forbidden terms xt3x3 and ~ 1 x 2 ~ 3  and the allowed term xlxs 
representing a fivefold rotation axis. Thus all six-vertex 
polyhedra except for the single possible polyhedron containing 
a fivefold rotation axis (the Cs, pentagonal pyramid) can be 
obtained by distorting the octahedron as exemplified by the 
following cases. 

(1) D3h Trigonal Prism (Distortion Index = 48/12 = 4). 
An opposite pair of (triangular) faces of the octahedron is 
rotated 120° relative to each other thereby removing the 
fourfold axis terms ~ 1 ~ x 4  and ~ 2 x 4  corresponding to C4 and 
S4 operations, respectively. 

(2) D4,, Quare Bipyramid (Distortion Index = 48/16 = 3). 
An opposite pair of vertices of the octahedron is stretched 
thereby removing the three- and sixfold axis terms corre- 
sponding to the C3 (i.e., x3’) and S6 (i.e., x6) operations, re- 
spectively. 

(3) D6 Planar Hexagon (Distortion Index = 48/12 = 4). 
An opposite pair of faces of the octahedron is squashed until 
all six vertices lie in the same plane. This squashing operation 
removes the fourfold axis xL2x4 and x2x4 as well as the ~ 1 ~ x 2  
terms requiring precisely four coplanar vertices (see the dis- 
cussion above on the planar pentagon). 

There are thus only two families of six-vertex polyhedra: 
(a) the octahedron from which all chemically interesting ML6 
coordination polyhedra can be derived through appropriate 
 distortion^^^ and (b) the pentagonal pyramid which is the 

(33) D. L. Kepert, Prog. Inorg. Chem., 23, 1 (1977). 



368 Inorganic Chemistry, Vol. 20, No. 2, 1981 King 

Table IV. Allowed Terms of the Cycle Index of P, for Three-Dimensional Symmetry Point Groups and Their Relation to the Maximum 
Symmetry Seven-Vertex Polyhedra Point Groups 

allowed cycle index terms of P, and corresponding symmetry operations 

polyhedron GI xI7 21xI5x, ~ O S X , ~ X ~ ’  5O4xl2x5 ~ O S X , X , ~  2 8 0 ~ ~ x 2  84Ox,x, 504x,x, 120x7 

pentagonal bipyramid ( D , h )  20 E 50” 2c, + 2c,” SC,’ 2s, t 2s,3 
hexagonal pyramid (C,,) 12 E 30d c, + ~ O A  2c, 2C‘ 
planar heptagon (D,) 14 E 2c, t 2c7z t 2c,3 

unique six-vertex polyhedron not belonging to the octahedral 
family. Since the pentagonal pyramid is of no importance in 
the chemistry of ML6 coordination complexes, all six-coor- 
dinate polyhedra can be derived from the octahedron through 
appropriate distortions. Thus an octahedron of symmetry oh 
with only 48 symmetry elements is as effective as the P6 
symmetric group with 6! = 720 symmetry elements in ex- 
hibiting all of the symmetries possible for six-coordinate 
polyhedra of chemical relevance. The reason for this is that 
the symmetry lost in reducing P6 symmetry to Oh symmetry 
represents mainly operations that are impossible in three-di- 
mensional space (Le., those corresponding to the x13x3 and 
x1x2x3 forbidden cycle index terms). 

