distances in selected acetato-bridged dimolybdenum compounds. From the table it is clear that a typical Mo-O distance is 2.10-2.11 Å. In 1, however, the Mo-O distance is 2.155 Å (average). Although, it is impossible to generalize from only one structure, it appears possible that this increase in the Mo-O bond distance is a result of a trans labilization of the acetate ligand by the ambt ligand. Since this is the first trisubstituted mixed-ligand complex of the quadruply bonded system, there is no precedent for an observed trans effect in these bimetallic complexes. Attempts are now being made to

prepare further mixed-ligand complexes.

Acknowledgment. We are grateful to the Robert A. Welch Foundation for support under Grant No. A-494.

Registry No. 1, 75534-39-3; **2**, 75534-41-7; **3**, 75534-43-9; dimolybdenum tetraacetate, 14221-06-8.

Supplementary Material Available: Tables of observed and calculated structure factors for the three structures (25 pages). Ordering information is given on any current masthead page.

> Contribution from the Department of Chemistry, Texas A&M University, College Station, Texas 77843

π Acidity of Tris(2-cyanoethyl)phosphine. X-ray Structural Studies of M(CO)₅P(CH₂CH₂CN)₃ (M = Cr, Mo) and Mo(CO)₅P(C₆H₅)₃

F. ALBERT COTTON,* DONALD J. DARENSBOURG, and WILLIAM H. ILSLEY

Received July 1, 1980

The X-ray crystal structures and IR spectra of the compounds $M(CO)_5P(CH_2CH_2CN)_3$, M = Cr (1) and Mo (2), and $Mo(CO)_5P(C_6H_5)_3$ (3) are reported. Compounds 1 and 2 are isomorphous and crystallize in the monoclinic space group $P2_1/n$ with unit cell parameters a = 16.913 (5) Å, 17.140 (2) Å, b = 6.538 (3) Å, 6.639 (1) Å, c = 17.402 (4) Å, 17.574 (2) Å, $\beta = 117.91$ (2)°, 118.09 (1)°, v = 1700 (2) Å³, 1764.3 (9) Å³, and Z = 4, 4, where the two figures for each parameter refer to the Cr and Mo compounds, respectively. Each molecule occupies a general position within the unit cell. The M-P distances are 2.364 (1) and 2.506 (1) Å for the Cr and Mo compounds, and the average $M-CO_{ax}$ and $M-CO_{eq}$ distances are 1.876 (4) and 1.891 (4) Å and 2.008 (4) and 2.044 (5) Å, respectively. Compound 3 crystallizes in the triclinic space group $P\overline{1}$ with unit cell parameters a = 9.653 (5) Å, b = 12.301 (5) Å, c = 9.503 (8) Å, $\alpha = 90.88$ (5)°, $\beta = 95.73$ (5)°, $\gamma = 74.89$ (4)°, V = 1084 (2) Å³, and Z = 2. Again, each molecule occupies a general position within the cell. The Mo-P distance is 2.560 (1) Å and the average Mo-CO_{ex} and Mo-CO_{eq} distances are 1.995 (3) and 2.046 (4) Å, respectively. On the basis of these structural data as well as ν (CO) infrared data, tris(2-cyanoethyl)phosphine can be described as a good π -acceptor ligand.

Introduction

Table I. Crystallographic Parameters

Spectroscopic data (ν (CO) and ¹³C NMR)^{1,2} for low-valent metal carbonyl complexes containing trivalent phosphorus ligands strongly imply that the 2-cyanoethyl substituent on phosphorus is very electron withdrawing relative to the ethyl group. This is a somewhat surprising result since the CN substituent is separated from the phosphorus atom by two saturated carbon atoms. Concomitantly, the tris(2-cyanoethyl)phosphine is a much poorer base than is triethylphosphine, having a Δ HNP value of 679 relative to 111 for the latter phosphine.³

In general trivalent phosphorus ligands bearing good electron-withdrawing groups exhibit strong metal-phosphorus binding in low-valent organo-transition-metal derivatives.⁴ In order to examine the bonding properties of this rather unique ligand, we have carried out X-ray structural investigations of the $M(CO)_5P(CH_2CH_2CN)_3$ species, where M = Cr and Mo. In addition the X-ray structure of $Mo(CO)_5P(C_6H_5)_3$ was determined for comparative purposes.

Experimental Section

Preparations. A procedure similar to that described by Connor

- (2) Bodner, G. M.; May, M. P.; McKinney, L. E. Inorg. Chem. 1980, 19, 1951.
- (3) Streuli, C. A. Anal. Chem. 1960, 32, 985.
- (4) Plastas, H. J.; Stewart, J. M.; Grim, S. O. J. Am. Chem. Soc. 1969, 91, 4326.

	compd						
parameter	1	2	3				
space group	P2,/n	$P2_1/n$	<u>P1</u>				
a, A	16.913 (5)	17.140 (2)	9.653 (5)				
<i>b</i> , Å	6.538 (3)	6.639 (1)	12.301 (5)				
c, A	17.402 (4)	17.574 (2)	9.503 (8)				
α, deg	9 0.0	90.0	90.88 (5)				
β, deg	117.91 (2)	118.09 (1)	95.73 (5)				
γ , deg	90.0	90.0	74.89 (4)				
V, Å ³	1700 (2)	1764.3 (9)	1084 (2)				
Ζ	4	4	2				
$d_{\mathbf{x}}, g/cm^3$ (calcd)	1.505	1.616	1.527				
fw	385.24	429.18	498.29				
cryst size, mm	$0.20 \times 0.30 \times$	$0.20 \times 0.25 \times$	$0.20 \times 0.30 \times$				
	0.30	0.30	0.30				
μ , cm ⁻¹	8.250	8.51 8	7.027				
2θ range, deg	0-45	0-45	0-50				
no. of data	1532	2617	3199				
$F_0^2 > 3\sigma(F_0^2)$	1433	1793	3081				
no. of variables	269	269	331				
R_1	0.027	0.026	0.024				
R ₂	0.038	0.034	0.035				
esd	0.974 _	1.052	0.808				
diffractometer	Syntex P1	CAD-4F	Syntex P1				

et al.⁵ was employed in the synthesis of the $M(CO)_5P(CH_2CH_2CN)_3$ (M = Cr, Mo) complexes. A methylene chloride solution of 0.54 g (1.2 mmol) of $[(C_2H_5)_4N][Mo(CO)_5Br]$, 0.25 g (1.3 mmol) of P-

⁽¹⁾ Tolman, C. A. Chem. Rev. 1977, 77, 313.

⁽⁵⁾ Connor, J. A.; Jones, E. M.; McEwen, G. K. J. Organomet. Chem. 1972, 43, 357.

