1111

5). The role of a solvent molecule may be understood by considering its interaction with the coordinated oxygen atom in $V(acac)_3$. The V-O bond is weakened, and the effective charge of the V^{III} ion increases through such an interaction to facilitate the formation of II* or IV* by the nucleophilic attack of Hacac or H₂O.²⁷

The increase in k_0 in the presence of trichloroacetic acid in Hacac (Table IV) is also regarded as the acid catalysis, the proton interacting with the coordinated oxygen.23

Comparison with Related Reactions. Second-order rate constants and activation parameters of substitution reactions of V^{III}O₆-type complexes including ligand exchange (k_{ex}) , anation (k_f) , and solvolysis (k_s) are collected in Table V. The present k_{ex} (k_a) value is smaller by an order of 10³-10⁷ than the k_{ex} , k_f , and k_s values for the reactions of $[V(H_2O)_6]^{3+}$ and $[V(Me_2SO)_6]^{3+}$ with unidentate nucleophiles.²⁻⁶ Such an inertness is in line with that in the exchange of malonato ligand in aqueous solution (cf. 2 in Table V).²⁹ The reaction product between $[V(Me_2SO)_6]^{3+}$ and 2,2'-bipyridine or sulfosalicylic acid in Me₂SO (8 and 9 in Table V)⁵ can contain the bidentate ligand as either unidentate or chelate. The small rate constants of the backward reactions suggest the presence of chelated species.

Most of the activation entropies in Table V are similar to one another. All these reactions seem to proceed via an associative rate-determining step, regardless of the dentate number of the ligands. (The anation of NCS^{-,2} $N_3^{-,4}$ and $HC_2O_4^{-,7}$ for $[V(H_2O)_6]^{3+}$ was suggested to proceed via an associative mechanism). On the other hand, the ΔH^* values scatter and seem to be responsible for determining the mechanism.) The inertness of the present reaction is attributed to the large ΔH^* value.

The sequence of the exchange rates of $M^{III}(acac)_3$ in Hacac is obtained as follows:^{9,10} Fe^{III} > V^{III} \gg Co^{III} > Cr^{III} > Ru^{III} > Rh^{III}. The first-order rate constant k_a value for V^{III} is 25 times smaller than for Fe^{III} and is larger than that for Co^{III} by a factor of 10⁶, at 25 °C.

Registry No. V(acac), 13476-99-8; Hacac, 123-54-6.

Contribution from the Department of Chemistry and Ames Laboratory,¹ Iowa State University, Ames, Iowa 50011

Synthesis and Spectroscopic Study of η^5 -C₅H₅(CO)₂Fe[C(XR)YR]⁺ Carbene Complexes, Where X and Y Are O, S, Se, and/or NR

FRED B. MCCORMICK and ROBERT J. ANGELICI*

Received April 14, 1980

A variety of $Cp(CO)_2Fe[C(XR)YR]^+$ (X = S; Y = O, S, Se) carbone complexes are readily available from $Cp(CO)_2Fe(CS)^+$ by reaction with RY⁻ to form Cp(CO)₂FeC(=S)YR, followed by alkylation with CH₃SO₃F or CH₃SO₃CF₃. Similar treatment of CpFe(CO)₃⁺ leads to Cp(CO)₂Fe[Y(CH₃)Ph]⁺ compounds rather than carbene complexes. The reactions of Cp- $(CO)_2Fe[C(SCH_3)OCH_3]^+$ with alcohols and $Cp(CO)_2Fe[C(SCH_3)_2]^+$ with dithiols yield $Cp(CO)_2Fe[C(OR)OCH_3]^+$ and $Cp(CO)_2Fe[CS(CH_2)_nS]^+$ (n = 2, 3) carbon complexes, respectively. The thiotxocarbon complex $Cp(CO)_2Fe[C-CO)_2Fe[C (SCH_3)OCH_3]^+$ undergoes facile thermal rearrangement to a binuclear species, $[Cp(CO)_2Fe]_2SCH_3^+$. Reaction of $Cp(CO)_2Fe[C(SCH_3)_2]^+$ with LiAlH₄ yields $Cp(CO)_2Fe[C(SCH_3)_2H]$ which may be converted to an unstable secondary carbene complex, $Cp(CO)_2Fe[C(SCH_3)H]^+$, by reaction with CF_3SO_3H . These new carbene complexes, and other known carbene complexes, are studied by IR, ¹H NMR, and ¹³C NMR spectroscopy to determine the electronic effects of the XR and YR groups; an order of relative π -stabilization ability is established (N \gg Se \geq S > O). Trends in the chemical shifts of the carbons in the ^{13}C NMR spectra of the Cp(CO)₂Fe[C(XR)YR]⁺ complexes are also observed.