The point group of the octahedron is an example of a wreath 
product permutation g r o ~ p . ~ ~ , ~ ~ 2 ~ ~ ~ ~ ~ ~ ~  Consider a fully sym- 
metric permutation group P, where n = ab and a and b are 
positive integers other than 1. The wreath product P,[Pb] of 
order IGI = a!(b!)“ involves splitting the n objects into a sets 
of b objects each. The b! permutations of Pb can be applied 
independently to each of the a sets of b objects, hence the 
factor (b!)“ in ~ G ~ p ~ ~ p b l .  In addition, the a sets of b objects can 
be exchanged according to the a! permutations in P ,  leading 
to the factor a! in IGIP,rPbl. The wreath products P,[P2] rep- 
resent the symmetries of the a-dimensional analogues of the 
cube or its dual analogous to the octahedron in three-dimen- 
sional space (also3 called the a-dimensional “cross-polytope”) 
or the automorphism groups of the hyperoctahedral graphs2* 
Ha. The wreath products P2[Pb] represent the automorphism 
groups (i.e,, the symmetries) of the Kb,b bipartite graphs26 
which are nonplanar (i.e., cannot correspond to a three-di- 
mensional polyhedron) for b I 3 .  The splitting of P, into the 
wreath product Pa[Pb] (ab = n) removes some of the permu- 
tations in P, (i.e., reduces the “symmetry” of the system). 
However, if the lost permutations are irrelevant to the problem 
at hand, the wreath product splitting of P, into P,[Pb] (ab = 
n) represents a simplification since the size of the group which 
must be treated is reduced. Obviously if n is prime (e.g., 5 
or 7 ) ,  P,  cannot be split into a wreath product P,[Pb]. 

Table I11 shows the cycle indices not only for P6 but also 
for the two possible wreath products P3[P2] and P2[P3]  per- 
muting six objects. The wreath product P3[P2] corresponds 
to the ordinary octahedral point group oh and has been dis- 
cussed above. The other wreath product P2[P3]  is the auto- 
morphism group of the K3,3 bipartite graph. Reduction of the 
symmetry from P6 to P2[P3]  removes the proper four- and 
fivefold axis cycle index terms x12x4 and ~ 1 x 5  and retains the 
useless forbidden terms x13x3 and xIx2x3.  Thus in studying 
coordination polyhedra symmetry reduction of P6 to P2[P3]  
deletes important permutations and retains unimportant 
permutations whereas symmetry reduction of P6 to P3[P2] 
deletes unimportant permutations and retains important 
permutations. 

D. Coordination Number 7 (Table IV). Only nine of the 
15 terms in the cycle index for P7 (IC1 = 7 !  = 5040) are 
allowed for three-dimensional point groups. Distortion of the 
P7 permutation group with removal of at least the forbidden 

(34) H. Bechtell, “Theory of Groups”, Addison-Wesley, Reading, Mass., 
1971, Chapter 3. 

(35) J. G. Nourse and K. Mislow, 1. Am. Chem. Soc., 97, 4571 (1975). 

symmetries leads to three families of seven-vertex polyhedra 
derived from the following fundamental polyhedra. 

(1) D5h Pentagonal Bipyramid (Distortion Index = 5040/20 
= 252). The threefold and x1x6) and sevenfold ( x 7 )  
axis terms are deleted. In an M L ,  complex this polyhedron 
can be formed by using only the metal s, p, and d orbitals2 
and is frequently found in actual metal comple~es.~ Further 
distortion of the pentagonal bipyramid to destroy the fivefold 
axis can lead to the various C, seven-vertex coordination 
po l~hedra .~ ,~  The distortion index from D5h to C, is 2014 = 
5 .  

(2) C, Hexagonal Pyramid (Distortion Index = 5040112 
= 420). The fivefold ~ 1 ~ x 5  and ~ 2 x 5 )  and sevenfold (x7)  axis 
terms are deleted. Since precisely five vertices cannot be 
coplanar, the x15x2 term also disappears. The six coplanar 
ligands make the hexagonal pyramid not only unfavorable 
because of excess interligand repulsion energy but impossible 
to form by using only s, p, and d orbitals of the central metal. 
However, distortion of the six coplanar ligands of the hexag- 
onal bipyramid into two sets of three ligands thereby destroying 
the sixfold axis but retaining the threefold axis leads to the 
C3, capped octahedron. The capped octahedron is one of the 
more favorable seven-coordinate polyhedra5 since it has a 
relatively low interligand repulsion energy and can be formed 
by metal s, p, and d orbitals. 