Table II. Positional and Thermal Parameters^a and Their Estimated Standard Deviations for $Cr(CO)_{s}P(CH_{2}CH_{2}CN)_{3}$ (1)

						-3 - 1 - 1		
x	у	Z	B ₁₁	B 22	B 33	B ₁₂	B ₁₃	B 23
0.05751 (3)	0.21822 (8)	0.17098 (3)	2.78 (1) 2.47 (2) 2.83 (1)	0.04 (2)	1.57 (1)	0.12 (2)
-0.02104 (4)	0.3152 (1)	0.24737 (4)	2.38 (2)) 2.19 (3) 2.59 (2)	0.24 (2)	1.24 (2)	0.27 (2)
-0.0438 (2)	-0.1817 (4)	0.1233 (2)	5.9 (1)	3.3 (1)	5.6(1)	-1.0(1)	2.06 (8)	-0.4 (1)
0.2010 (2)	0.0309 (5)	0.3373 (1)	4.38 (9) 7.9 (2)	5.1 (1)	2.0(1)	2.09 (7)	2.4 (1)
0.1553 (1)	0.6240 (4)	0.2142 (2)	4.62 (9) 3.7 (1)	7.2 (1)	-1.23(9)	3.03 (7)	-0.9(1)
-0.0843(2)	0.4007 (4)	0.0024 (1)	4.7 (1)	6.4 (1)	3.90 (9)	-0.3(1)	1.26(7)	1.6(1)
0.1634 (2)	0.0744 (2)	0.0822(1)	6.27 (9) 7.3 (2)	6.18 (9)	0.9 (1)	4.58 (6)	-0.7(1)
0.1725 (2)	0.8287 (6)	0.4911 (2)	7.4 (2)	6.5 (2)	5.4 (1)	-2.4(2)	2.8 (1)	-2.5(1)
-0.0827(2)	-0.2152 (7)	0.4378 (2)	5.9 (1)	6.6 (2)	6.4 (2)	-1.4(2)	3.7 (1)	0.9 (2)
-0.2378(2)	-0.0598 (6)	0.1887 (2)	5.9(1)	6.8 (2)	7.7 (2)	-2.8(1)	2.7 (1)	-0.0(2)
-0.0060(2)	-0.0307(5)	0.1416 (2)	3.7 (1)	3.0 (1)	3.4 (1)	0.0(1)	1.82 (8)	0.1 (1)
0.1471 (2)	0.1024 (6)	0.2752 (2)	2.9 (1)	3.9 (2)	4.1 (1)	0.5 (1)	1.98 (8)	0.6 (1)
0.1187 (2)	0.4713 (5)	0.1976 (2)	3.1 (1)	3.7 (2)	3.8 (1)	-0.1(1)	2.12(7)	-0.2(1)
-0.0314 (2)	0.3331 (5)	0.0660 (2)	3.7 (1)	3.7 (2)	3.6 (1)	-0.7(1)	1.96 (8)	0.3 (1)
0.1232 (2)	0.1311 (6)	0.1150 (2)	4.2 (1)	3.7 (2)	3.8 (1)	0.1 (1)	2.21 (9)	-0.1(1)
0.0220 (2)	0.5341 (5)	0.3218 (2)	3.9 (1)	2.8 (1)	3.1 (1)	0.3 (1)	1.63 (8)	-0.1(1)
0.1162 (2)	0.5024 (6)	0.3972 (2)	4.7 (2)	4.4 (2)	3.4 (1)	-0.3 (1)	1.2 (1)	-0.3(1)
0.1483 (2)	0.6853 (6)	0.4509 (2)	4.5 (1)	5.3 (2)	3.0(1)	-1.0(1)	1.33 (9)	-0.6(1)
-0.0259 (2)	0.1094 (5)	0.3169 (2)	3.0 (1)	2.7 (1)	3.2 (1)	0.3(1)	1.62 (7)	0.6(1)
-0.0756 (2)	0.1471 (6)	0.3700 (2)	4.0 (1)	4.4 (2)	4.1 (1)	1.6 (1)	2.74 (8)	1.9(1)
-0.0839 (2)	-0.0536 (8)	0.4059 (2)	3.3 (1)	7.1 (3)	3.8 (1)	-0.3 (2)	2.0(1)	-0.1 (2)
-0.1380 (2)	0.3976 (5)	0.1824 (2)	2.7 (1)	3.5 (2)	3.5 (1)	0.6(1)	1.33 (8)	0.7 (1)
-0.2006 (2)	0.2421 (6)	0.1161 (2)	2.6 (1)	5.2 (2)	4.8 (1)	0.2(1)	1.32 (9)	1.2(1)
-0.2226 (2)	0.0710 (6)	0.1556 (2)	3.0 (1)	5.4 (2)	5.4 (2)	-1.3 (1)	1.3 (1)	-0.0 (2)
x	У	2	<i>B</i> , Å ²	atom	x	У	2	<i>B</i> , Å ²
0.0454 (9)	0.343 (2)	0.5218 (8)	1.9 (3)	H(6)	-0.050 (2)	-0.009 (5)	0.280 (2)	3.5 (7)
-0.0061 (7)	0.258 (2)	0.4594 (7)	4.5 (3)	H(7) ·	-0.127 (2)	0.196 (5)	0.339 (2)	4.2 (8)
0.020 (2)	0.650 (5)	0.283 (2)	3.9 (7)	H(8)	-0.136 (2)	0.520(4)	0.148 (2)	3.0 (6)
-0.021(2)	0.561 (5)	0.343 (2)	3.8 (7)	H(9) ·	-0.158 (2)	0.435 (5)	0.218 (2)	4.8 (8)
0.114 (2)	0.391 (6)	0.430 (2)	6.4 (9)	H(10) ·	-0.244 (2)	0.311 (5)	0.090 (2)	4.6 (8)
0.154 (2)	0.487 (5)	0.375 (2)	4.3 (8)	H(11) ·	-0.172 (2)	0.193 (6)	0.079 (2)	6.8 (10)
0.035 (2)	0.079 (4)	0.357 (1)	2.5 (6)					
	$\begin{array}{c} x \\ \hline 0.05751 (3) \\ -0.02104 (4) \\ -0.0438 (2) \\ 0.2010 (2) \\ 0.1553 (1) \\ -0.0843 (2) \\ 0.1634 (2) \\ 0.1634 (2) \\ 0.1725 (2) \\ -0.0827 (2) \\ -0.0827 (2) \\ -0.0827 (2) \\ -0.0314 (2) \\ 0.1187 (2) \\ -0.0314 (2) \\ 0.1232 (2) \\ 0.0220 (2) \\ 0.1162 (2) \\ 0.0220 (2) \\ 0.1162 (2) \\ 0.0220 (2) \\ 0.1162 (2) \\ 0.0259 (2) \\ -0.0756 (2) \\ -0.0756 (2) \\ -0.0756 (2) \\ -0.0756 (2) \\ -0.0756 (2) \\ -0.0756 (2) \\ -0.0756 (2) \\ -0.021 (2) \\ 0.0454 (9) \\ -0.0061 (7) \\ 0.020 (2) \\ -0.021 (2) \\ 0.114 (2) \\ 0.154 (2) \\ 0.035 (2) \\ \end{array}$	xy 0.05751 (3) 0.21822 (8) -0.02104 (4) 0.3152 (1) -0.0438 (2) -0.1817 (4) 0.2010 (2) 0.0309 (5) 0.1553 (1) 0.6240 (4) -0.0843 (2) 0.4007 (4) 0.1634 (2) 0.0744 (2) 0.1725 (2) 0.8287 (6) -0.0827 (2) -0.2152 (7) -0.2378 (2) -0.0598 (6) -0.0060 (2) -0.0307 (5) 0.1471 (2) 0.1024 (6) 0.1187 (2) 0.3331 (5) 0.1232 (2) 0.3311 (6) 0.0220 (2) 0.5341 (5) 0.1162 (2) 0.5024 (6) 0.1483 (2) 0.6853 (6) -0.0756 (2) 0.1471 (6) -0.0259 (2) 0.1471 (6) -0.0756 (2) 0.2421 (6) -0.1380 (2) 0.3976 (5) -0.2006 (2) 0.2421 (6) -0.2226 (2) 0.0710 (6)xy 0.0454 (9) 0.343 (2) -0.0061 (7) 0.258 (2) 0.021 (2) 0.561 (5) 0.114 (2) 0.391 (6) 0.154 (2) 0.487 (5) 0.035 (2) 0.079 (4)	xyz 0.05751 (3) 0.21822 (8) 0.17098 (3) -0.02104 (4) 0.3152 (1) 0.24737 (4) -0.0438 (2) -0.1817 (4) 0.1233 (2) 0.2010 (2) 0.0309 (5) 0.3373 (1) 0.1553 (1) 0.6240 (4) 0.2142 (2) -0.0843 (2) 0.4007 (4) 0.0242 (1) 0.1634 (2) 0.0744 (2) 0.0822 (1) 0.1725 (2) 0.8287 (6) 0.4911 (2) -0.0827 (2) -0.2152 (7) 0.4378 (2) -0.0660 (2) -0.0307 (5) 0.1416 (2) 0.1471 (2) 0.1024 (6) 0.2752 (2) 0.1187 (2) 0.4713 (5) 0.1976 (2) -0.0314 (2) 0.3331 (5) 0.0660 (2) 0.1232 (2) 0.1311 (6) 0.1150 (2) 0.0220 (2) 0.5341 (5) 0.3218 (2) 0.1483 (2) 0.6853 (6) 0.4599 (2) -0.0259 (2) 0.1094 (5) 0.3169 (2) -0.0259 (2) 0.1471 (6) 0.3700 (2) -0.0839 (2) -0.0536 (8) 0.4559 (2) -0.0259 (2) 0.1976 (5) 0.1824 (2) -0.0259 (2) 0.1471 (6) 0.3700 (2) -0.0259 (2) 0.1976 (5) 0.1824 (2) -0.0259 (2) 0.0710 (6) 0.1556 (2) x y z 0.0454 (9) 0.343 (2) 0.4594 (7) 0.0206 (2) 0.2421 (6) 0.1461 (2) -0.021 (2) 0.561 (5) 0.383 (2) -0.021 (2) 0.561 (5) 0.343 (2) </td <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td>	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

