transition-metal ion. These complexes generally have a saddle shape which is attributed to steric interactions between the aromatic rings and the methyl groups. A planar structure was found in one case where the methyls are absent.¹⁷ Bond lengths found for the β -diiminate portions of the macrocyclic ligand in complex II are very close to those reported for complexes III. For example, $C \rightarrow N$, $C \rightarrow C$, and $C \rightarrow CH_3$ bond lengths for

- (16) Goedken, V. L.; Peng, S. M.; Molin-Norris, J.; Park, Y. J. Am. Chem. Soc. 1976, 98, 8391-8400. (17)
- Weiss, M. C.; Gordon, G.; Goedken, V. L. Inorg. Chem. 1977, 16, 305-310.
- Weiss, M. C.; Goedken, V. L. Inorg. Chem. 1979, 18, 274-279.
 Weiss, M. C.; Goedken, V. L. Inorg. Chem. 1979, 18, 819-826.

III fall in the ranges 1.31-1.35 Å, 1.38-1.41 Å, and 1.49-1.52 Å, respectively.¹⁵⁻¹⁹ Bond angles for II are also close to those observed for III except for the Au-N-C angles which are 2-6° smaller.

Acknowledgment. We are indebted to Drs. K. Mertes, B. Lee, and R. Sheldon of this department for valuable advice and to Dr. Lee for use of his library of computer programs. We also thank the University of Kansas for a generous allocation of computer time.

Registry No. III·Cl·2H₂O, 76037-14-4.

Supplementary Material Available: Table V containing observed and calculated structure factor amplitudes (16 pages). Ordering information is given on any current masthead page.

Contribution from the Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106

Preparations and ¹H, ¹³C, and ³¹P Nuclear Magnetic Resonance Studies of Some N,N-Dialkyldiselenocarbamate Complexes and Their Phosphine Derivatives. X-ray Crystal Structure of $Pt(Se_2CN(i-Bu)_2)_2$

WIE-HIN PAN, JOHN P. FACKLER, JR.,* and H.-W. CHEN

Received August 14, 1980

A convenient synthesis of CSe₂ is reported which can be used to prepare dialkyldiselenocarbamates. The ¹H, ¹³C, and ³¹P NMR spectra of about 25 derivatives containing the metal ions Zn(II), Ni(II), Pd(II), Pt(IV), and Co(III) are reported. The single-crystal X-ray structure of monoclinic $Pt(Se_2CN(i-Bu)_2)_2$ (a = 6.736 (1) Å, b = 12.357 (2) Å, c = 15.496 (4) Å, $\beta = 99.03$ (2)°) establishes the coordination geometry to be the same as that found¹ for the Pt(S₂CNEt₂)₂ analogue. The average Pt-Se distance is 2.427 (3) Å, an increase of ~ 0.11 Å over the Pt-S distance, similar to the increase observed for Ni-Se over Ni-S.

While the chemistry of the dithiocarbamates¹ began back in the middle 1800s, the chemistry of the diselenocarbamates is of more recent origin. The preparation of CSe₂ was reported in as early as 1936 by Grimm and Metzger,² but it was not until in 1961 that Barnard and Woodbridge³ described the first preparations of the sodium salts and zinc and copper complexes of dialkyldiselenocarbamic acids, using CSe₂ as one of the starting materials. Apparently, this delay in the development of the chemistry of the diselenocarbamates is due to the toxicity⁴ and unpleasant odor associated with CSe₂ (and selenium compounds in general^{4,5}), rendering it difficult to handle. It was also noted^{3,6} that unlike CS₂, CSe₂ polymerizes readily, particularly in the presence of base, making it useless for the preparation of the diselenocarbamate salt by reaction with amines. An additional drawback is the generally low yield encountered in the preparation of CSe₂ by using the early methods of Grimm and Metzger² and Ives et al.⁶ The development^{7,8} of ⁷⁷Se NMR has prompted our studies

of the selenium analogues of metal dithiocarbamates. Much spectroscopic data (IR,9,10 UV-vis10) as well as a few crystal

- (1) Coucouvanis, D. Prog. Inorg. Chem. 1970, 11, 234-371; 1979, 26, 302-451
- Grim, H. G.; Metzger, H. Chem. Ber. 1936, 69, 1356.
 Barnard, D.; Woodbridge, E. T. J. Chem. Soc. 1961, 2922.
- (4)
- Sar, N. I. "Dangerous Properties of Industrial Materials", 2nd ed.; Reinhold: New York, 1963; p 575. "Organic Selenium Compounds: Their Chemistry and Biology"; Klayman, D. L., Günther, W. H. H., Eds.; Wiley-Interscience: New (5)York, 1973
- Ives, D. J. G.; Pittman, R. W.; Wardlaw, W. J. Chem. Soc. 1947, 1080.
 Pan, W.-H.; Fackler, J. P. J. Am. Chem. Soc. 1978, 100, 5783. Harris,
 R. K.; Mann, B. E. "NMR and the Periodic Table"; Academic Press: New York, 1978; Chapter 12.
- Fackler, J. P.; Pan, Wie-Hin J. Am. Chem. Soc. 1979, 101, 1607.
- (9) Jensen, K. A.; Krishnan, V. Acta Chem. Scand. 1969, 24, 1088.

structures¹¹ of N,N-dialkyldiselenocarbamate complexes have been reported. There is, however, a scarcity of NMR data¹² on these types of complexes. In the course of our study, some interesting multinuclear (¹H, ¹³C, and ³¹P) NMR results have been obtained. Also a small scale (~ 20 g) convenient synthesis of CSe₂, with yields upward of 80%, has been devised. This method is a simplified version of the one reported by Henriksen and Kristiansen¹³ for preparing CSe₂ on a larger scale (800 g). The structure of $Pt(Se_2CN(i-Bu)_2)_2$, synthesized from CSe₂, also is described here.

Experimental Section

Preparation of Compounds. Reagent grade solvents were used unless otherwise stated. The compounds $MCl_2(PR_3)_2$ (M = Ni, Pd, Pt)^{14,15} and cis-Pt(CH₃)₂(PPh₃)₂¹⁶ were prepared according to literature methods. K₂PdCl₄ and K₂PtCl₄ were prepared from the respective metals, the former following the method of Kauffman and Tsai¹⁷ for Na₂PdCl₄ and the latter according to Brauer.¹⁸ All chemical analyses were performed by Galbraith Laboratories, Inc., Knoxville, Tenn. (Table I).

Carbon Diselenide. Figure 1 is a diagram of the apparatus used. Grey Se powder (16-22 g) in a quartz boat (14 \times 1.5 cm) is placed

- 2. 133.
- (14) Jenkins, J. M.; Shaw, B. L. J. Chem. Soc. A 1966, 770.
- Cousmaker, C. R.; Hely-Hurchinson, M.; Mellor, J. R.; Sutton, L. E.; Venanzi, L. M. J. Chem. Soc. 1961, 2705. (15)
- Chatt, J.; Shaw, B. L. J. Chem. Soc. 1959, 705. Kauffman, G. B.; Tsai, J. H.-S. Inorg. Synth. 1966, 8, 234.
- 17)
- Brauer, G. "Handbook of Preparative Inorganic Chemistry"; Academic (18)Press: New York, 1965; Vol. 2, p 1572.

^{(10) (}a) DeFilipo, D.; Deplan, P.; Diaz, A.; Trogu, E. F. Inorg. Chim. Acta 1976, 17, 139. (b) DeFilipo, D.; Deplano, P.; Devillanova, F.; Trogu, E. F. Ibid. 1976, 17, 199. (c) Mannoussakis, G. E.; Tsipis, C. A.; Chirstophides, A. G. Inorg. Chem. 1973, 12, 3015.
(11) Bonamico, M.; Dessy, G. J. Chem. Soc. A 1971, 264.
(12) Tanaka, T.; Sonoda, N. Inorg. Chem. 1971, 10, 2337.
(13) Henriksen, L.; Kristiansen, E. S. S. Int. J. Sulfur Chem. Part A 1972, 2, 133.