( 3 )  D7 Planar Heptagon (Distortion Index = 5040114 = 
360). The threefold (~1x3’ and xlx6) and fivefold ( ~ 1 ~ x 5  and 
~ 2 x 5 )  axis terms are deleted. Restrictions on the number of 
coplanar vertices also cause the terms x15x2 and x13x? to 
disappear. Although the planar heptagon is the only config- 
uration leading to seven equivalent ligands in an MI, complex, 
excessive interligand repulsion and inability to be formed by 
a reasonable set of metal atomic orbitals prevent the planar 
heptagon from playing any role in the chemistry of seven- 
coordinate comple~es .~  

The following additional features of seven-vertex polyhedra 
are noted. (1) Seven is the smallest integer n for which an 
integer, namely, 4, falls between n / 2  and n - 2. A fourfold 
axis is therefore forbidden in a seven-vertex polyhedron. (2) 
Since 7 is a prime number, wreath products cannot be found 
which represent permutations on seven objects. Therefore 
wreath products cannot be used to generate a permutation 
group which is a proper subgroup of P7 and of which the 
symmetry point groups of all chemically relevant seven-vertex 
polyhedra are subgroups. 
E. Spanning Subgroups of the Symmetric Permutation 

Groups. As n increases above 6 ,  the order of the symmetric 
group P,, n!, becomes inconveniently large (7! = 5040, 8! = 
40 320, etc.) and the cycle indices (Table I) contain increasing 
numbers of terms. Fortunately, the situation is not as com- 
plicated as it might seem since, as n increases above 6 ,  in- 
creasing fractions of the terms in Z(P,) become forbidden for 
operations in three-dimensional symmetry point groups. 
However, further simplification can be achieved if subgroups 
of P,, designated generically as Q,, can be found so that all 
symmetry point groups of chemically significant coordination 
polyhedra with n vertices are subgroups of Q,; i.e., the per- 
mutations of Qn span all of those found in the desired set of 
polyhedra with n vertices. Such subgroups Q, of P, are of 
particular interest when the forbidden cycle index terms of 
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P, are removed without sacrificing any of the important al- 
lowed cycle index terms of p,. In general, the only allowed 
cycle index terms of P, which are acceptable sacrifices in 
forming a suitable subgroup Q, are higher fold proper rotation 
axis terms (particulary xl"x, where a = 1 or 2 and r > 6) 
which require so many coplanar ligands that corresponding 
coordination polyhedra have excessive interligand repulsion. 
We have seen above how the octahedral group oh, repre- 
sentable also as the wreath product P3[P2], is a nearly ideal 
Q6 since all of the forbidden cycle index terms of P6 are re- 
moved while sacrificing only the allowed term ~1x5. 

Table V summarizes the properties of subgroups of P, (6 
I n I 9) which have been investigated as possible spanning 
subgroups Q, for the point groups of three-dimensional poly- 
hedra with n vertices. The cycle indices of these subgroups 
of P,, in Table V have been divided into allowed and forbidden 
terms for three-dimensional symmetry operations. In addition, 
allowed terms in the cycle indices of the fully symmetrical 
permutation groups P, which are absent in the cycle indices 
of the corresponding subgroups Q, are listed in Table V. A 
group Q, will be an effective spanning subgroup of P, for 
symmetry point groups of n vertex polyhedra if the following 
conditions are satisfied. (1) Its cycle index Z(Qn) contains 
the minimum number of forbidden terms. (2) The allowed 
terms in the cycle index of P, which are absent in that of Q, 
represent symmetry operations which are unimportant in 
chemically significant polyhedra (e.g., sevenfold rotation axes). 
(3) The group Q, is transitive;30 Le., there are one or more 
operations in Q, that will permute any of the n objects into 
any other of the n objects. Thus a set of n objects can be found 
which has a single orbitM under the action of Q,. For example, 
the group D3h is not a transitive permutation group on the five 
vertices of the trigonal bipyramid since no operation in D3h 
can interchange apical and equatorial vertices. Thus the 
vertices of the trigonal bipyramid form two orbits under the 
action of D3,,: the two apical vertices and the three equatorial 
vertices. 