^a The form of the anisotropic thermal parameter is $\exp[-1/4(B_{11}h^2a^{*2} + B_{22}k^2b^{*2} + B_{33}l^2c^{*2} + 2B_{12}hka^*b^* + 2B_{13}hla^*c^* + 2B_{23}klb^*c^*)]$.

Table III. Positional and Thermal Parameters ^a and Their Estimated Standard Deviations for Mo(CO) ₃ P(CH ₂ CH ₂ CN) ₃), (2)
--	--------

atom	x	у	Z	B ₁₁	B 22	B 33	B ₁₂	B ₁₃	B 23
M o(1)	0.05846 (2)	0.20884 (5)	0.17123 (2) 2.897 (9	2.89 (1)) 2.672 (9)	0.06 (1)	1.608 (7)	0.12 (1)
P (1)	-0.02574 (5)	0.3093 (1)	0.24942 (5) 2.80 (3)	2.84 (4)) 2.68 (3)	0.22 (3)	1.49 (2)	0.26 (3)
O(1)	-0.0464 (2)	-0.2043 (5)	0.1205 (2)	6.6(1)	3.7 (1)	6.4 (1)	-1.5(1)	2.7 (1)	-0.4 (1)
O(2)	0.2073 (2)	0.0200 (6)	0.3455 (2)	4.7 (1)	9.2 (2)	5.1 (1)	2.1 (1)	2.01 (8)	2.8 (1)
O(3)	0.1590 (2)	0.6298 (5)	0.2177 (2)	4.8 (1)	4.1 (1)	7.3 (1)	-1.2(1)	2.81 (8)	-1.2 (1)
O(4)	-0.0880 (2)	0.3948 (5)	-0.0052 (2)	5.1 (1)	7.3 (2)	4.0(1)	-0.3 (1)	0.97 (9)	2.0 (1)
O(5)	0.1701 (2)	0.0633 (6)	0.0813 (2)	6.4 (1)	8.4 (2)	6.2 (1)	0.2(1)	4.65 (6)	-1.2 (1)
N(1)	0.1651 (3)	0.8223 (7)	0.4875 (2)	8.0 (2)	6.9 (2)	5.4 (1)	-2.5(2)	3.4 (1)	-2.3 (2)
N(2)	-0.0836 (2)	-0.2130(7)	0.4384 (2)	5.4 (1)	6.0 (2)	5.5(1)	-0.6 (2)	3.1 (1)	1.3 (2)
N(3)	-0.2378 (3)	-0.0689 (7)	0.1850 (3)	7.5 (2)	7.9 (3)	8.1 (2)	-3.6 (2)	3.1 (1)	-0.3 (2)
C(1)	-0.0085 (2)	-0.0568 (6)	0.1386 (2)	3.9 (1)	4.1 (2)	3.3 (1)	0.1 (1)	1.89 (9)	0.1 (1)
C(2)	0.1536 (2)	0.0870 (6)	0.2836 (2)	3.6 (1)	4.1 (2)	4.4 (1)	0.4 (1)	2.64 (8)	0.7 (1)
C(3)	0.1235 (2)	0.4793 (6)	0.2011 (2)	3.3 (1)	3.8 (2)	3.7 (1)	0.2 (1)	2.00 (9)	-0.3 (1)
C(4)	-0.0356 (2)	0.3309 (6)	0.0581 (2)	3.9 (1)	3.7 (2)	3.5 (1)	-0.9(1)	1.95 (9)	0.3 (1)
C(5)	0.1294 (2)	0.1201 (7)	0.1132 (2)	3.7 (1)	4.6 (2)	3.8 (1)	-0.4 (2)	2.12 (9)	-0.6 (1)
C(6)	0.0156 (2)	0.5248 (6)	0.3239 (2)	4.6 (1)	3.0 (2)	3.3 (1)	0.2(1)	1.97 (9)	0.3 (1)
C(7)	0.1091 (3)	0.4968 (7)	0.3977 (2)	4.9 (2)	4.5 (2)	3.3 (1)	-0.2 (2)	1.5 (1)	-0.3 (2)
C(8)	0.1413 (2)	0.6795 (7)	0.4488 (2)	5.2 (2)	5.6 (2)	3.0(1)	-0.9 (2)	2.0(1)	-0.6(1)
C(9)	-0.0294 (2)	0.1046 (6)	0.3179 (2)	3.1 (1)	3.4 (2)	3.6 (1)	0.7(1)	1.96 (8)	0.9 (1)
C(10)	-0.0800 (2)	0.1391 (7)	0.3694 (2)	3.8 (1)	5.0(2)	4.1 (1)	1.6 (1)	2.65 (9)	2.1 (1)
C(11)	-0.0850 (2)	-0.0573 (8)	0.4078 (2)	3.3 (1)	5.8 (3)	3.7 (1)	-0.0(2)	2.0(1)	0.1 (2)
C(12)	-0.1415 (2)	0.3866 (6)	0.1832 (2)	3.6 (1)	4.3 (2)	3.8 (1)	0.9 (1)	2.20 (9)	0.9 (1)
C(13)	-0.2015 (2)	0.2373 (7)	0.1161 (2)	2.7 (1)	6.8 (3)	4.0 (1)	-0.1(2)	1.3 (1)	0.5 (2)
C(14)	-0.2231 (3)	0.0652 (8)	0.1538 (3)	3.8 (2)	6.9 (3)	5.5 (2)	-1.7 (2)	1.9 (1)	-0.4 (2)
atom	x	У	Z	<i>B</i> , Å ²	atom	x	у	Ζ	<i>B</i> , Å ²
N(2)'	0.044 (2)	0.330 (4)	0.523 (2)	3.2 (6)	H(6) -	-0.053 (2)	-0.012 (5)	0.281 (2)	4.1 (8)
C(11)'	-0.013 (1)	0.253 (4)	0.454 (1)	5.9 (6)	H(7) -	-0.124 (2)	0.180(5)	0.341 (2)	4.1 (9)
H(1)	0.011 (2)	0.626 (5)	0.292 (2)	3.6 (8)	H(8) -	-0.139 (2)	0.501 (5)	0.157 (2)	3.2 (7)
H(2)	-0.033 (2)	0.546 (6)	0.343 (2)	5.4 (10)	H(9) -	-0.164 (2)	0.419 (4)	0.216 (2)	1.9 (6)
H(3)	0.106 (2)	0.388 (7)	0.430 (2)	6.0 (10)	H(10) -	-0.252 (2)	0.286 (6)	0.083 (2)	4.8 (9)
H(4)	0.149 (2)	0.459 (6)	0.375 (2)	4.5 (9)	H(11) -	-0.176 (2)	0.191 (5)	0.082 (2)	4.3 (9)
H(5)	0.028 (2)	0.074 (5)	0.354 (2)	3.4 (8)					