Table I. Analytical Results and Melting	Point
---	-------

				% calc	ulated			% fo	und	
compd	color	mp, °C	С	Н	N	Se	С	Н	N	Se
Zn(Se,CNEt,),	light yellow	152-154	21.86	3.64	5.10	57.50	21.9	3.8	5.2	57.8
$Zn(Se,CN(i-Bu)_{2}),$	off white	137-139	32.67	5.49	4.23		32.7	5.7	4.1	
Ni(Se, CN(i-Bu))	olive green	170-173	33.00	5.50	4.28	48.22	32.7	5.5	4.2	48.5
Ni(Se,CNEt,)PEt,Cl	dark red	93-95	29.08	5.55	3.08		29.2	5.7	3.0	
Pd(Se,CNEt,),	red	290 (dec)	20.35	3.38			20.5	3.6		
$Pd(Se_{2}CN(i-Bu)_{2}),$	red	199-202	30.76	5.17			31.0	5.3		
Pd(Se,CNEt,)PPh,Cl	red-orange	199-201	42.75	3.90			43.1	4.1		
Pd(Se,CN(<i>i</i> -Bu),)PPh,Cl	red-orange	228-230	46.18	4.74			46.0	4.8		
Pt(Se,CNEt,),	yellow	300 (dec)	17.68	2.94	4.12		17.5	3.1	4.1	
$Pt(Se_{2}CN(i-Bu)_{2}),$	yellow	216-218	27.32	4.58	3.40	39.91	27.4	4.7	3.6	39.8
Pt(Se,CNEt,)PPh,Cl	yellow	205-208	37.59	3.43			37.6	3.3		
Pt(Se,CN(i-Bu),)PPh,Cl	yellow	237-240	41.00	4.21	1.77		40.8	4.2	1.8	
Pt(Se ₂ CNEt ₂)PPh ₃ CH ₃	yellow	167-169	40.34	3.95		22.10	40.3	4.1		21.9
Pt(Se,CN(i-Bu),)(PPh,),Cl	white	224 (dec)	51.31	4.60	1.33		51.3	5.8	1.1	
cis-Pt(Se,CN(i -Bu),),Br,	red-orange	233-236	22.73	3.81			22.9	3.8		
cis-Pt(Se ₂ CN(<i>i</i> -Bu) ₂) ₂ I ₂	dark red	178-182	20.67	3.47			20.8	3.6		
$[Pt(Se_2CN(i-Bu)_2)_3]Cl$	orange	298-300	28.83	4.84	3.74		28.9	5.2	3.7	
Pt(Se ₂ CNEt ₂)PPh ₃ I	yellow	193-195	33.43	3.05	1.70		33.6	3.0	1.8	
Pd(Se ₂ CNEt ₂)PEt ₃ Cl	orange-red	202-205	26.32	5.02	2.79		26.7	5.2	2.8	
$Co(Se_2CNEt_2)_3$	dark brown	290–292	22.95	3.83	5.35		23.1	4.0	5.4	

Figure 1. Apparatus for the preparation of CSe₂. I: methylene chloride vapor generator, 250-mL three-neck flask with gas inlet, a funnel containing CH₂Cl₂ with a pressure-equalizing arm and a connecting tube (Ib). (Ia is a 250-mL heating mantle.) II: 62×3 cm Pyrex tube. (Section IIa (ca. 15 cm long) is wound with nichrome and is insulated all around by packing with asbestos pulp. The tube is mounted on a multiple unit furnace (IIb).) III: vacuum connector adapter with one end extended as shown. IV: 250-mL or 500-mL round-bottom flask placed in a dry ice/acetone bath.

in tube II, as shown. Purified nitrogen gas (ca. 30-50 bubbles/s) is then passed through the system. Flask I is heated up to between 150 and 200°, section IIa of the tube to $375-400^\circ$, and section IIb of the tube to 575° . As soon as regions IIa and IIb reach a temperature of about 300 and 525° , respectively, methylene chloride is allowed to drop into I at a rate of about 1 drop/s. Gradually, droplets of the greenish yellow liquid CSe₂ form on the walls of the connector adaptor (III). A copious amount is formed as the temperatures in regions IIa and IIb reach 375 and 575°, respectively. As the reaction proceeds, a white mist is observed in the receiver flask (IV). If the mist is a reddish color, indicating that some Se is unreacted, the temperature of IIa is lowered. If IIb is raised much above 575° , decomposition of CSe₂ results and black carbon deposits start to form in the connector tube (III) and receiving flask (IV). The reaction usually is complete in 2-3 h.

Flask IV is taken off, quickly stoppered, and taken into a glovebox located in a fume hood. (CSe_2 has been classified as highly toxic.³ It has a very unpleasant odor even at low concentration. Extreme care must be taken in handling the compound.) Another flask is placed in position IV. The glovebox (a simple Lucite box) is connected to a nitrogen source and through a liquid-nitrogen trap to the vacuum line. Any CSe₂ collected in the trap is later destroyed by adding saturated NaOH solution. The liquid obtained is usually contaminated with black and red solids. It is filtered through neutral alumina. The clear greenish yellow liquid thus obtained is a solution of CSe₂ in unreacted CH₂Cl₂.

For our purposes, it is not necessary to remove the CH_2Cl_2 . Rosenbaum et al.¹⁹ have published a plot of the density of a mixture of CSe_2/CH_2Cl_2 vs. the weight percent of CSe_2 in the mixture. On the basis of these data, a rough content of CSe_2 in the solution can be obtained and usually calculates to a yield of greater than 80% on the basis of Se. In this form, in a closed container, the CSe_2 can be stored at dry-ice temperature (-78 °C) for 2-3 months with little, if any, decomposition.

Dialkyldiselenocarbamate Salts. The preparation of both the potassium and dialkylammonium salts reported by Rosenbaum et al.¹⁹ is closely followed.

Metal Complexes, $M(Se_2CNR_2)_2$. The preparation of complexes of this type has been previously reported.⁷

Chloro(N,N-diethyldiselenocarbamato)(triethylphosphine)nickel(II), Ni(Se₂CNEt₂)PEt₃Cl. Ni(Se₂CNEt₂)₂ (0.54 g) was suspended in 75 mL of acetone. Ni(PEt₃)₂Cl₂ (0.37 g) was dissolved in 25 mL of acetone. While the Ni(Se₂CNEt₂)₂ suspension was stirred, the Ni-(PEt₃)₂Cl₂ solution was added. The suspension slowly turned deep red. After the suspension was stirred for 30 min, a dark red solution formed. Stirring was stopped, and 60 mL of petroleum ether was added, and the solution was left standing in the hood for crystallization. When the volume evaporated down to about 50 mL, more petroleum ether (100 mL) was added. The solution was stored in the freezer for several hours. Very dark red crystals formed, and these were washed with petroleum ether and dried under vacuum: yield, 0.75 g (82%); mp 92–95 °C (at 80 °C the color started to turn darker, at 90 °C it was almost black, and at 92 °C it started to melt, giving a dark red liquid).

Chloro(N, N-diethyldiselenocarbamato) (triphenylphosphine) palladium(II), Pd(Se₂CNEt₂) PPh₃Cl. Pd(Se₂CNEt₂)₂ (0.79 g) and Pd-(PPh₃)₂Cl₂ (0.94 g) were mixed in 30-50 mL of benzene (refluxed over sodium benzophenone before use). Under argon, the suspension was stirred and heated at reflux. After being heated for about 15 min, the suspension cleared up to give an orange red solution. Heating was stopped after 3 h. The solution was filtered while still warm. Upon cooling, crystals formed. Addition of petroleum ether and cooling in the freezer yielded more crystals. The crystals were filtered off, washed with petroleum ether once, and dried under vacuum. The crystals were then recrystallized from CHCl₃/heptane. The yield was 0.7 g (60%). The diisobutyldiselenocarbamate analogue was prepared in a similar manner.

Chloro(N, N-diethyldiselenocarbamato)(triphenylphosphine)platinum(II), Pt(Se₂CNEt₂)PPh₃Cl. Pt(Se₂CNEt₂)₂ (0.58 g) and Pt-(PPh₃)₂Cl₂ (0.66g) were mixed in 35 mL of benzene (refluxed over sodium benzophenone before use). The mixture was refluxed under nitrogen for about 7 h at the end of which the mixture had cleared to a yellow solution. No yellow precipitate (indicating unreacted Pt(Se₂CNEt₂)₂) was formed on cooling. The yellow solution was filtered and the filtrate evaporated to dryness. The yellow solid was

⁽¹⁹⁾ Rosenbaum, V. A.; Kirchberg, H.; Leibnitz, E. J. Prakt. Chem. 1963, 19, 1.