If for a given P, symmetric permutation group an effective 
spanning subgroup Q, can be found, then use of the more 
limited symmetries of the Q,, subgroup rather than the full 
symmetries of P, can have the following advantages. ( 1 )  The 
smaller size of Q, simplifies manipulations that may be nec- 
essary in some cases (e.g., lowers isomer counts13 in the con- 
sideration of stereochemically nonrigid polyhedra). (2) In most 
cases Q, is soluble (composite) and therefore corresponds to 
a direct product of cyclic groups C,, X C,, X ... X C, ,, where 
s is the number of normal subgroups in the norrnafchain of 
Q, (excluding C1 and Q n ) .  However, P, = A, X C2 and A ,  
is simple for n I 5 .  The ability to express a composite Q, as 
a direct product of cyclic groups may be important in the 
treatment of nonrigid p o l ~ h e d r a ~ ~ . ~ ~  where some of the cyclic 
factor groups of Q, (Le., C,, X C,, X ... X C, , where p is the 
number of normal subgroups in the normal ciain of the sym- 
metry point group of the n-vertex polyhedron in question) 
represent the symmetry of a rigid polyhedron and the re- 
maining cyclic factor groups of Q, (Le., C.,, X CPp2 X ... X 
C,,,) represent permutation isomerization (fluxional) pro- 
cesses. 3 6 ~ 3 7  

The use of Q, rather than the full symmetry of P, to treat 
permutational problems such as those involving coordination 
polyhedra appears to be vaguely analogous to using the proper 
rotational subgroups T, 0, and I instead of their full polyhedral 
point groups Td, oh, and I), containing also improper rotation 
axes (including reflection planes). 

The success in using the wreath product group P3[P2] (IC1 
= 48) corresponding to the octahedron instead of P6 (IC1 = 
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720) as a Q6 for generating six-coordinate polyhedra suggests 
the use of wreath product groups to represent the important 
permutations in eight- and nine-vertex polyhedra. For 
eight-vertex polyhedra the hyperoctahedral wreath product 
P4[P2] (Table V) is similarly effective as a Qg for the following 
reasons. (1) Only three of the 14 terms in its cycle index 
represent permutations forbidden for three-dimensional point 
groups. (2) The only allowed term in z(P8) which is missing 
in Z(P4[P2] is ~1x7. Thus the only polyhedron which is lost 
by using P4[P2] with IC1 = 384 instead of Pg with IC1 = 40 320 
is the chemically unimportant heptagonal pyramid. This is 
a negligible price to pay for reducing the size of the permu- 
tation group by a factor of 105. 

The bipartite wreath product P2[P4] is a much less effective 
Qs than the hyperoctahedral wreath product P4[P2] for the 
following reasons. (1) Z(P2[P4]) has twice the number of 
forbidden terms as compared with Z(P4[Pz]). (2) Z(P2[P4]) 
is missing not only an allowed ~ 1 x 7  term corresponding to a 
heptagonal pyramid but also allowed xI2xg and ~2x3' terms 
corresponding to more important eight-coordination polyhedra 
such as the hexagonal bipyramid and the bicapped octahedron. 
(3) P2[P4] is much larger (IC1 = 1152) than P4[P2] (IC1 = 
384). 

For the nine-vertex polyhedra the group P3[P3] is the only 
possible wreath product involving nine vertices. It, however, 
is a very poor Q9 for the following reasons. (1) Its cycle index 
Z(P3[P3]) has a larger number (10) of forbidden terms as 
compared with only nine allowed terms. (2) Its cycle index 
Z(P3[P3]) is missing not only the unimportant sevenfold ( ~ 1 ~ x 7  
and x2x7) and eightfold (Xlxg) axis terms but also the much 
more important fourfold axis term xlx(. 

The use of wreath products thus provides the effective oc- 
tahedral and hyperoctahedral spanning subgroups P3[P2] and 
P4[P2], respectively, for six- and eight-vertex polyhedra but 
does not generate useful spanning subgroups Q7 and Q9 for 
seven- and nine-vertex polyhedra. 