^a The form of the anisotropic thermal parameter is $\exp[-1/4(B_{11}h^2a^{*2} + B_{22}k^2b^{*2} + B_{33}l^2c^{*2} + 2B_{12}hka^*b^* + 2B_{13}hla^*c^* + 2B_{23}klb^*c^*)]$.

Table IV. Positional and Thermal Parameters^a and Their Estimated Standard Deviations for $M_0(C_0)_{s}P(C_6H_{s})_{s}$ (3)

			•						
atom	x	у	Z	B ₁₁	B 22	B 33	B ₁₂	B ₁ ,	B 23
Mo(1)	0.27897 (2)	0.44813 (2)	0.26963 (2)	3.608 (7)	2.989 (7)	3.733 (8)	-1.233 (6)	0.660(7)	-0.554 (7)
P(1)	0.35911 (6)	0.25613 (5)	0.15244 (6)	3.20 (2)	3.01 (2)	3.44 (2)	-1.06 (2)	0.56 (2)	-0.44 (2)
O (1)	0.0952 (3)	0.5846 (2)	-0.0012 (3)	7.3 (1)	5.8(1)	6.1 (1)	-1.52 (9)	-0.7 (1)	1.59 (9)
O(2)	-0.0110(2)	0.4107 (2)	0.3637 (3)	5.24 (8)	6.1 (1)	8.4 (1)	-2.18 (7)	2.72 (8)	-0.78 (9)
O(3)	0.4464 (3)	0.3345 (2)	0.5563 (2)	6.4 (1)	7.3 (1)	5.1 (1)	-1.44 (9)	-0.43 (9)	0.28 (9)
O(4)	0.5574 (2)	0.5060 (2)	0.1725 (3)	7.52 (9)	7.8 (1)	10.7 (1)	-4.75 (7)	4.01 (9)	-1.5 (1)
O(5)	0.2145 (2)	0.6774 (2)	0.4310 (3)	6.7 (1)	4.43 (8)	8.2 (1)	-1.82 (7)	1.2 (1)	-2.62 (8)
C(1)	0.1619 (3)	0.5330(2)	0.0921 (3)	4.9 (1)	3.8 (1)	5.1 (1)	-1.59 (8)	0.8 (1)	-0.2 (1)
C(2)	0.0936 (3)	0.4207 (2)	0.3286 (3)	4.4 (1)	3.7 (1)	4.8 (1)	-1.27 (8)	1.04 (9)	-0.55 (9)
C(3)	0.3879 (3)	0.3740 (2)	0.4519 (3)	4.3 (1)	4.4 (1)	4.2 (1)	-1.12 (9)	0.47 (9)	-0.65 (9)
C(4)	0.4604 (3)	0.4835 (2)	0.2080 (2)	5.5 (1)	4.4 (1)	5.7(1)	-2.42 (8)	1.5 (1)	-0.9 (1)
C(5)	0.2357 (3)	0.5944 (2)	0.3714 (3)	4.4 (1)	3.9 (1)	5.4 (1)	-1.58 (8)	0.8 (1)	-0.8 (1)
C(6)	0.2685 (2)	0.2334 (2)	-0.0204 (3)	3.15 (8)	3.50 (9)	3.5 (1)	-0.72 (7)	0.62 (8)	-0.45 (8)
C(7)	0.2246 (3)	0.1362 (2)	-0.0518 (3)	4.5 (1)	4.0 (1)	4.3 (1)	-1.23 (9)	0.0(1)	-0.56 (9)
C(8)	0.1546 (3)	0.1244 (3)	-0.1828 (3)	5.7(1)	5.5(1)	5.8(1)	-1.7 (1)	-0.5(1)	-2.0 (1)
C(9)	0.1289 (4)	0.2071 (3)	-0.2835 (3)	5.8 (2)	6.9 (2)	4.3 (1)	0.2(1)	-0.5 (1)	-1.4 (1)
C(10)	0.1729 (4)	0.3028 (3)	-0.2552 (3)	6.4 (2)	5.8 (2)	3.7 (1)	0.5 (1)	0.6 (1)	0.1 (1)
C(11)	0.2412 (3)	0.3164 (2)	-0.1243 (3)	5.3 (1)	4.2 (1)	4.1 (1)	-1.0(1)	0.8 (1)	-0.0(1)
C(12)	0.5504 (2)	0.2222 (2)	0.1208 (3)	3.29 (8)	3.11 (8)	4.5 (1)	-1.17 (7)	0.75 (8)	-0.52 (8)
C(13)	0.5989 (3)	0.1962 (3)	-0.0108 (3)	4.3 (1)	5.4 (1)	4.7 (1)	-1.38 (9)	1.25 (9)	-1.1 (1)
C(14)	0.7439 (3)	0.1757 (3)	-0.0276 (3)	5.0(1)	7.1 (2)	6.1 (1)	-1.9 (1)	2.5 (1)	-1.6 (1)
C(15)	0.8417 (3)	0.1809 (3)	0.0841 (4)	3.6 (1)	5.8(1)	8.0(2)	-1.65 (9)	1.7(1)	-0.9(1)
C(16)	0.7959 (3)	0.2056 (3)	0.2155 (4)	3.5 (1)	5.9 (1)	6.7 (2)	-1.49 (9)	0.1 (1)	-1.0(1)
C(17)	0.6514 (3)	0.2271 (2)	0.2341 (3)	3.8 (1)	5.0(1)	4.5 (1)	-1.19 (9)	0.68 (9)	-0.5 (1)
C(18)	0.3491 (3)	0.1336 (2)	0.2538(2)	4.2 (1)	3.06 (8)	3.12 (9)	-1.12 (7)	0.31 (8)	-0.12 (8)
C(19)	0.2218 (3)	0.1353 (2)	0.3103 (3)	5.4 (1)	3.7 (1)	6.0 (1)	-1.32 (9)	2.0(1)	-0.3 (1)
C(20)	0.2055 (3)	0.0416 (3)	0.3779 (3)	7.7 (1)	5.2 (1)	6.4 (1)	-3.0(1)	3.2 (1)	-0.6 (1)
C(21)	0.3182 (4)	-0.0540 (2)	0.3936 (3)	9.5 (2)	4.1 (1)	4.3 (1)	-3.0(1)	-0.1 (1)	0.8 (1)
C(22)	0.4460 (4)	-0.0566 (2)	0.3408 (3)	6.7 (1)	3.8 (1)	5.1(1)	-1.2 (1)	-0.8 (1)	0.5 (1)
C(23)	0.4596 (3)	0.0362 (2)	0.2709 (3)	4.6 (1)	4.2 (1)	4.5 (1)	-1.22 (9)	0.0 (1)	0.3 (1)
atom	x	У	Z	<i>B</i> , Å ²	atom	x	у	Z	<i>B</i> , Å ²
H(1)	0.244 (3)	0.079 (2)	0.014 (3)	3.8 (5)	H(9)	0.858 (3)	0.211 (3)	0.284 (3)	6.3 (8)
H(2)	0.131 (3)	0.060 (3)	-0.199 (3)	7.0 (8)	H(10)	0.618 (3)	0.246 (2)	0.327 (3)	5.0(7)
H(3)	0.084 (4)	0.203 (3)	-0.375 (4)	7.8 (9)	H(11)	0.144 (3)	0.198 (2)	0.295 (3)	5.2 (7)
H(4)	0.161 (3)	0.358 (3)	-0.314 (3)	6.8 (8)	H(12)	0.126 (3)	0.047 (3)	0.412 (3)	6.6 (8)
H(5)	0.270 (3)	0.382 (2)	-0.107 (3)	4.6 (6)	H(13)	0.319 (3)	-0.113 (2)	0.438 (3)	5.5 (7)
H(6)	0.540 (2)	0.191 (2)	-0.089 (3)	3.7 (5)	H(14)	0.525 (3)	-0.117 (3)	0.346 (3)	6.6 (8)
H(7)	0.777 (3)	0.162 (3)	-0.112 (3)	6.2 (7)	H(15)	0.537 (2)	0.035 (2)	0.243 (2)	3.3 (5)
H(8)	0.940 (3)	0.170(3)	0.065(3)	5.9(7)					