Table II. ¹ H NMI	Parameters of	Diselenocarbamates
------------------------------	---------------	--------------------

		δα			J, Hz		
compd	solvent	CH3	CH ₂	СН	СН,-СН	CH2-CH	CH ₃ -CH ₂
$K(Se_2CN(i-Bu)_2)$	acetone-d ₆	0.90	4.12	2.68	6.5	7.0	
$CH_2(Se_2CN(i-Bu)_2)_2$	CDCl,	0.95	3.55	2.48	6.5	7.0	
			4.01			7.5	
			5.45 ^b				
$Zn(Se_2CNEt_2)_2$	CDCl,	1.35	3.79				7.0
$Zn(Se_{CN}(i-Bu)_{2})$	CDC1,	1.00	3.73	2.48	6.5	7.5	
(NH ₂ Et ₂)Se ₂ CNEt ₂	CDCl ₃	1.27	3.23				7.0
	•	1.42	4.10				7.5
Ni(Se,CNEt,),	CDCl ₃	1.28	3.66				7.0
$Ni(Se_{i}CN(i-Bu)_{i})$	CDCl ₁	0.94	3.50	2.28	6.5	7.5	
Ni(Se,CNEt,)PEt,Cl ^c	CDCl	1.28	3.84				7.0
Ni(Se_CNEt_)PMePh_Cl ^f	CDC1,	1.18	3.54				7.2
$Pd(Se_{a}CN(i-Bu))$	CDCL	0.97	3.63	2.35	6.2	7.5	
Pd(Se,CNEt,)PEt,Cl	CDC1,	buried under	3.78				7.0
× 1 2× 3	2	PEt, multiplet	3.82				
Pd(Se_CNEt_)PPh_Cl	CDC1	1.18	3.58				7.0
2	,	1.26	3.76				7.0
Pd(Se.CNEt.). ^e	CDC1.	1.32	3.76				
Pd(Se,CN(i-Bu),)PPh,Cl	CDC1.	0.87	3.43	2.22	6.0	7.5	
	,	0.93	3.58		6.0	7.5	
Pt(Se.CNEt.).	CDC1.	1.34	3.61				7.2
$Pt(Se_iCN(i-Bu)_i)$	CDC1.	0.98	3.46	2.36	6.2	7.5	
Pt(Se_CNEt_)PPh_Cl	CDCL.	1.19	3.49				7.0
1.(0.2012),11.301		1.28	3.67				7.5
Pt(Se,CN(i-Bu),)PPh,Cl	CDCL.	0.88	3.31	2.25	6.5	7.0	
10(001011(0.20)1)111301	02013	0.94	3.50		6.5	7.0	
Pt(Se_CNEt_)PPh_CH_d	CDCl.	1.23	3.63				7.0
	<u>,</u>	1.33	3.71				7.0
Pt(Se_CNEt_)PPh_1	CDC1.	1.21	3.43				7.0
1.(0,201.2,2),11.3	02 013	1.29	3.61				7.0
$[Pt(Se_{i}CN(i-Bu)_{i})(PPh_{i})_{i}]Cl$	CDC1.	0.93	3.46	2.19	6.5	7.5	,
[Pt(Se CN(i, Bu))] C1	CDC1	10	3 4 2	2.43	6.5	7.5	
cis-Pt(Se, CN(i-Bu))	CDC1.	0.97	3.17	2.17	6.0	7.0	
	02013	0197	3.28	2	0.0		
cis-Pt(Se CN(i-Bu)) Br	CDC1.	10	3 33	2.3	6.5	7.5	
	00013	1.0	3.40	2.5	0.0	,	
Co(Se CNFt)	CDCI	1 27	3 66				7.0
CO((SC2CITE12)3	CDCI3	1.21	3 71				75
			5.71				1.0

^a Downfield from Me₄Si. ^b CH₂ singlet, flanked by ⁷⁷Se satellites, ² $J_{Se-H} = 18$ Hz. ^c The triethylphosphine shows as a multiplet at 1.48 ppm. ^d The methyl peak falls at 0.57 ppm showing the following coupling constants: ² $J_{Pt-H} = 74$ Hz, ³ $J_{P-H} = 4.5$ Hz, ³ $J_{Xe-H} = 8.0$ Hz. ^e See ref 14. ^f δ (PCH₃Ph₂) = 1.95 ppm; ² $J_{P-H} = 10.5$ Hz.

recrystallized from $CHCl_3/acetone/heptane$. The yield was 1.0 g (81%). The diisobutyldiselenocarbamate analogue was prepared in a similar manner.

Iodo(N, N-diethyldiselenocarbamato)(triphenylphosphine)platinum(II), Pt(Se₂CNEt₂)PPh₃I. Pt(Se₂CNEt₂)PPh₃Cl (0.27 g) and NaI (0.09 g) were mixed in 25 mL of acetone and stirred for ca. 3 h. The mixture was filtered, leaving some white solid. The yellow filtrate was evaporated to give yellow crystals. These crystals were collected, washed with petroleum ether and air-dried. The yield was 0.24 g (77%).

Methyl(N,N-diethyldiselenocarbamato)(triphenylphosphine)platinum(II), Pt(Se₂CNEt₂)PPh₃CH₃. Pt(Se₂CNEt₂)₂ (0.18 g) and Pt(PPH₃)₂(CH₃)₂ (0.20 g) were mixed in 30 mL of benzene (refluxed over sodium benzophenone before use). Under argon, the mixture was stirred and heated at reflux. Heating was stopped after ca. 24 h. No precipitate formed, a good indication that the reaction was complete since both starting materials are only slightly soluble in benzene at room temperature. The clear solution was reduced in volume to ca. 10 mL. Some petroleum ether, $30-60^{\circ}$ boiling range, was added until a light yellow precipitate began to form. The yellow product was recrystallized from CHCl₃/heptane. The yield was 0.21 g (55%).

Tris(N,N-diethyldiselenocarbamato)cobalt(III), Co(Se₂CNEt₂)₃. To an aqueous solution of 1 g of CoCl₂·6H₂O in 30 mL of H₂O was added an ethanolic suspension of (NEt₂H₂)Se₂CNEt₂, 4 g in 30 mL of 95% ethanol, with vigorous stirring. A dark brown precipitate formed which was filtered off, washed with water, and recrystallized from CHCl₃.

Methylenebis(N, N-diisobutyldiselenocarbamate), CH₂(Se₂CN(i-Bu)₂)₂. This compound was obtained as a byproduct of an attempted preparation of Pt(Se₂CN(i-Bu)₂)₂ from (N(i-Bu)₂H₂)Se₂CN(i-Bu)₂

and K_2PtCl_4 in ethanol. The solid mass which resulted was dissolved in CH_2Cl_2 in an attempt to crystallize out a pure compound. Instead, the oxidized platinum complex $[Pt(Se_2CN(i-Bu)_2)_3]Cl$ and CH_2 - $(Se_2CN(i-Bu)_2)_2$ were isolated. The latter also could be prepared by the reaction of $Pt(Se_2CN(i-Bu)_2)_2$ with PPh₃ in CH_2Cl_2 .

(N,N-Diisobutyldiselenocarbamato)bis(triphenylphosphine)platinum(II) Chloride, [Pt(Se₂CN(*i*-Bu)₂)(PPh₃)₂/CL. Triphenylphosphine (0.5 g) and Pt(Se₂CN(*i*-Bu)₂)₂ (0.51 g) were placed in a Schlenk flask and evacuated. CH₂Cl₂ was vapor transferred into the flask. The solution was stirred for ca. 6 h in which time it turned from orange to light yellow. The solvent was partly stripped, and then diethyl ether was added until a white precipitate began to form. More white precipitate formed upon cooling. The flask was opened, and the white precipitate was filtered off and washed several times with ether. It was recrystallized from CH₂Cl₂/Et₂O. The yield was 0.65 g (90%). The filtrant was light yellow in color, containing CH₂(Se₂CN(*i*-Bu₂)₂ which was not isolated. The above reaction was also carried out in the presence of air. The same product was obtained.

cis-Dihalobis(N, N-diisobutyldiselenocarbamato)platinum(IV), cis-Pt(Se₂CN(*i*-Bu)₂)₂X₂ (X = I, Br). These complexes were prepared according to the method used to prepared the dithio analogue as reported by Willemse et al.²⁰

Physical Measurements. Melting points were obtained on a Thomas Hoover capillary melting point apparatus and are reported uncorrected. ¹H NMR spectra were observed on a Varian A 60A spectrometer (Table II). ¹H-decoupled ¹³C (Table III) and ³¹P (Table IV) NMR spectra were recorded on a Varian XL-100-15 spectrometer equipped

⁽²⁰⁾ Willemse, J.; Cras, J. A.; Wijnhoven, J. G.; Beurskens, P. T. Recl. Trav. Chim. Pays-Bas 1973, 92, 1199.