Other approaches have also been investigated for the gen- 
eration of effective spanning subgroups Q9 and Q7 of P9 and 
PI, without using wreath products. For generation of an ef- 
fective Q9 the line graph L(K3,,) is generated from the bipartite 
graph K3,3 by the standard procedure28 involving taking the 
nine edges of K3,3 as the vertices of L(K3,3) and joining these 
nine vertices with a total of 18 edges so that two vertices of 
L(K3,,) have an edge between them whenever the corre- 
sponding edges in K3,3 have a common vertex. The line graph 
L(K3,3) is identical with the hyperpentagonal graph38 C54. 
Since forming a line graph does not add or subtract symmetry 
elements from the original graph, the automorphism group 
of L(K3,,) will be the same as that of K3,). However, the cycle 
index of the line graph Z(L(K3,,)) will be different from that 
of the original graph Z(K3 3) since z(L(K3,3)) ( d e ~ i g n a t e d ~ ~  
as the pair group Z(P2[P3]h) will consist of the permutations 
of the nine edges of K3,3 (i.e., connected vertex pairs) rather 
than the six vertices. 

Table V shows that P2[P3](2) is an excellent group to use 
for Q9. Although it has only 72 elements, its cycle index 
contains no forbidden terms and among allowed terms lacks 
only seven-, eight- and ninefold axis terms ( ~ 1 ~ x 7 ,  xlxg, ~2x7, 
x9) as well as terms corresponding to relatively large numbers 
of fvred points imposing unreasonable coplanarity requirements 
(xl7xZ, x15x2*). The pair wreath product group P2[P3](2) will 
therefore be used below instead of the full permutation group 
P9 for treating nine-vertex polyhedra appropriate for nine- 
coordinate complexes. 

The seven-vertex system is not amenable to an analogous 
treatment. Thus it is impossible to find an effective Q7 C P7 

(36) H. C. Longuet-Higgins, Mol. Phys., 6, 445 (1963). 
(37) C. M. Woodman, Mol. Phys., 19, 753 (1970). (38) R. B. King, Houston J .  Marh., 5, 209 (1979). 
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meeting the above criteria not only because 7 is a prime 
number (thereby excluding wreath product formation) but also 
because there are no suitable distan~e-transitive~~,~~ seven- 
vertex graphs with an automorphism group suitable for Q7. 
An “exotic” group which was considered as a possibility for 
Q7 is the group PSL(2,7) containing 168 elements30 which 
arises in the following contexts: (1) the smallest simple group 
which is not an alternating group A,;39 (2) the automorphisms 
of the group Cz X C2 X C2 containing eight elements;ls (3) 
the number of different ways of labeling the vertices of a 
rectangular solid;lS (4) the group of collineations in a projective 
plane with seven  point^.'^,^^ However, the cycle index of 
PSL(2,7) (Table V)@ contains no ~ 1 ~ x 5  or ~ 2 x 5  terms corre- 
sponding to the fivefold axis of the pentagonal bipyramid, a 
very important polyhedron for seven-coordinate ML7 com- 
plexes. Therefore, PSL(2,7) is unsuitable for a Q,. 

F. Coordination Number 8 (Table VI). As noted above a 
suitable Q8 for coordination number 8 is the hyperoctahedral 
wreath product P4[P2] (IC1 = 384) which is smaller by a factor 
of 105 relative to the fully symmetrical Ps (IC1 = 40320). The 
only allowed cycle index term in Z(Ps) sacrificed in Z(P4[P2]) 
is ~1x7,  but the heptagonal pyramid corresponding to this term 
is chemically unfeasible. Furthermore, a fivefold axis is 
forbidden for polyhedra with eight vertices since 8/2 = 4 < 
5 < 6 = 8 - 2. Further distortions of P4[P2] can lead to three 
families of actual eight-coordinate polyhedra with the following 
maximum symmetry polyhedra. 

(1) D6h Hexagonal Bipyramid (Distortion Index = 384/24 
= 16). The fourfold axis terms ( x t  and xs) are deleted from 
Z(P4[P2]). However, in an MLs complex the hexagonal bi- 
pyramid cannot be formed solely by the s, p, and d orbitals 
of M even if it is distorted further to the Djh bicapped octa- 
hedron. 