^a The form of the anisotropic thermal parameter is $\exp[-1/4(B_{11}h^2a^{*2} + B_{22}k^2b^{*2} + B_{33}l^2c^{*2} + 2B_{12}hka^*b^* + 2B_{13}hla^*c^* + 2B_{23}klb^*c^*)]$.

Figure 1. ORTEP view of the molecule of $Cr(CO)_5[P(CH_2CH_2CN)_3]$ (1). The atom numbering scheme applies also to the molybdenum analogue, 2. Atoms are represented by thermal ellipsoids scaled to enclose 30% of the electron density.

 $(CH_2CH_2CN)_3$, and 0.21 g (1.2 mmol) of AgNO₃ was stirred under nitrogen at ambient temperature for 2 h. The solvent was removed under reduced pressure and the product extracted into hot methanol, filtered through Celite, and stored at -10 °C to afford off-white crystals. Crystals suitable for X-ray analysis were obtained by slow evaporation of a methanol solution. The chromium derivative was prepared in a completely analogous manner.

 $M_0(CO)_5P(C_6H_5)_3$ was synthesized as previously described.⁶

Figure 2. ORTEP view of the molecule of $Mo(CO)_5(PPh_3)$, showing the atom numbering scheme.

Crystals were obtained from a CHCl₃/CH₃OH solution at -10 °C. Infrared Spectra. The infrared spectra were recorded in matched

1.0-mm NaCl sealed cells on a Perkin-Elmer 283B spectrophotometer. The spectra were calibrated against a water-vapor spectrum below 2000 cm⁻¹ and against a CO spectrum above 2000 cm⁻¹.

X-ray Crystallography. Crystals suitable for X-ray analysis were attached to the end of a thin glass fiber with epoxy cement and mounted on either a Syntex $P\bar{l}$ or Enraf-Nonius CAD-4F automatic diffractometer. The procedures used for data collection as well as methods used in the solution and refinement of the structure were

⁽⁶⁾ Magee, T. A.; Matthews, C. N.; Wang, T. S; Wotiz, J. H. J. Am. Chem. Soc. 1961, 83, 3200.

 π Acidity of Tris(2-cyanoethyl)phosphine

Figure 3. View of 1 and 2 looking down the P-M-CO_{ax} axis.

Figure 4. View of 3 looking almost directly down the $P-Mo-CO_{ax}$ axis.

Table V.	Bond I	Distances	s for tl	ne Compounds
M(CO),P(CH2CH	$(_{2}CN)_{3}$	M = C	r, Mo)

	d	ist, A
atoms	M = Cr	M = Mo
M-P(1)	2.364 (1)	2.506 (1)
M-C (1)	1.884 (4)	2.034 (5)
M-C(2)	1.893 (4)	2.044 (5)
M-C(3)	1.891 (4)	2.048 (5)
M-C(4)	1.896 (4)	2.048 (5)
M-C(5)	1.876 (4)	2.008 (4)
P(1)-C(6)	1.837 (4)	1.841 (4)
P(1)-C(9)	1.837 (4)	1.836 (4)
P(1)-C(12)	1.840 (4)	1.839 (4)
O(1)-C(1)	1.138 (4)	1.135 (5)
O(2)-C(2)	1.139 (4)	1.134 (5)
O(3)-C(3)	1.138 (4)	1.134 (5)
O(4)-C(4)	1.137 (4)	1.133 (5)
O(5)-C(5)	1.136 (4)	1.145 (5)
N(1)-C(8)	1.125 (5)	1.126 (6)
N(2)-C(11)	1.189 (7)	1.161 (6)
N(2)'-C(11)'	1.17 (2)	1.25 (4)
N(3)-C(14)	1.126 (5)	1.135 (6)
C(6)-C(7)	1.531 (6)	1.525 (6)
C(7)–C(8)	1.457 (6)	1.454 (7)
C(9)-C(10)	1.533 (5)	1.535 (6)
C(10)-C(11)	1.488 (7)	1.489 (7)
C(10)-C(11)'	1.62 (2)	1.58 (3)
C(12)-C(13)	1.530 (6)	1.513 (7)
C(13)-C(14)	1.450 (7)	1.453 (8)
C(6)-H(1)	1.01 (4)	0.85 (4)
C(6)-H(2)	0.97 (4)	1.05 (5)
C(7)-H(3)	0.93 (5)	0.93 (5)
C(7)-H(4)	0.90 (4)	0.97 (4)
C(9)-H(5)	0.95 (3)	0.91 (4)
C(9)-H(6)	0.97 (4)	0.97 (4)
C(10)-H(7)	0.85 (4)	0.74 (4)
C(12)-H(9)	1.01 (4)	0.90 (4)
C(12)-H(10)	0.87 (4)	0.86 (4)
C(13)-H(11)	0.80 (4)	0.84 (4)
C(13)-H(12)	1.02 (5)	0.95 (4)

standard and have been described previously for both Syntex⁷ and CAD-4⁸ data. Pertinent crystallographic parameters for the three compounds are summarized in Table I.

Results

Structures. Atomic positional and thermal parameters for $Cr(CO)_5P(CH_2CH_2CN)_3$ (1), $Mo(CO)_5P(CH_2CH_2CN)_3$ (2), and $Mo(CO)_5P(C_6H_5)_3$ (3) are listed in Tables II, III, and IV, respectively. Figures 1 and 2 show the molecular structures and labeling schemes for $M(CO)_5P(CH_2CH_2CN)_3$ (M = Cr, Mo) and $Mo(CO)_5P(C_6H_5)_3$, respectively. Figures 3 and 4 present views looking down the P-M bond for the two types of compounds. Bond distances and angles for 1 and 2 are presented in Tables V and VI while those for 3 are given in Tables VII and VIII, respectively.