	Table III.	¹³ C NMR	Results for	Diselenocarbamates
--	------------	---------------------	-------------	--------------------

			δ			
compd	solvent	°C	$\frac{CH_2}{(J_{C-P}, Hz)}$	СН	СН3	phosphine ^a (J _{C-P} , Hz)
Ni(Se, CN(i-Bu))	CDC1.	30	59.03	26.85	20.05	
$Ni(Se_2CNEt_2)PEt_3Cl$	CDCl ₃	- 4 0	47.49 46.31	20.05	12.47	12.85 (30.9), 8.12
$Pd(Se_{CN}(i-Bu)_{-})$	CDC1.	30	59.79	26.98	20.12	
$Pd(Se_2CN(i-Bu)_2)PPh_3Cl$	CDCl ₃	30	60.08	26.93	20.04	134.47 (11.2), 130.61 (2.0), 130.4 (44.2), 128.48 (10.0)
$Pd(Se_2CN(i-Bu)_2)PPh_3Cl$	CDC1,	70	60.28	27.05	20.08 20.16	134.62 (11.3), 130.57 (2.2), 128.48 (10.0)
$Pd(Se_{2}CN(i-Bu)_{2})PPh_{3}Cl$	CDCl,	-30	59.72	26.68	19.95	134.24 (12.0), 130.66 (2.0), 128.48 (10.3)
Pd(Se ₂ CNEt ₂)PPh ₃ Cl	CDCl ₃	30	47.56 (br) ^b 47.41		12.53 12.28	134.48 (11.2), 130.28 (45.0), 130.66 (0.0), 128.50 (10.4)
Pd(Se ₂ CNEt ₂)PEt ₃ Cl	CDCl3	30	47.99 47.03 (1.9)		12.56 12.30	15.25 (26.2), 8.23 (1.8)
Pd(Se ₂ CNEt ₂)PEt ₃ Cl	CDCl ₃	70	48.07 47.10 (1.9)		12.59 12.32	15.63 (25.8), 8.29 (1.8)
Pd(Se ₂ CNEt ₂)PEt ₃ Cl	CDCl ₃	- 30	47.90 46.87 (br) (~1.2 ^e)		12.53 12.29	14.56 (26.5), 8.14 (1.8)
Pd(Se ₂ CNEt ₂)PEt ₃ Cl	C_6D_6	30	47.76 47.08 (br)		12.46 12.18	15.68 (26.2), 8.38 (0.0)
		9 0	47.91 47.23 (br)		12.47 12.22	16.34 (25.6), 8.48 (0.0)
$Pt(Se_2CN(i-Bu)_2)_2$	CDCl ₃	30	59.16	26.81	20.06	
$Pt(Se_2CN(i-Bu)_2)(PPh_3)_2Cl$	CDCl ₃	30	60.25	27.05	20.02	134.18 (t), 131.89 (s), 128.69 (t) ^{c}
cis-Pt(Se ₂ CN(i -Bu) ₂) ₂ I ₂	CDCl ₃	14	59.19 58.59	27.07 26.89	20.32	
cis-Pt(Se ₂ CN(<i>i</i> -Bu) ₂) ₂ I ₂	CDCl ₃	47	59.46 58.81	27.19 27.02	20.40	
Pt(Se ₂ CNEt ₂)PPh ₃ Cl	CDC1,	30	47.57 (br) 47.39		12.47 12.22	134.35 (10.4) (J_{C-Pt} = 21.6 Hz), 130.72 (2.3) 129.90 (56.3), 128.28 (10.6)
Pt(Se ₂ CNEt ₂)PPh ₃ Cl	CDCl3	-40	47.30 47.22 (br)		12.48 12.17	134.04 (10.5) $(J_{C-Pt} = 21.0 \text{ Hz})$, 130.79 (0.0) 128.30 (10.8)
Pt(Se ₂ CNEt ₂)PPh ₃ CH ₃	CDCl ₃	30	47.77 (br)		12.23	133.98 (11.3) $({}^{3}J_{C-Pt} = 29.0 \text{ Hz}), 131.72$ (55.0)
			46.42		$-13.09 (^{2}J_{C-P} = 7.2 \text{ Hz};$ $^{1}J_{C-Pt} = 621.5 \text{ Hz})^{d}$	130.08 (2.5), 128.07 (11.1)
Pt(Se ₂ CNEt ₂)PPh ₃ CH ₃	CDCl ₃	-40	47.76 (br)		12.18	133.76 (11.3) $({}^{3}J_{C-Pt} = 29.0 \text{ Hz})$, 131.04 (56.0)
			46.21		$-13.18 (^{2}J_{C-P} = 7.3 \text{ Hz})$	130.16 (1.5), 128.09 (10.5)
$Pt(Se_2CNEt_2)PPh_3CH_3$	C_6D_6	9 0	47.68 (2.4) 46.43		12.19	134.65 (11.3), 130.15 (2.3), 128.31 (10.3)

^a In the triphenylphosphine, the carbon bonded to P is sometimes not observed due to saturation. ^b br = broad. ^c t = triplet; s = singlet. ^d Methyl group coordinated to Pt. ^e Uncertain due to broadening.

 Table IV.
 Selected ³¹P NMR Spectral Results for the Diselenocarbamates

compd	δ ^α	$J_{\rm P-Pt}$, Hz	J _{P-Se} , ^b Hz
$\begin{array}{l} Pt(Se_2CNEt_2)PPh_3CH_3\\ Pt(Se_2CN(i-Bu)_2)PPh_3Cl\\ [Pt(Se_2CN(i-Bu)_2)(PPh_3)_2]Cl\\ Pd(Se_2CNEt_2)PPh_3Cl\\ Ni(Se_2CNEt_2)PEt_3Cl \end{array}$	21.1 13.2 15.9 27.1 16.1	4067.3 3620.2 3235.0	112.1 100.2 complex 103.9 51; 25 (br
PEt ₃ PPh	-12.25 -4.4		satellites)

^a All spectra obtained from CDCl₃ solutions at ambient temperature; (external) reference is 85% H₃PO₄; downfield shift is positive. ^b Only ³¹P-⁷⁷Se couplings to ⁷⁷Se trans to ³¹P are reported, except for Ni(Se₂CNEt₂)PEt₃Cl. Cis couplings are generally less than 10 Hz.

with Fourier transform and Gyro observe capabilities and operating at 25.16 and 40.54 MHz, respectively (Table IV). A Varian V6040 temperature controller was used in the variable-temperature studies. On the XL-100, low temperatures were measured by using a calibrated SGA Scientific Inc. JM-7600 thermometer inserted in a tube containing the appropriate solvent. Field-frequency lock was effected by using deuterated solvents (Norell). ¹H and ¹³C chemical shifts are reported relative to tetramethylsilane while ³¹P chemical shifts were compared with external 85% phosphoric acid. Chemical shifts downfield of the reference are indicated positive. Table V. Crystallographic Data for $Pt(Se_2CN(i-Bu)_2)_2$

molecular formula fw	PtC ₁₈ N ₂ Se ₄ H ₃₆ 791.43
cell const (22 °C)	
<i>a</i> , Å	6.736 (1)
<i>b</i> , Å	12.357 (2)
<i>c</i> , Å	15.496 (4)
β, deg	99.03 (2)
vol, Å ³	1273.97 (32)
$d_{\text{calcd}}, \text{g cm}^{-3}$	2.06
d_{obsd} , g cm ⁻³ (by floatation)	2.03
Z, formula units per cell	2
λ(Μο Κα), Α	0.710 73
cryst dimens, mm ³	$0.2 \times 0.2 \times 0.3$
linear absorption, cm ⁻¹	119.2
systematic abs	h0l, l = 2n + 1; 0k0, k = 2n + 1
space group	$C_{2n}^{5}, P2_{1}/c$ (No. 14)
2θ limits, deg	2.0-55.0
unique data, $I = 3\sigma_I$	1527
no. variables	115
$R/R_{\rm w}$ (statistical weights)	0.068/0.074

Crystallographic Measurements. A suitable crystal of $Pt(Se_2CN-(i-Bu)_2)_2$ was mounted parallel to its long axis on a glass fiber. After centering and indexing, data were obtained on a Syntex P2₁ automatic diffractometer (Table V). The structure was solved by heavy-atom (Patterson) technique and refined to an isotropic convergence for the 13 nonhydrogen atoms. The programs used and general computational

Figure 2. Structure and selected dimensions of $Pt(Se_2CN(i-Bu)_2)_2$.