(2) D4d Square Antiprism (Distortion Index = 384/16 = 
24). The threefold axis terms ( X ~ ’ X ~ ~ ,  xI2x6, XZX3’, x&) are 
deleted from Z(P4[P2]). Also since six vertices cannot be 
coplanar, the x16x2 term also disappears from Z(P4[Pz]). The 
square antiprism can be formed solely by metal s, p, and d 
orbitals in an ML8 complex and is one of the favored polyhedra 
for coordination number 8.6 

(3) 4, Cube (Distortion Index = 384/48 = 8). The sixfold 
(x12x6) and eightfold (xs) axis terms are deleted from Z(P4-  
[P2]). Some other terms (xI6x2, x12x23, and ~ 2 x 3 ~ )  also dis- 
appear which involve odd numbers of transpositions (i.e., an 
odd number of cycles of even length). In fact, the cycle index 
of the cube contains precisely those terms of Z(P4[P2]) which 
have an even number (including zero) of cycles of even length 
(i.e., the sum of the exponents of the x2, x4, x6, and xs factors 
is an even number). The cube cannot be formed by using solely 
metal s, p, and d orbitals in an ML8 complex. However, 
further distortion of the cube to remove all threefold axis terms 
(i.e., x12x32 and x2x6) leads to the Dzd 8,18,12-dodecahedron2 
(distortion index from the cube = 48/8 = 6 ) ,  which can be 
formed solely from metal s, p, and d orbitals and is one of the 
favored polyhedra for coordination number 8.6 

The three families of eight-vertex polyhedra derived by 
distortion of the hyperoctahedral wreath product P4[P2] thus 
correspond to deletions of the fourfold, the threefold, and the 
odd permutations from the P4[P2] symmetry. Also note that 
the DM point group of the square antiprism has operations of 
period 8 (2& and 2Sg3) and thus is not a subgroup of oh which 
has no operations of period 8. 

This treatment in this paper thus indicates for the first time 
the following three-step distortion chain of the fully symmetric 
P8 group (IC1 = 40 320) to the DZd point group (IC1 = 8) of 
the dodecahedron frequently found in eight-coordinate com- 

(39) L. E. Dickson, “Linear Groups”, Teubner, Leipzig, 1901, pp 309, 310. 
(40) F. Klein, Marh. Ann., 14, 428 (1879). 
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plexes.6 
(1) Distortion of P8 to P4[P2] (Distortion Index = 

40320/384 = 105). This first step of the distortion chain 
generates a suitable spanning subgroup Qs retaining all of the 
possible symmetries for chemically reasonable eight-vertex 
polyhedra. 

(2) Distortion of PAP2] to 4, (Distortion Index = 384/48 
= 8). This second step of the distortion chain generates the 
maximum possible symmetry for an eight-vertex three-di- 
mensional polyhedron. 

(3) Distortion of 4, to Dzd (Distortion Index = 48/8 = 6). 
The final step of this distortion chain generates the maximum 
subgroup of Oh, namely, Dzd, that can correspond to the 
symmetries of an eight-vertex polyhedron which in an ML8 
complex can be formed by the s, p, d, orbitals of the center 
M atom. 

This distortion chain can be represented schematically as 
eq 5, where the numbers above the arrows correspond to the 
indices of the respective distortions. The total index of dis- 
tortion in this three-step distortion chain k 105 X 8 X 6 = 5040 
=7!. 

( 5 )  
G. Coordination Number 9 (Table MI). For coordination 

number 9 the pair group P2[P3](2) (IC1 = 72) is used rather 
than P9 (IC1 = 362 880) as discussed above. We thus reduce 
the size of the spanning group by a factor of 5040 = 7! while 
sacrificing only all of the forbidden terms, the seven-, eight-, 
and ninefold axis terms, and terms with five and seven fixed 
points. Furthermore, fivefold axes are forbidden for polyhedra 
with nine vertices (Le., 9/2 < 5 < 7). In addition, the only 
allowed P9 cycle index term for nine-vertex polyhedra with 
period 6 is x3x6 corresponding to the improper rotation S3 as 
found, for example, in the 4,4,4-tricapped trigonal prism.2 

After exclusion of the nine-vertex polyhedra with seven-, 
eight-, and ninefold proper rotation axes (which are eliminated 
anyway in the drastic distortion from P9 to P2[P3](z)) there 
remain only the following two families of nine-vertex polyhedra 
with the following maximum symmetry polyhedra. 