Compounds 1 and 2 are isomorphous and have crystal symmetry conforming to the monoclinic space group $P2_1/n$. Each molecule occupies a general position within the unit cell. The metal atoms, M = Cr and Mo, are octahedrally coordinated with C-M-C angles of 89.9 (2) (average) and 89.9 (2)° (average) and P-M-C angles of 90.2 (1) (average) and 90.2 (1)° (average) for the Cr and Mo compounds, respectively (see Table IX). The M-P distances are 2.364(1) and 2.506(1)Å, respectively. As expected, the compounds show two distinctly different M-CO distances (Table IX). The carbonyl that is trans to the $P(CH_2CH_2CN)_3$ ligand has a significantly shorter M-CO distance than do the carbonyl groups occupying the equatorial plane. For 1 (M = Cr) the M-CO_{ax} and $M-CO_{eq}$ distances are 1.876 (4) and 1.891 (4) Å (average), and for 2 (M = Mo) the corresponding distances are 2.008 (4) and 2.044 (5) Å (average), respectively. As shown in Figure 3, the $P(CH_2CH_2CN)_3$ ligand is oriented so that the P-C(9) bond bisects the equatorial C(1)-M(1)-C(2) angle. This may be quantitatively expressed by the C(1)-M(1)-P-(1)-C(6) torsional angles of 45.8 and 46.2° for the Cr and Mo compounds, respectively. Minimization of steric interactions between the $P(CH_2CH_2CN)_3$ ligand and the equatorial carbonyl ligands is accomplished as follows. First, there is a tilting of the phosphine toward the center of the C(1)-M-(1)-C(2) group by approximately 3°. Second, the C(7)-C-(8)-N group is rotated up and away from the equatorial plane so that the P(1)-C(9)-C(10) plane is essentially perpendicular to the equatorial plane as evidenced by M(1)-P(1)-C(9)-C-(10) torsional angles of 179.2 and 178.9° for 1 and 2, respectively. This also results in a slight increase in the M-(1)-P(1)-C(9) angle from the expected 109.5 to 112.6 (1)° in 1 and 2. Finally, there is a compression of the C(6)-P-(1)-C(12) angle to 99.3 (2) and 99.9 (2)° in 1 and 2, respectively, as a result of interactions between the C(6) and C(12) carbon atoms with the C(3)-O(3) and C(4)-O(4)carbonyl ligands. The C(7)-C(8)-N(1) and C(13)-C(14)-N(3) groups point away from the equatorial plane and give M(1)-P(1)-C-C torsional angles of 60.0 (average) and 57.9° (average) for 1 and 2, respectively. Both compounds show a slight disordering of the C(11)-N(2) group. The extent of the disordering is approximately 15% in 1 and 10% in 2.

Compound 3 crystallizes in the triclinic space group $P\overline{1}$. As in 1 and 2, each molecule occupies a general position within the unit cell. The geometry about the Mo atom is that of a slightly distorted octahedron. The C-Mo-C angles have an average value of 89.2 (1)° whereas the P-Mo-C angles for cis CO groups range from 87.39 (9) to 96.45 (9)°. The Mo-P distance is 2.560 (1) Å. Again, there are two distinctly different Mo-CO distances (see Table IX). The Mo-CO_{ax} distance is 1.995 (3) Å while the Mo-CO_{ex} distances average

- (10) DeLerno, J. R.; Trefonas, L. M.; Darensbourg, M. Y.; Majeste, R. J. Inorg. Chem. 1976, 15, 816.
- (11) Bridges, D. M.; Holywell, G. D.; Rankin, D. W. H.; Freeman, J. M. J. Organomet. Chem. 1971, 32, 87.
- (12) Pickardt, J.; Roesch, L.; Schumann, H. Z. Anorg. Allg. Chem. 1976, 426, 66.

 ⁽⁷⁾ Cotton, F. A.; Ilsley, W. H.; Kaim, W. Inorg. Chem. 1979, 18, 3569
 (8) Bino, A.; Cotton, F. A.; Fanwick, P. E. Inorg. Chem. 1979, 18, 3558.

⁽⁹⁾ Meier, Von W.-P.; Strähle, J.; Lindner, E. Z. Anorg. Allg. Chem. 1976, 424, 154.

in Figure 4, one of the phenyl groups is oriented so that the

P(1)-C(18) bond lies approximately over the bisector of the

equatorial C(2)-Mo(1)-C(3) angle, as evidenced by a C-

(2)-Mo(1)-P(1)-C(18) torsional angle of 47.2°. The phenyl groups adopt a propeller-like configuration with Mo(1)-P-

(1)-C-C torsional angles ranging from 124 to 135.5°. There

is also a tilting of the $P(C_6H_5)_3$ ligand by ca. 6° relative to

the Mo(1)-C(5) bond. Unlike the situation in 1 and 2, how-

ever, the ligand is not tilted toward the C(2)-Mo(1)-C(3)