Table VI.	Positional Parameters and Estimated Standard
Deviations	of $Pt(Se_CN(i-Bu)_2)$

	x	у	Z
Pt	0.0000	0.5000	0.5000
Se1	0.1708 (3)	0.5989 (2)	0.6252 (2)
Se2	-0.2774 (3)	0.5882 (2)	0.5549 (2)
N	-0.1141 (28)	0.7282 (14)	0.6980 (11)
CN	-0.0824 (34)	0.6510 (19)	0.6370 (15)
CB1	-0.3175 (33)	0.7718 (18)	0.6977 (16)
CB2	-0.3242 (39)	0.8945 (19)	0.6641 (16)
CB3	-0.2773 (48)	0.9022 (25)	0.5747 (20)
CB4	-0.5342(38)	0.9352 (23)	0.6677 (22)
CB5	0.0564 (34)	0.7688 (18)	0.7602 (13)
CB6	0.1096 (45)	0.6983 (28)	0.8411 (18)
CB7	-0.0418 (46)	0.6751 (35)	0.8893 (21)
CB8	0.2973 (44)	0.7465 (28)	0.8979 (18)

procedures have been described.³⁷ Absorption corrections were not deemed to be cost effective since the crystal was reasonably symmetric. Table VI lists potential parameters. Figure 2 presents an ORTEP drawing of the structure which includes selected bond lengths and angles. Additional information includes thermal parameters (Table VII) and structure factors (see Appendix).

Results

Preparation of Compounds. Using the present method to prepare CSe₂, we have been able to achieve yields greater than 80% routinely. With care, speed, and working in the hood (equipped with a good exhaust) at all times, we have managed to keep the CSe₂ vapor from the laboratory area. As obtained, CSe₂ is in CH₂Cl₂, and it can be used directly for the preparation of the dialkylammonium dialkyldiselenocarbamates. These salts are generally prepared by the slow addition of the CSe₂ solution to an excess of the dialkylamine in petroleum ether (ca. five times the volume of the CSe₂ solution at 0 °C and under nitrogen. When diethylamine is used, the yellow diethylammonium salt precipitates immediately. However, when diisobutylamine is used, the diisobutylammonium salt remains in solution. In this case, the solution is first con-

centrated to about half the initial volume and then cooled in dry ice overnight. The yellow dialkylammonium salt obtained is filtered and generously washed with petroleum ether until it no longer smells of the amine. The filtration and washings are carried out in air.

The dialkylammonium diselenocarbamates are not indefinitely stable in air. The diisobutylammonium salt decompose within days is kept at room temperature. The diethylammonium salt can be kept longer at room temperature if kept dry. In order to avoid decomposition, the dialkyldiselenocarbamates are usually stored as the zinc complex. The zinc can be readily displaced by other metals such as those reported here.

The method used to prepare the complexes $M(Se_2CNR_2)$ -PR'₃X (M = Ni, Pd, Pt; R = Et, *i*-Bu; R' = Et, Ph; X = Cl, I, CH₃) is a new one. Attempts to prepare these complexes with the method used to prepare the dithio analogue⁶ were not very successful. The present approach is simple, gives high yields, and shows no evidence of interferring side products. This new method also works well for the preparation of the dithio analogues.

The structure of $Pt(Se_2CN(i-Bu)_2)_2$ supports the contention¹¹ that replacement of S by Se leads to few significant changes. There is a slight 4.5° twist away from planarity of the Se1, Se2, CN plane from the N, CBl, CB5 plane for this centric molecule, but this twist may be caused by asymmetric packing of the isobutyl groups. The N-CN distance of 1.38 (3) Å is slightly larger (~0.02-0.07 Å) than the distance generally found in dithiocarbamates but within three standard deviations of the length reported for nearly all other structures of dithio- or diselenocarbamates. Some intramolecular distances and angles are reported in Table VIII.

NMR Results. The ¹H results are presented in Table II. Some results have been reported by other previously¹² (those of $M(Se_2CNEt_2)_2$; M = Ni, Pd, Pt) and are included in Table II for comparison. In general, for the complexes of the type $M(Se_2CNR_2)_2$ where R is ethyl, the methylene quartet falls in the region of 3.5 ppm while the methyl triplet falls at around 1.3 ppm. When R is isobutyl, the methylene doublet falls around 3.5 ppm followed by the methine multiplet at about 2.3 ppm and the methyl doublet at around 0.95 ppm. The observed ¹H-¹H coupling constants are normal for three-bond couplings.

In the complexes, $M(Se_2CNR_2)PR_3'X$, the alkyl groups are nonequivalent at the probe temperature (ca. 36 °C) except for the Ni complex. For the Pd and Pt complexes when X =Cl or I and R = Et, the nonequivalent methylene and methyl peaks are generally separated by about 0.18 and 0.08 ppm, respectively. However, in Pt(Se₂CNEt₂)PPh₃Me, the methylene peaks are separated by 0.08 ppm and the methyl peaks by 0.10 ppm. The ²J_{H-Pt} of 74 Hz is similar to the observed values in *trans*- and *cis*-PtMeXL₂ (X = halide) and PtMe₂L₂ (L = phosphine) (50-90 Hz),²¹ while the small ³J_{H-P} of 4.5

Table VII. Thermal Parameters⁴ and Estimated Standard Deviations for $Pt(Se_{2}CN(i-Bu)_{2})$,

	β_{11}	β_{22}	β33	β_{12}	β_{13}	β ₂₃
 Pt	0.02307 (3)	0.0052 (2)	0.0033 (2)	-0.0000 (2)	0.0018 (2)	-0.00007 (2)
Se1	0.0193 (6)	0.0076 (2)	0.0037 (2)	0.0007 (3)	0.0010 (2)	-0.0016 (2)
Se2	0.0178 (7)	0.0071(2)	0.0049 (2)	-0.0002(3)	0.0015 (2)	-0.0022(2)
Ν	0.0254 (57)	0.0054 (15)	0.0033 (10)	-0.0018(25)	0.0044 (19)	-0.0002(10)
CN	0.0272 (71)	0.0074 (21)	0.0051 (13)	0.0056 (33)	0.0030 (26)	0.0033 (14)
CB1	0.0202 (65)	0.0056 (19)	0.0072 (16)	-0.0005 (30)	0.0022 (26)	-0.0001(14)
CB2	0.0391 (88)	0.0061 (20)	0.0058 (15)	0.0037 (36)	0.0053 (30)	0.0010 (14)
CB3	0.052 (12)	0.0122 (29)	0.0078 (19)	0.0009 (52)	0.0041 (39)	0.0040 (20)
CB4	0.0251 (79)	0.0097 (25)	0.0140 (26)	0.0054 (39)	0.0078 (38)	0.0013 (21)
CB5	0.0302 (80)	0.0081 (22)	0.0025 (11)	-0.0006 (35)	-0.0029 (25)	-0.0014 (13)
CB6	0.040(10)	0.0182(37)	0.0054 (16)	-0.0066 (55)	0.0027 (35)	0.0025 (21)
CB7	0.038 (11)	0.0267 (53)	0.0086(22)	0.0023 (64)	0.0080 (40)	0.0057 (28)
CN8	0.0392 (98)	0.0189 (39)	0.0055 (16)	-0.0004 (54)	-0.0036(34)	-0.0017(20)

^a The form of the thermal ellipsoid is $\exp[-(\beta_{11}h^2 + \beta_{22}k^2 + \beta_{33}l^2 + 2\beta_{12}hk + 2\beta_{13}hl + 2\beta_{23}kl)]$.