(1) D3h 4,4,4-Tricapped Trigonal Prism (Distortion Index 
= 72/12 = 6). The fourfold axis term ~1x4’ is deleted from 
Z(PZ[P~I(~)). 

(2) CaO 4-Capped Square Antiprism (Distortion Index = 
72/8 = 9). The threefold axis terms x33 and x3x6 are deleted 
from Z(P2 [ P ~ ] ( ~ ) ) .  

Both of these nine-vertex polyhedra have appropriate sym- 
metries to arise from sp3d5 hybridization of the M atom in an 
ML9 complex.2 
Summary 

This paper shows how the tendency to use maximum sym- 
metry feasible coordination polyhedra pervades coordination 
chemistry. However, the requirement of chemical as well as 
geometrical feasibility is very significant and can lead to major 
symmetry reduction. A notable example of this is the frequent 
occurrence of the Dzd dodecahedron in eight-coordinate ML8 
complexes. The techniques outlined in this paper involving 
the cycle indices of the symmetrical group P,, and appropriate 
wreath product subgroups of P,, for composite n provide an 
effective method for generating coordination polyhedra without 
using some of the more difficultly justifiable assumptions of 
the earlier work.2 However, the need is still retained for the 
earlier topological principlesZ for investigating the properties 
of the resulting polyhedra including particularly the rela- 
tionships between the numbers and types of vertices, edges, 
and faces for polyhedra of given symmetry. 

An additional result from the treatment in this paper is the 
discovery that the subgroup Q, of the fully symmetrical group 
P, which contains all of the point groups of chemically im- 

105 8 6 
P8 - P4[P2I - Oh -P D2d 
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portant polyhedra with n vertices can often be surprising small, 
particularly when IQ is considered relative to n!. For example, 

which spans the symmetries of all of the chemically feasible 
nine-vertex polyhedra just as well as the much larger group 
P9 with 9! = 362 880 elements. It thus appears that use of 

the Qn subgroups rather than the fully symmetrical Pn group 
might offer some advantages of simplicity in depiciting isom- 

Applications of these principles to permutational isomerisms 
in eight-coordinate ML8 complexes are currently under in- 
vestigation. 

a group Q9 = P2[P3] 4 2 )  with only 72 elements has been found erization processes in stereochemically nonrigid polyhedra. 
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Measurements have been made of the low-temperature luminescence and Raman spectra of pure Cs2PtF6 crystals and 
CS2PtF6-CSzGeF6 crystals in which PtF2- is doped into the Cs2SiF6 lattice. In both environments, the Raman spectra 
at liquid-helium temperature show sharp lines assigned to the alg, eg, and tQ internal modes of the PtF& ion. A comparison 
of the low-temperature Raman and sharpline luminescence spectra indicates that in the luminescence spectra a Jahn-Teller 
e,-type progression occurs with a small degree of anharmonicity present. The luminescence can be assigned as a transition 
from the &e, r3(3Tl,) twofold degenerate excited electronic state to the t;g rl(IAlg) nondegenerate ground electronic state. 

Introduction 
MX62- octahedral hexahalide systems, where M is a 5d 

transition-metal element, have been the subject of numerous 
optical studies in recent years. The optical measurements 
have almost always been mixed-crystal experiments in which 
the MX62- impurity ion is doped in a cubic host such as 
Cs2ZrC16, Cs2ZrBr6, or CszSiF6 and the optical spectrum is 
recorded at liquid-helium temperature. It is important to 
compare the pure-crystal spectra with the impurity ion results. 
In this paper we report Raman and luminescence experiments 
for the d6 PtF62- ion in the pure CszPtF6 case and in the case 
where the PtF2- ion is doped in a host lattice. In particular, 
the d6 PtF62- ion is an excellent ion to study for two reasons: 
(1) the PtF6’- ion in both the pure- and mixed-crystal envi- 
ronments shows strong structured luminescence spectra; (2) 
the Raman spectra in both the pure and mixed crystals show 
lines due to the Raman-active alg, eg, and tZg modes of the 
PtF2- moiety. 