plane in order to minimize steric repulsions. In 3, these re-

pulsions are reduced by a compression of the C-P-C angles

from the expected 109.5 to 102.6 (1)° (average) and by tilting

		angles, deg			angles, deg			
aton	15	M = Cr	M = Mo	atoms	M = Cr	M = Mo		
P(1)-M(1)	-C(1)	89.2 (1)	89.5 (1)	C(9)-C(10)-C(11)	107.3 (3)	107.8 (4)		
P(1)-M(1)	-C(2)	88.7 (1)	88.8 (1)	C(9)-C(10)-C(11)'	107.1 (6)	105 (1)		
P(1)-M(1)	-C(3)	90.8 (1)	90.6 (1)	C(11)-C(10)-C(11)'	99.2 (6)	100 (1)		
P(1)-M(1)	-C(4)	92.0 (1)	91.9 (1)	N(2)-C(11)-C(10)	174.3 (5)	175.6 (5)		
P(1)-M(1)	-C(5)	177.0 (1)	177.4 (1)	N(2)'-C(11)'-C(10)	177 (1)	175 (3)		
C(1)-M(1)	⊢C(2)	90.8 (2)	91.0 (2)	P(1)-C(12)-C(13)	115.7 (3)	116.5 (4)		
C(1)-M(1)	-C(3)	178.4 (2)	178.5 (2)	C(12)-C(13)-C(14)	113.3 (4)	112.7 (4)		
C(1)-M(1)	⊢C(4)	89.2 (2)	89.3 (6)	N(3)-C(14)-C(13)	177.9 (5)	178.2 (5)		
C(1)-M(1)	⊢C(5)	89.8 (2)	89.9 (2)	C(7)-C(6)-H(1)	112 (2)	113 (3)		
C(2)-M(1)	-C(3)	90.9 (2)	90.5 (2)	C(1)-C(6)-H(2)	112 (2)	115 (2)		
C(2)-M(1)	⊢C(4)	179.3 (2)	179.2 (1)	H(1)-C(6)-H(2)	109 (3)	105 (3)		
C(2)-M(1)	-C(5)	88.5 (2)	88.6 (2)	C(6)-C(7)-H(3)	108 (3)	106 (3)		
C(3)-M(1)	-C(4)	89.2 (2)	89.2 (2)	C(6)-C(7)-H(4)	108 (3)	110 (2)		
C(3)-M(1)	-C(5)	90.2 (2)	90.0 (2)	C(8)-C(7)-H(3)	111 (3)	112 (3)		
C(4)-M(1)	-C(5)	90.9 (2)	90.6 (2)	C(8)-C(7)-H(4)	104 (3)	110 (2)		
M(1)-P(1)	-C(6)	117.6 (2)	117.9 (2)	H(3)-C(7)-H(4)	114 (4)	107 (4)		
M(1)-P(1)	-C(9)	112.6 (1)	111.6 (1)	C(10)-C(9)-H(5)	108 (2)	110 (2)		
M(1)-P(1)	-C(12)	117.3 (2)	117.1 (2)	C(10)-C(9)-H(6)	110 (2)	109 (2)		
C(6)-P(1)-	-C(9)	103.4 (2)	103.3 (2)	H(5)-C(9)-H(6)	107 (3)	106 (3)		
C(6)-P(1)-	-C(12)	99.3 (2)	99.9 (2)	C(9)-C(10)-H(7)	112 (3)	110 (4)		
C(9)-P(1)-	-C(12)	104.6 (2)	105.2 (2)	C(11)-C(10)-H(7)	109 (3)	112 (4)		
M(1)-C(1)	-0(1)	179.2 (3)	179.5 (4)	C(11)'-C(10)-H(7)	121 (3)	121 (4)		
M(1)-C(2)	-0(2)	179.2 (4)	179.1 (3)	C(13)-C(12)-H(9)	106 (2)	109 (2)		
M(1)-C(3)	-0(3)	179.4 (3)	179.5 (4)	C(13)-C(12)-H(10)	111 (3)	110 (2)		
M(1)-C(4)	-0(4)	179.1 (4)	178.6 (4)	H(9)-C(12)-H(10)	109 (3)	106 (3)		
M(1)-C(5)	-O(5)	178.4 (4)	177.7 (4)	C(12)-C(13)-H(11)	100 (3)	112 (3)		
P(1)-C(6)-	-C(7)	114.2 (3)	114.1 (3)	C(12)-C(13)-H(12)	108 (3)	111 (2)		
C(6)-C(7)-	-C(8)	111.4 (4)	111.4 (4)	C(14)-C(13)-H(11)	110 (3)	103 (3)		
N(1)-C(8)	-C(7)	178.8 (5)	179.0 (6)	C(14)-C(13)-H(12)	111 (3)	109 (3)		
P(1)-C(9)-	-C(10)	119.0 (3)	118.6 (3)	H(11)-C(13)-H(12)	114 (4)	108 (4)		
Table VII Bond D	istances (&) f		1)	Table VIII Bond Av	nales (Dea) for Mo(CO)	P(CH)		
Table VII. Bollu D	istances (A) i		1 ₅) ₃	Table VIII, Bollu Al		$_{s}r(C_{6}n_{5})_{3}$		
Mo(1) - P(1)	2.560 (1)	C(15)-C(16)	1.370 (6)	P(1)-Mo(1)-C(1)	96.45 (9) P(1)-C(6)-	-C(7) 122.6 (2)		
Mo(1)-C(1)	2.067 (4)	C(16)-C(17)	1.379 (5)	P(1)-Mo(1)-C(2)	94.48 (9) $P(1)-C(6)$ -	-C(11) 119.3 (2)		
Mo(1)-C(2)	2.037 (3)	C(18) - C(19)	1.384 (4)	P(1)-Mo(1)-C(3)	87.39 (9) C(7)-C(6)	-C(11) 118.1 (3)		
Mo(1)-C(3)	2.030 (4)	C(18)-C(23)	1.380 (4)	P(1)-Mo(1)-C(4)	87.6 (1) C(6)-C(7)-	-C(8) 120.1 (4)		
Mo(1) - C(4)	2.051 (4)	C(19) - C(20)	1.380 (5)	P(1)-Mo(1)-C(5)	174.4 (1) C(7)-C(8)-	-C(9) 120.7 (4)		
Mo(1) - C(5)	1.995 (3)	C(20)-C(21)	1.375 (6)	C(1)-Mo(1)-C(2)	88.9 (1) C(8)-C(9)-	-C(10) 120.0 (4)		
P(1) - C(6)	1.835 (3)	C(21)-C(22)	1.370 (6)	C(1)-Mo(1)-C(3)	176.1 (1) C(9)-C(10)-C(11) 119.9 (4)		
P(1) = C(12)	1.838 (3)	C(22) - C(23)	1.372 (5)	C(1)-Mo(1)-C(4)	89.2 (1) C(6)-C(11)-C(10) 121.1 (4)		
P(1) = C(18)	1.830 (3)	C(7) - H(1)	0.92 (3)	C(1)-Mo(1)-C(5)	88.0 (1) $P(1)-C(12)$)-C(13) 123.5 (2)		
O(1) - C(1)	1.137 (4)	C(8)-H(2)	0.89 (4)	C(2)-Mo(1)-C(3)	90.0 (1) $P(1)-C(12)$)-C(17) 118.3 (2)		
O(2) - C(2)	1.130 (4)	C(9) - H(3)	0.94 (5)	C(2)-Mo(1)-C(4)	177.3 (1) C(13)-C(1	2)-C(17) 118.1 (3)		
O(3) - C(3)	1.140 (4)	C(10) - H(4)	0.86 (4)	C(2)-Mo(1)-C(5)	89.0 (1) C(12)-C(1	3)-C(14) 120.3 (4)		
O(4) - C(4)	1.127 (4)	C(11)-H(5)	0.92 (4)	C(3)-Mo(1)-C(4)	91.7 (2) C(13)-C(1	4)-C(15) 121.0 (4)		
O(5) - C(5)	1.142 (4)	C(13)-H(6)	0.90 (3)	C(3)-Mo(1)-C(5)	88.2 (1) C(14)-C(1	5)-C(16) 119.5 (4)		
C(6)-C(7)	1.389 (4)	C(14)-H(7)	0.89 (4)	C(4)-Mo(1)-C(5)	89.0 (1) C(15)-C(1	6)-C(17) 120.3 (4)		
C(6)-C(11)	1.387 (4)	C(15) - H(8)	0.96 (4)	Mo(1) - P(1) - C(6)	118.74(9) C(12)-C(1	7)-C(16) 120.8 (3)		
C(7)-C(8)	1.380 (5)	C(16)-H(9)	0.85 (4)	MO(1) - P(1) - C(12)	111.67(9) P(1)-C(18))-C(19) 118.9 (2)		
C(8) - C(9)	1.366 (6)	C(17)-H(10)	0.98 (4)	MO(1) - P(1) - C(18)	110.3U(9) P(1)-C(18	(23) = 123.4(2)		
C(9) - C(10)	1.365 (7)	C(19)-H(11)	0.93 (4)	C(6) - P(1) - C(12)	103.4(1) $C(19)-C(1)$	8) - C(23) = 117.6 (3)		
C(10)-C(11)	1.377 (5)	C(20)-H(12)	0.85 (4)	C(0) - F(1) - C(18)	101.9(1) C(18)-C(1)	9) = C(20) = 120.9 (4)		
C(12)-C(13)	1.382 (4)	C(21)-H(13)	0.84 (4)	C(12)-P(1)-C(18)	102.6(1) C(19)-C(2	0)-C(21) 119.9 (4)		
C(12)-C(17)	1.390 (4)	C(22)-H(14)	0.91 (4)	MO(1)-C(1)-O(1)	1/6.3 (3) C(20)-C(2	1)-C(22) 120.1 (4)		
C(13)-C(14)	1.381 (5)	C(23)-H(15)	0.81 (3)	MO(1) - C(2) - O(2)	1/0.7(3) C(21)-C(2)	2)-C(23) = 119.3 (4)		
C(14)-C(15)	1.361 (6)			MO(1) - C(3) - U(3)	1/8.1(3) C(18)-C(2)	3)-C(22) 122.1 (4)		
				MO(1)-C(4)-U(4)	1//.8(4)			
	D/C 11			MO(1)-C(5)-O(5)	1/8.3 (3)			
2.046 (4) A. Th	$e P(C_6H_5)_3$	ligand is bonde	ed in a manner	A . I . I		1 1001 (11)1 -		
analogous to that	observed in	compounds 1 and	nd Z. As shown	of the ligand towa	rd the P-C(12) bond	 The tilting results 		

of the ligand toward the P-C(12) bond. The tilting results in a compression of the Mo(1)-P(1)-C(12) angle to 111.67 (9)°, as compared to 118.74 (9) and 116.50 (9)° for the remaining Mo-P(1)-C angles, and a further 6° rotation of the C(12)-phenyl ring. This gives a Mo(1)-P(1)-C(12)-C-(13) torsional angle of 124° as compared to 133 and 135.5° for the remaining phenyl rings.