Table VIII. Intramolecular Distances and Bond Angles and Their Estimated Standard Deviations for $Pt(Se_2CN(i-Bu)_2)_2$

	Bonded D	Distances, A	
Pt-Se1	2.426 (3)	CB1–CB2	1.60 (3)
Pt-Se2	2.429 (3)	CB2-CB3	1.47 (4)
CN-Se1	1.86 (2)	CB2–CB4	1.51 (4)
CN-Se2	1.85 (2)	CB5-CB6	1.52 (4)
CN-N	1.38 (3)	CB6-CB7	1.38 (5)
N-CB1	1.47 (3)	CB6-CB8	1.54 (4)
N-CB5	1.47 (3)		
	Nonbonded	l Distances, Å	
Se1Se2	3.048 (3)	SelCB5	3.14 (2)
PtCN	2.94 (2)	Se2CB1	3.21 (2)
	Bond Ar	ngles, Deg	
Se1-Pt-Se2	77.8 (1)	CB1-CB2-CB3	111.6 (19)
Pt-Se1-CN	85.7 (9)	CB1-CB2-CB4	106.3 (18)
Pt-Se2-CN	85.8 (9)	СВ3-СВ2-СВ4	110.8 (20)
Se1-CN-Se2	110.5 (13)	CB1-N-CB5	120.6 (15)
Se1-CN-N	123.3 (15)	N-CB5-CB6	113.8 (17)
Se2-CN-N	126.2 (16)	CB5-CB6-CB7	117.7 (23)
CN-N-CB1	119.6 (15)	CB5-CB6-CB8	108.4 (21)
CN-N-CB5	119.7 (15)	CB7-CB6-CB8	112.2 (23)
N-CB1-CB2	109.1 (16)		
		P- CH2-CH	3 р
			сн,
			CH 3
		N 1	
N GU CU			^H 2
N- <u>U</u> H2 ^{-UN} 3			ⁿ 3
I M			145
	10	ppm	
√ /ر	N N		
1 × -	$\boldsymbol{\lambda}$		
		1 N N	
			. A

Hz is expected for a methyl group being cis to a phosphine group. Ruddick and Shaw²² previously reported ${}^{3}J_{H-P}$ to be about 4.5 and 7.0 Hz in each of the complexes cis-PtMeXL₂ $(X = Cl, N_3; L = PMePh_2, PMe_2Ph)$. They could not be certain, however, which of the ${}^{3}J_{H-P}$'s in each complex arises from cis coupling and which from trans coupling.

No study of the ¹³C NMR of diselenocarbamates has appeared previously. Table V consitutes the first such report. The ¹³C chemical shifts reported are very similar to those reported for the dithiocarbamates.^{23,24} In the present study, the ¹³C signal of the CSe₂ moiety was not clearly observable. (Chemical shift information obtained from this carbon potentially could be useful as shown by Lin²⁵ who was able to observe this carbon signal in the dithiocarbamate analogue, 30% enriched with ${}^{13}C$ at CS₂.)

In the unsymmetrical complexes, M(Se₂CNR₂)PR'₃X, some of the results are notable. The ¹H NMR of $Pd(Se_2CN(i-$ Bu)₂)PPh₃Cl shows two sets of isobutyl proton resonances (see Table II) while, in the corresponding ¹³C NMR, only one set of isobutyl carbon resonances are observed (Table III). When the isobutyl groups are replaced by ethyl groups, the methylene and methyl carbons show two sets of ¹³C resonances (see Table III). In these cases, one of the methylene peaks is either broad

- (21) Appleton, T. G.; Clark, H. C.; Manzer, L. E. Coord. Chem. Rev. 1973, 10. 335.
- (22) Ruddick, J. D.; Shaw, B. L. J. Chem. Soc. A 1969, 2801.
 (23) Lin, I. J. B.; Chen, H.-W.; Fackler, J. P., Jr. Inorg. Chem. 1978, 17,
- 394.
- (24) Van Gall, H. L. M.; Diesveld, J. W.; Pijpers, F. W.; Van der Linden, J. G. M. Inorg. Chem. 1979, 18, 3251.
 (25) Lin, I. J. B., Ph.D. Thesis, Case Western Reserve University, 1975.

Figure 4. ³¹P (¹H) NMR spectrum of Pt(Se₂CNEt₂)PPh₃Me in CDCl₃ at 30 °C. The small peaks in the insert are ¹³C satellites.

or further split into a doublet; for example, see Figure 3. It is also noted that the $M(Se_2CNEt_2)PPh_3Cl$ (M = Pd, Pt) and Pt(Se₂CNEt₂)PPh₃Me, the broad methylene peak is downfield of the sharp methylene peak at room temperature while, in $Pd(Se_2CNEt_2)PEt_3Cl$, the methylene peak (at 47.0 ppm) that is split into a doublet is upfield of the singlet methylene peak (at 48.0 ppm) (Figure 3).

The ¹³C NMR spectra of Pd(Se₂CNEt₂)PPh₃Cl also were obtained with use of a higher frequency (45.3 MHz).²⁶ At this frequency, the methyl peak separation was found to be larger (11.1 Hz) than at 25.2 MHz (6.4 Hz). Similarly, the methlyene peak separation is 8.3 Hz at 45.3 MHz and 3.8 Hz at 25.2 MHz. These results show that the splittings are due to chemical shift differences and not to spin-spin coupling. A sample of Pd(Se₂CNEt₂)PEt₃Cl also was run at 45.3 MHz to see the effect on the upfield methylene peaks at 47.0 ppm. The separation of the peaks is about 1.5 Hz. The separation of these peaks at 25.2 MHz is 1.9 Hz. Thus the splitting of the upfield methylene peak is due to spin-spin coupling. If the splitting were due to chemical shift differences, the separation expected at 45.3 MHz is 3.4 Hz.

When C_6D_6 is used as solvent, the upfield methylene resonance (47.0 ppm) of Pd(Se₂CNEt₂)PEt₃Cl is no longer resolved into a doublet as in CDCl₃ but instead appears as a broad peak. An opposite behavior is observed in Pt- $(Se_2CNEt_2)PPh_3Me$ where in CDCl₃, the upfield methylene carbon resonance is broad at 30 and -40 °C, but in C_6D_6 , at 90 °C, this peak is split into a doublet.

In general, varying the temperature changes the observed chemical shifts by a small amount (less than 0.5 ppm). In $Pd(Se_2CN(i-Bu)_2)PPh_3Cl$, a splitting of 0.09 ppm of the methyl peak is seen at 70 °C. The upfield methylene doublet (47.0 ppm) of Pd(Se₂CNEt₂)PEt₃Cl broadens at low temperatures, and at -30 °C the splitting could barely be observed. For the rest of the complexes, the ¹³C NMR changes with temperature are quite unremarkable.

Only a few ³¹P NMR results have been obtained, and these are reported in Table V. The ³¹P chemical shifts for PEt₃ and PPh₃ have been included for comparison. Upon coordination, the phosphine resonance invariably shifts downfield.

In the Pt complexes, the ${}^{31}P_{-195}Pt$ coupling constants are as generally expected.^{27,28} The ${}^{1}J_{P_{-}Pt}$ in Pt(Se₂CN(*i*- $Bu_{2}(PPh_{3})_{2}Cl$ is normal (~3000 Hz) for cis bis(phosphine) complexes (trans bis(phosphine) complexes usually have ${}^{1}J_{P-Pt}$ less than 3000 Hz). The relatively large ${}^{1}J_{P-Pt}$ in the Pt-Me complex is consistent with the published data²⁹ on cis-

- (27)
- (28)Pidcock, A.; Richards, R. E.; Venanzi, L. M. J. Chem. Soc. A 1966, 3707
- (29) Allen, F. H.; Pidcock, A. J. Chem. Soc. A 1968, 2700.

⁽²⁶⁾ The Brucker WP-180 NMR spectrometer was used for these measurements. The authors gratefully acknowledge Dr. Thomas Gerken for obtaining the ¹³C spectra. Allen, F. H.; Sze, S. N. J. Chem. Soc. A 1971, 2054.

PtMeX(PEt₃)₂ in which ${}^{1}J_{P-Pt}$ of the phosphine cis to Me is about 4000 Hz. Figure 4 is a ${}^{31}P$ spectrum of Pt- $(Se_2CNEt_2)PPh_3Me$ exhibiting the coupling to both ¹⁹⁵Pt and ⁷⁷Se.

No two-bond ${}^{31}P^{-77}Se$ coupling constants previously have been reported. (One-bond ${}^{31}P^{-77}Se$ couplings in $(CH_3)_2P$ -SeCH₃ and $(CH_3)_2P(S)SeCH_3$ have been reported³⁰ to be 205 and 341 Hz, respectively) Only the trans ³¹P-⁷⁷Se coupling for the Pt and Pd complexes are reported here. The cis couplings are small⁷ (10 Hz or less), and the resulting satellites are usually "fused" into the center peak (see, for example, Figure 4).

Discussion

Two reactions^{1,5} have been used to prepare CSe₂ (eq 1 and 2). Reaction 1 involves using a known carcinogen, CCl₄, and

$$CCl_4 + 2H_2Se \rightarrow CSe_2 + 4HCl$$
 (1)

$$CH_2Cl_2 + 2Se \rightarrow CSe_2 + 2HCl$$
 (2)

H₂Se gas, the most toxic Se compound known, being toxic at a level of 0.2 mg of Se/m³ of air.⁴ Also, reaction 1 possesses no advantage in procedure and yield over reaction 2; hence we prefer the latter for laboratory syntheses.