In a previous publication on the PtF2- ion,2 the lumines- 
cence spectra were assigned to an alg progression because of 
limited data. In these current studies the luminescence spectra 
were recorded with an infrared optical system and Raman 
spectra measured at liquid-helium temperature. Also, lifetime 
studies have been performed in both the pure- and mixed- 
crystal cases as a function of temperature. Comparison of the 
luminescence and Raman spectra now leads to a model in 
which in the luminescence spectra an e8 Jahn-Teller-active 
progression occurs. The decreasing spacing between the lu- 
minescence peaks with decreasing energy is explained by a 
small degree of anharmonicity in the ground-electronic-state 
potential surface for the eg mode. 
Experimental Section 

The synthesis of Cs2PtF6 and the growing of crystals (Cs2PtF6, 
Cs2PtF6<s&F,, Rb2PtF&b&F6) have been discussed previously.2 
The analysis of the Rb2PtF6-Rb2SiF6 and Cs2PtF6<s2SiF6 mixed 
crystals was carried out by R. W. Stoenner of the Chemistry De- 
partment a t  Brookhaven. The percent Pt was determined by a 
flameless-graphite-furnace atomic absorption at 2800 OC by standard 
addition. The percent Si was determined spectrophotometrically with 
a Cary Model 16 by using the method of A n d r e 3  in which ammonium 

*To whom correspondence should be addressed at the University of Maine. 
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molybdate complexes with silicon to give an absorption band at  810 
nm. The results for the actual crystal batch used for the Raman studies 
showed that for the Rb2PtF6-Rb2SiF6 mixed crystals the relative 

the relative amount of Cs2PtF6 was 7.9%. 
The emission studies were performed by exciting the crystal samples 

with a Molectron UV 14 nitrogen laser. The resulting luminescence 
was analyzed with a McPherson 1-m Model 2051 monochromator 
and a Products for Research TE-241-RF photomultiplier tube. 
Emission spectra were recorded after amplification of the signal with 
a PAR 124A lock-in amplifier. Lifetime measurements were made 
with a PAR boxcar averager, Model 162. In all cases the sample 
temperatures were obtained with an Lt-3-110 liquid-helium transfer 
Heli-Tran. 

Raman measurements were made with the use of a krypton ion 
laser excitation at  476.2, 530.9, and 568.2 nm. The details of the 
detection system have been published! The absorption measurements 
at  liquid-helium temperature were performed with a Cary 17D 
spectrophotometer. 
Results 

amount Of  Rb2PtF6 was 1.3% while for the CS2&F&S2SiF6 crystals 

Emission Spectra. Luminescence measurements were made 

CS2GeF6, and Rb2PtF6-Rb2SiF6 with excitation at 337.1 nm. 
Intense emission as a yellow-orange glow is observed in every 
case even at room temperature. At room temperature only 
a broad featureless band is observed with the maximum in each 

O n  Single Crystals Of CSzPtF6, Cs2PtF6-CszSiF6, CSzPtF6- 

Case: CS2PtF6, 648.0 f 3 nm; CS2PtF6-CSzSiF6 and cS2Pt- 
F6-CS2GeF6, 620.0 f 2 nm; and Rb2PtF6-RbzSiF6, 600.0 f 
2 nm. At 5 K well-resolved structure appears. The lu- 
minescence spectra at 5 K of a pure Cs2PtF6 crystal and a 
mixed Cs2PtF6-CszSiF6 crystal are shown in Figures 1 and 
2, respectively. 

Emission Lifetime Measurements. These were performed 
On Single Crystals Of CS2PtF6, CS2PtF6-CS2SiF6, CS2PtF6- 
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