Introduction

Transition-metal carbene complexes are of great interest as they are postulated as intermediates in catalytic processes, most notably in the Fischer-Tropsch reaction^{2a} and in olefin metathesis.^{2b} A better understanding of chemical, physical, and electronic factors which influence model carbene systems should lend insight into these catalytic processes. The interesting chemical behavior found for Cp(CO)₂Fe[dithiocarbene]⁺ complexes³ (Cp = η^5 -C₅H₅) has prompted us to investigate the $Cp(CO)_2Fe[carbene]^+$ system further.

Carbon-13 NMR spectroscopy has proven to be a valuable tool in organometallic chemistry.⁴⁻⁶ Analysis of carbene

complexes by ¹³C NMR spectroscopy is especially interesting because of the high sensitivity of the carbon resonance to changes in the electronic environment.⁷ In this report, we present the synthesis of a variety of iron carbene complexes incorporating O, S, and Se into the carbene ligands. These complexes, and other carbene complexes reported previously, 3,8 are analyzed by means of IR, ¹H NMR, and ¹³C NMR spectroscopy with emphasis on the relative π -stabilization abilities of the heteroatoms in the carbene ligands.

Results and Discussion

Preparation of Carbene Complexes from Cp(CO)₂Fe(CS)⁺. The bis(methylthio)carbene complex {Cp(CO)₂Fe[C-(SCH₃)₂]PF₆ (Ia) has been prepared in 69% yield from Cp- $(CO)_2$ FeC(=S)SCH₃ (which may be obtained from the re-

⁽²⁷⁾ Correlation of the acceptor number with parameters concerning reactions of complexes in solution has been demonstrated thermodynami-cally.²⁶ However, it has scarcely been discussed kinetically.

⁽²⁸⁾ Gritzner, G.; Danksagmüller, K.; Gutmann, V. J. Electroanal. Chem. 1976, 72, 177.

⁽²⁹⁾ Ikeda, Y.; Soya, S.; Fukutomi, H.; Tomiyasu, H., private communication.

Ames Laboratory is operated for the U.S. Department of Energy by (1) Inters Lawratory is operated for the U.S. Department of Energy by Iowa State University under Contract No. W-7405-Eng-82. This research was supported by the Assistant Secretary for Energy Research, Office of Energy Research, Grant WPAS-KC-03-02-01.
(a) Masters, C. Adv. Organomet. Chem. 1979, 17, 61-103. (b) Calderon, N.; Lawrence, J. P.; Ofstead, E. A. Ibid. 1979, 17, 449-492. McCormick, F. B.; Angelici, R. J. Inorg. Chem. 1979, 18, 1231-1235. Gansow, O. A.; Vernon, W. D. Ton Carbon-13 NMP Secretary 1997.

⁽²⁾

Gansow, O. A.; Vernon, W. D. Top. Carbon-13 NMR Spectrosc. 1976, (4) 2, 269-341.

⁽⁵⁾ Chisholm, M. H.; Godleski, S. Prog. Inorg. Chem. 1976, 20, 299-436.
(6) Mann, B. E. Adv. Organomet. Chem. 1974, 12, 135-213.