The $Pt(Se_2CN(i-Bu)_2)_2$ structure (Figure 2) is typical¹¹ of the structure of nickel triad bis(dithiocarbamate) and bis-(diselenocarbamate). The ligand including the first two carbon atoms of the alkyl groups is generally planar with a rather short C-N bond length. The slightly longer, ~ 0.05 Å, C-N "selenoureide" distance observed here may be significant although too few structure comparing S and Se derivatives have appeared to date to warrant discussion at this time. The Pt-Se distance is 0.11 Å longer than the Pt-S distance¹ in Pt- $(S_2CNEt_2)_2$, a difference identical with the difference observed between the Ni-Se and Ni-S distances in the nickel analogues.

The syntheses and characterization of transition-metal complexes containing only N,N-dialkyldiselenocarbamates as ligands have been reported by, among others, Barnard and Woodbridge,³ Rosenbaum et al.,¹⁹ Furlani et al.,³¹ and Jensen et al.⁹ Complexes of the type M(Se₂CNR₂)PR'₃Cl have not been previously reported, and the method of preparing them is different from that of the dithio analogues.^{6,32} Tanaka and Sonoda³³ have prepared the thioselenocarbamato analogue $Pd(SeSCNR_2)PR'_{3}Cl$ by reacting $\{Pd(PR_3)Cl_2\}_2$ with $(CH_3)_2 SnCl(SSeCNR_2).$

The method used to prepare Pt(Se₂CNEt₂)PPh₃CH₃ is an extension of that used for preparing the chloride derivative, with $Pt(CH_3)_2(PPh_3)_2$ in place of $PtCl_2(PPh_3)_2$. The yield, while somewhat lower than that of the chloride derivatives, is slightly above 50%. This light yellow complex is stable in air. Its structure recently has been reported.³⁴

Examination of Table II shows that ¹H NMR spectroscopy can give useful qualitative information about the diselenocarbamates. In particular, the chemical shift of the methylene protons, which are the nearest to the nitrogen, are sensitive to the metal as well as the other ligands on the metal. In general, the ¹H chemical shifts in the dithiocarbamates^{12,32,35} are slightly upfield (by ca. 0.05 ppm) of those in the diselenocarbamates.

Various factors influence the ¹H chemical shifts in the diselenocarbamates, including contributions from delocalization

- (31)
- McFarlane, W.; Nash, J. A. Chem. Commun. 1969, 913. Furlani, C.; Cervone, E.; Camassei, F. D. Inorg. Chem. 1968, 7, 265. Cornock, M. C.; Stephenson, T. A. J. Chem. Soc. A 1977, 501. Sonoda, N.; Tanaka, T. Inorg. Chim. Acta 1975, 12, 261. (32)(33)
- Chen, H.-W.; Fackler, J. P., Jr.; Masters, A. F.; Pan, W.-H. Inorg. Chim. Acta 1979, 35, L333. (34)

of electron density in the Se₂CN portion of the ligand. No clear trends exist but it appears that the chemical shifts of the first carbon atom of the alkyl groups bound to N are sensitive to changes in the bonding at selenium.

In the unsymmetrical complexes, $M(Se_2CNR_2)PR'_3X$ (M = Pd, Pt), the phenyl group on the triphenylphosphine appears to make a significant contribution to the NCH_2 chemical shifts. A similar result has been suggested by Tanaka et al.³³ in their study of the Pd complex of the thioseleno analogues. The crystal structure of Pt(Se₂CNEt₂)PPh₃Cl³⁶ shows that one of the phenyl rings on the phosphine lies perpendicular to the PtSe₂PCl plane of the molecule with the first carbon atom of the ring in the plane of the molecule. The center of this ring is about 6.5 Å away from the closer of the two NCH₂ carbon atoms. At 6.5-Å distance, the diamagnetic ring current effect can be calculated³⁷ to give a shift of about 0.12 ppm while, at 5.5 Å, a shift of about 0.25 ppm results. In each of the complexes, $M(Se_2CNR_2)PPh_3Cl$ (M = Pd, Pt; R = Et, *i*-Bu), the chemical shift differences between the two sets of NCH₂ protons range between 0.15 and 0.19 ppm. In Pd- $(Se_2CNEt_2)PEt_3Cl$, however, the corresponding chemical shifts differ only by 0.04 ppm. Thus the ring current effect of the phosphine phenyl groups contribute to the chemical shift of the NCH₂ protons.

An extensive collection of ¹³C NMR spectra of dithiocarbamate-containing complexes has recently been published by van der Linden et al.²⁴ Unfortunately the lack of correspondence of the alkyl groups on the dichalcogenocarbamates and other donor groups on the metals with those in the present study allows only a very limited comparison to be made between our results and van der Linden's. In general, the NCH_2 carbon resonances of the diseleno complexes are downfield of those of the dithio analogues by about 3 ppm. This may reflect a slightly greater positive charge on the N atom in the selenium analogues, a reasonable result of the decreased ability of Se compared with S to π bond to the adjacent C atom. Like the ¹H chemical shifts, the ¹³C chemical shifts of the diselenocarbamates are sensitive to changes of the metal as well as the other ligands on the metal.

The observation of only one set of isobutyl ¹³C resonances for $Pd(Se_2CN(i-Bu)_2)PPh_3Cl$ at ambient temperatures could be caused by an accidental degeneracy. Alternatively, chemical exchange could produce the effect. Since the ¹H NMR shows well-resolved nonequivalent isobutyl groups, an exchange rate would need to be intermediate between the ${}^{1}H$ and ${}^{13}C$ NMR time scales. However, the splitting of the methyl carbon peaks observed at 70 °C is not consistent with this explanation. Accidental degeneracy appears to be the more likely. The other two Pd complexes, $Pd(Se_2CNEt_2)PR_3Cl$ ($PR_3 = PPh_3$, PEt₃), show chemical shifts for the two sets of NCH₂ carbon resonances that are solvent and temperature variable. Hence under the right conditions, the resonances may become coincidental.

One of the NCH₂ resonances is broadened or split in M- $(\text{Se}_2\text{CNEt}_2)\text{PR}_3X$ (M = Pd, Pt; R = Ph, Et; X = Cl, Me). ¹H, ⁷⁷Se, ⁷ and ³¹P NMR indicate that the complexes do not dissociate appreciably in solution. The origin of this splitting appears to be a five-bond spin-spin coupling to ³¹P, the only other nucleus with spin 1/2 (other than ¹H which is decoupled) in the molecule.

Unlike the dithiocarbamate complexes, a special feature of the diselenocarbamate complexes is the observation of satellites in the ³¹P NMR arising from spin-spin coupling to ⁷⁷Se. These

- Johnson, C. E.; Bovey, F. A. J. Chem. Phys. 1958, 29, 1012. (37)
- Fackler, J. P., Jr.; Masters, A. F. Inorg. Chim. Acta 1980, 39, 111-118. (38)

⁽³⁰⁾

⁽³⁶⁾ Unpublished results.

The $2p\pi$ - $3p\pi$ overlap of C-S π bonding is larger than the $2p\pi$ - $4p\pi$ overlap required for C-Se π bonding at the observed bond distances. (39)

satellites can be useful for probing dynamic processes involving the metal-selenium bonds.⁸ Only satellites arising from trans ${}^{31}P{}^{-77}Se$ coupling are clearly observed in the Pd and Pt complexes. The cis coupling is too small (<10 Hz), and the satellite arising from these are in the base of the main peak.

Acknowledgment. We wish to thank the Department of Pharmacology and Dr. Thomas Gerken for running a number of samples on the Bruker WP 180. The National Institutes of Health, Grant GM-19050, and the National Science Foundation, Grant CHE 76-18709, have supported these studies.