Infrared Spectra. Unfortunately the $M(CO)_5P$ -(CH₂CH₂CN)₃ derivatives are extremely insoluble in noninteracting solvents such as saturated hydrocarbons where $\nu(CO)$ bandwidths are narrow. It was necessary to carry out solution infrared investigations in CH₂Cl₂, since these species are only slightly soluble in the less polar CHCl₃ solvent. Under these

Table IX. Comparison of Structural Parameters for the Compounds M(CO), PR, (M = Cr, Mo, W)

compd	M-P , A	M-CO _{ax} , A	M-CO _{eq} , A	C-O _{ax} , A	C–O _{eq} , Å	ref
$Cr(CO)_{s}P(C_{s}H_{s})_{3}$	2.422 (1)	1.844 (4)	1.880 (4) av	1.154 (5)	1.147 (6) av	4
Cr(CO), P(CH, CH, CN),	2.364 (1)	1.876 (4)	1.891 (4) av	1.136 (4)	1.138 (4) av	this work
$Cr(CO), P(CH_1), SH$	2.344 (2)	1.829 (2)	1.87 (2) av	1.194 (1)	1.15 (1) av	9
$Cr(CO), P(OC, H_s)$	2.309 (1)	1.861 (4)	1.896 (4) av	1.136 (6)	1.131 (6) av	4
$Mo(CO), P(C, H_s),$	2.560(1)	1.995 (3)	2.046 (4) av	1.142 (4)	1.134 (4) av	this work
Mo(CO), P(CH, CH, CN),	2.506(1)	2.008 (4)	2.044 (5) av	1.145 (5)	1.134 (5) av	this work
Mo(CO), [P(CH ₂), N ₃]	2.479 (5)	2.034 (5)	2.01 (2) av	1.12 (2)	1.16 (2) av	10
$Mo(CO), PF_3^a$	2.37 (1)	2.063 (6)	2.063 (6)	1.154 (5)	1.154 (5)	11
W(CO) ₅ P[C(CH ₃) ₃] ₃	2.686 (4)	1.98 (2)	2.01 (2) av	1.13 (3)	1.15 (3) av	12

^a Molecular structure determined in the gas phase by electron diffraction.

Table X. Infrared Spectral Data in the ν (CO) Region for M(CO), L Derivatives

		$\nu(CO), cm^{-1}$				
М	L	$A_1^{(2)}$	A ₁ ⁽¹⁾	E		
Cr	$P(OC_6H_5)_3^a$	2078	1969	1960		
Сг	$P(OCH_3)_3^{a}$	2075	1965	1950		
Сг	P(CH, CH, CN)	2068	1966	1944		
Cr	PPh, ^a	2066	1945	1945		
Мо	P(OCH ₁),	2080	1967 ^b	1953		
Мо	P(CH, CH, CN)	2077	1965 ⁶	1952		
Мо	$P(C_6H_5)_3$	2073	1945 ⁶	1949		

^a Taken from ref 16. ^b These peaks, which show up as shoulders on the strong E mode vibration, are believed accurate to ± 5 cm⁻¹.

Figure 5. ν (CO) infrared spectrum of Cr(CO)₅P(CH₂CH₂CN)₃ in CH_2Cl_2 . $A_1^{(1)}$ vibrational mode appears as a shoulder on the highenergy side of the very strong E vibrational mode.

conditions the $\nu(CO)$ peak widths are broad, making it difficult to delineate the $A_1^{(1)}$ and E vibrational modes (See Figure 5). Nevertheless it is possible to assess from comparative spectra measured under identical circumstances that the $P(CH_2C)$ - H_2CN)₃ ligand is more akin to the good π -acceptor ligand $P(OCH_3)_3$ than to $P(C_6H_5)_3$ in its bonding properties to zerovalent metals (Table X). Similar conclusions have been reached on the basis of ν (CO) infrared and ¹³C NMR results in Ni(CO)₃L complexes.^{2,13,14}

Discussion

We have employed the compounds $M(CO)_{5}[P (CH_2CH_2CN)_3$ (M = Cr, Mo) to evaluate the bonding capabilities of the unusual phosphine $P(CH_2CH_2CN)_3$ toward low-valent transition metals. Both the M-P and M-CO bond lengths and the infrared spectrum in the CO stretching region have been measured. We have considered it advisable to study both the Cr and Mo compounds to ensure that there is nothing unique about the observations for any one metal. In the case of chromium, structural data for a triarylphosphine compound, $Cr(CO)_5PPh_3$, were already in the literature; we have also provided data for the molybdenum analogue, Mo(CO)₅PPh₃. The parallel behavior of corresponding sets of Cr and Mo compounds is well illustrated by the differences in the M-P- $(CH_2CH_2CN)_3$ and M-PPh₃ bond lengths, which are 2.364 (1) - 2.422 (1) = -0.058 (2) Å for M = Cr and 2.506 (1) -2.560(1) = -0.054(2) Å for M = Mo.

All available metal-phosphorus bond length data (Table IX) clearly indicate that the tris(2-cyanoethyl)phosphine ligand is a good π acceptor, compatible with the nature of the metal-phosphorus bond as inferred from spectroscopic measurements. It is apparent from these data and the respective Δ HNP values that the donor/acceptor ratio increases in the order $P(OC_6H_5)_3 < P(CH_2CH_2CN)_3 < P(C_6H_5)_3$. An important point to be made concerning metal-phosphorus bond strengths in low-valent metal complexes is that although good π -accepting ligands afford the strongest metal-phosphorus bonds (e.g., see Mo-PF₃ distance in Table IX), good σ -donor ligands can also lead to strong metal-phosphorus bonding. Indeed several kinetic studies strongly suggest that alkylphosphines, which are effecient σ donors with only minimal π -accepting ability, may be very tightly bound to zerovalent metal derivatives.^{15,16}

Acknowledgment. The financial support of this research is by the Robert A. Welch Foundation under Grant No. A-494. D.J.D. is thankful to Tulane University for a sabbatical leave during the Spring semester 1980.

Registry No. 1, 75673-06-2; 2, 75673-07-3; 3, 14971-42-7; $[(C_2H_5)_4N][Mo(CO)_5Br], 15003-38-0; [(C_2H_5)_4N][Cr(CO)_5Br],$ 14780-93-9; Mo(CO)₅P(OCH₃)₃, 15631-20-6.

Supplementary Material Available: Tables of observed and calculated structure factors for all three compounds (29 pages). Ordering information is given on any current masthead page.

Bodner, G. M. Inorg. Chem. 1975, 14, 1932.
 Dobson, G. R.; Smith, L. A. H. Inorg. Chem. 1970, 9, 1001.
 Wovkulich, M. J.; Atwood, J. D. J. Organomet. Chem. 1979, 184, 77.

⁽¹³⁾ Tolman, C. A. J. Am. Chem. Soc. 1970, 92, 2956.