Registry No. $K(Se_2CN(i-Bu)_2)$, 67994-90-5; $CH_2(Se_2CN(i-Bu)_2)_2$, 76137-25-2; $Zn(Se_2CNEt_2)_2$, 19400-58-9; $Zn(Se_2CN(i-Bu)_2)_2$, 68011-63-2; $(NH_2Et_2)Se_2CNEt_2$, 30634-02-7; $Ni(Se_2CNEt_2)_2$, 19400-59-0; Ni(Se₂CN(*i*-Bu)₂), 68025-77-4; Ni(Se₂CNEt₂)PEt₃Cl, 67994-91-6; Ni(Se₂CNEt₂)PMePh₂Cl, 76136-18-0; Pd(Se₂CN(*i*-Bu)₂)₂, 68011-58-5; Pd(Se₂CNEt₂)PEt₃Cl, 76136-19-1; Pd-(Se₂CNEt₂)PPh₃Cl, 76136-20-4; Pd(Se₂CN(*i*-Bu)₂)PPh₃Cl, 68025-79-6; Pt(Se₂CNEt₂), 19400-65-8; Pt(Se₂CN(*i*-Bu)₂), 68025-75-2; Pt(Se₂CNEt₂)PPh₃Cl, 68011-59-6; Pt(Se₂CN(*i*-Bu)₂)PPh₃Cl, 68252-96-0; Pt(Se₂CNEt₂)PPh₃CH, 76136-21-5; Pt(Se₂CNEt₂)PPh₃L, 68252-96-0; Pt(Se₂CN(*i*-Bu)₂)(PPh₃)₂]Cl, 68025-78-5; [Pt(Se₂CN (*i*-Bu)₂)₃]Cl, 76136-23-7; *cis*-Pt(Se₂CN(*i*-Bu)₂)₂]₂, 68011-50-7; *cis*-Pt(Se₂CN(*i*-Bu)₂)₂Br₂, 68011-61-0; Co(Se₂CNEt₂)₃, 76136-24-8; Pd(Se₂CNEt₂)₂, 19400-60-3; Ni(PEt₃)₂Cl₂, 17523-24-9; Pd(PPh₃)₂Cl₂, 13965-03-2; Pt(Ph₃)₂Cl₂, 10199-34-5; Pt(PPh₃)₂(CN₃), 17567-35-0; K₂PtCl₄, 10025-99-7; (N(*i*-Bu)₂)₂P₂S₂CN(*i*-Bu)₂, 76137-27-4.

Supplementary Material Available: A listing of observed and calculated structure factor amplitudes (4 pages). Ordering information is given on any current masthead page.

Contribution from the Department of Chemistry, University of Virginia, Charlottesville, Virginia 22901

Mercury-Bridged Cobaltacarborane Complexes Containing B-Hg-B Three-Center Bonds. Synthesis and Structure of μ,μ' -[$(\eta^5-C_5R_5)Co(CH_3)_2C_2B_3H_4$]₂Hg and μ -[$(\eta^5-C_5R_5)Co(CH_3)_2C_2B_3H_4$]HgCl (R = H, CH₃) and Related Compounds¹

DAVID C. FINSTER and RUSSELL N. GRIMES*

Received September 9, 1980

Reactions of the *nido*-cobaltacarborane anions $(\eta^5-C_5H_5)Co(CH_3)_2C_2B_3H_4^-$ and $[\eta^5-C_5(CH_3)_3]Co(CH_3)_2C_2B_3H_4^-$ with HgCl₂ in tetrahydrofuran give initially the unstable adducts $[(\eta^5-C_5R_5)Co(CH_3)_2C_2B_3H_4\cdot HgCl_2]^-$ (R = H, CH₃), which lose Cl⁻ to form the isolable HgCl-bridged complexes μ -[$(\eta^5-C_5R_5)Co(CH_3)_2C_2B_3H_4$]HgCl; the latter species undergo symmetrization to generate the bis(cobaltacarboranyl)mercury complexes $\mu,\mu'-[(\eta^5-C_5R_5)Co(CH_3)_2C_2B_3H_4]_2$ Hg. In the cyclopentadienyl system (R = H), the formation of the μ,μ' complex is rapid, giving high yields within minutes; in contrast, the pentamethylcyclopentadienyl species reacts much more slowly, requiring days to form the μ,μ' complex in isolable quantity. Thus, the characterization of the mono(cobaltacarboranyl)mercury complexes is based on pulse Fourier transform ¹H and ¹¹B NMR, IR, and mass spectra, and single-crystal X-ray diffraction studies of μ -[$(\eta^5-C_5H_5)Co(CH_3)_2C_2B_3H_4$]HgCl and $\mu,\mu'-[(\eta^5-C_5H_5)Co(CH_3)_2C_2B_3H_4]_2$ Hg. The mono(cobaltacarboranyl) complex crystallizes as a dimer with weak intermolecular Hg.-Cl interactions. Crystal data for HgCoClCl₁₄B₃H₂s: mol wt 520.76, space group P2₁/n, Z = 2, a = 9.634 (2) Å, b = 14.05 (1) Å, c = 13.862 (7) Å, $\beta = 96.71$ (3)°, V = 1863 Å³, R = 0.044 for 1607 reflections having $F_0^2 > 3\sigma(F_0^2)$. Crystal data for HgCo₂C₁₈B₆H₃₀: mol wt 629.75, space group P2₁/n, Z = 2, a = 8.456 (8) Å, b = 11.334 (7) Å, c = 11.77 (1) Å, $\beta = 100.12$ (9)°, V = 1110 Å³, R = 0.081 for 1441 reflections having $F_0^2 > 3\sigma(F_0^2)$.

Introduction

A recent report² from these laboratories described the preparation of the mercury-bridged complexes μ,μ' -[(CH₃)₂C₂B₄H₅]₂Hg (I), μ,μ' -(B₅H₈)₂Hg (II), and some chemistry based on these species. In the proposed structures² of I and II, a mercury atom interacts with a B-B edge on the open face of the *nido*-carborane or -borane ligand, forming a two-electron, three-center B-Hg-B bond. The general principle of boron-metal-boron bridging in nido-boranes and -carboranes is well established;³ in addition to I and II, there are several known complexes in which a metal (or nonmetal) atom participates in B-M-B bridge-bonding on *two* separate

ligands.⁴ However, previous examples of well-characterized B-Hg-B bridging are virtually nonexistent.⁵

 (6) (a) Greenwood, N. N.; Thomas, B. S.; Waite, D. W. J. Chem. Soc., Dalton Trans. 1975, 299. (b) Greenwood, N. N.; Sharrocks, D. N. J. Chem. Soc. A 1969, 2334. (c) Greenwood, N. N. Pure Appl. Chem. 1977, 49, 791.

0020-1669/81/1320-0863\$01.00/0 © 1981 American Chemical Society

⁽¹⁾ Based in part on a Ph.D. dissertation, University of Virginia, 1980, by D.C.F.

⁽²⁾ Hosmane, N. S.; Grimes, R. N. Inorg. Chem. 1979, 18, 2886.

 ^{(3) (}a) Greenwood, N. N.; Ward, I. M. Chem. Soc. Rev. 1974, 3, 231. (b)
 Wegner, P. A. In "Boron Hydride Chemistry"; Muetterties, E. L., Ed.; Academic Press: New York, 1975; Chapter 12.

^{(4) (}a) Tabereaux, A.; Grimes, R. N. Inorg. Chem. 1973, 12, 792. (b) Davison, A.; Traficante, D. D.; Wreford, S. S. J. Am. Chem. Soc. 1974, 96, 2802. (c) Denton, D. L.; Clayton, W. R.; Mangion, M.; Shore, S. G.; Meyers, E. A. Inorg. Chem. 1976, 15, 541. (d) Brennan, J. P.; Schaeffer, R.; Davison, A.; Wreford, S. S. J. Chem. Soc., Chem. Commun. 1973, 354. (e) Shore, S. G. "Abstracts of Papers", 19th International Conference on Coordination Chemistry, Prague, Czechoslovakia, Sept 1978. (f) Greenwood, N. N.; Hails, M. J.; Kennedy, J. D.; McDonald, W. S. J. Chem. Soc., Chem. Commun. 1980, 37. (g) Greenwood, N. N.; McGinnety, J. A.; Owen, J. D. J. Chem. Soc., Dalton Trans. 1972, 989. (h) Guggenberger, L. J. J. Am. Chem. Soc. 1972, 94, 114.

⁽⁵⁾ In the known mercury complexes of the nido-B₁₀H₁₂²⁻ ligand,⁶ Hg is evidently η⁴-coordinated to the cage, and in the complexes of nido-C₂B₉H₁₁²⁻ and closo-C₂B₁₀H₁₁⁻ it is η¹-coordinate (σ bonded).^{7,8} A partially characterized complex formulated as μ-(c₇H₃Hg)-2,3-C₂B₄H₇ was reported several years ago.⁹
(6) (a) Greenwood, N. N.; Thomas, B. S.; Waite, D. W. J. Chem. Soc.,