⁽⁷⁾

Connor, J. A.; Jones, E. M.; Randall, E. W.; Rosenberg, E. J. Chem. Soc., Dalton Trans. 1972, 2419–2424. Fischer, E. O.; Kreis, G.; Kreissel, F. R.; Kreiter, C. G.; Muller, J. Chem. Ber. 1973, 106, 3910–3919. (8)

Table I. IR Spectra of the New Complexes and of Other Pertinent Carbene Complexes in CH₄Cl₂

complex	ν (CO), cm ⁻¹	$k(CO),^a mdyn/Å$
${Cp(CO)_2Fe[C(SCH_3)_2]}PF_6^b$ (Ia)	2058 (s), 2017 (s)	16.77
${Cp(CO)_2Fe[C(SCH_3)_2]}CF_3SO_3$ (Ib)	2055 (s), 2014 (s)	16.72
$Cp(CO)_{2}FeC(=S)SePh$ (IId)	2032 (s), 1983 (s)	16.28
${Cp(CO)_{2}Fe[C(SCH_{3})OCH_{3}]}PF_{6}$ (IIIa)	2062 (s), 2019 (s)	16.82
${Cp(CO)_{2}Fe[C(SCH_{3})OPh]}PF_{6}$ (IIIb)	2060 (s), 2019 (s)	16.80
${Cp(CO)_2Fe[C(SCH_3)SPh]}PF_6$ (IIIc)	2057 (s), 2016 (s)	16.75
${Cp(CO)_{2}Fe[C(SCH_{3})SePh]}PF_{6}$ (IIId)	2058 (s), 2019 (s)	16.78
${Cp(CO)_{2}Fe[C(SCH_{3})OCH_{3}]}CF_{3}SO_{3}(IV)$	2060 (s), 2017 (s)	16.78
$\{ [Cp(CO)_2Fe]_2SCH_3 \} CF_3SO_3 (V) $	2056 (vs), 2039 (s), 2003 (vs, br)	
${Cp(CO)_{2}Fe[S(CH_{3})Ph]}PF_{6}$ (VIIa)	2064 (s), 2022 (s)	16.86
${Cp(CO)_{3}Fe[Se(CH_{3})Ph]}PF_{6}$ (VIIb)	2057 (s), 2017 (s)	16.76
${Cp(CO)_{2}Fe[CS(CH_{2})_{2}S]}PF_{6}$ (VIIIa)	2065 (s), 2024 (s)	16.88
$\{Cp(CO), Fe[CS(CH_1), S]\}$ PF, (VIIIb)	2057 (s), 2015 (s)	16.74
$\{Cp(CO), Fe[C(OCH_1),]\}PF_{c}^{c}(IX)$	2068 (s), 2020 (s)	16.87
$\{Cp(CO), Fe[C(OCH_1),]\}CF, SO, (Xa)$	2063 (s), 2016 (s)	16.80
{Cp(CO), Fe[C(OCH,)OCH, CH,]}CF, SO, (Xb)	2064 (s), 2017 (s)	16.82
$Cp(CO), Fe[C(SCH_1), H]^d$ (XI)	2018 (s), 1968 (s)	16.04
$\{Cp(CO), Fe[C(SCH_3)H]\}CF_3SO_3(XII)$	2067 (s), 2026 (s)	16.9 1
${Cp(CO)_2Fe[C(OCH_3)H]}PF_6^e$ (XIII)	2085 (s), 2043 (s)	17.21
{Cp(CO) ₂ Fe[CNH(CH ₂) ₂ NH]}PF ₆ ^b	2053 (s), 2003 (s)	16.61
$\{C_{p}(CO), F_{e}(CNH(CH_{1}), NH)\}PF_{e}^{b}$	2051 (s), 2000 (s)	16.57
{Cp(CO),Fe[C(SCH,)SCH,CH,]}PF,b	2060 (s), 2017 (s)	16.78

^a Reference 22. ^b Reference 3. ^c Reference 13. ^d In hexanes. ^e Reference 24, in CH₃NO₃.

action of Cp(CO)₂Fe⁻ with CS₂ and CH₃I⁹ or by reaction of $Cp(CO)_2Fe(CS)^+$ with CH_3S^{-10} by alkylation with CH_3SO_3F followed by PF_6^- exchange.³ Methyl trifluoromethane-sulfonate, $CH_3SO_3CF_3$, has been shown to alkylate the thioformyl ligands of $X(CO)(L)_3OsC(=S)H$ (X = Cl, Br; L = CN(p-tolyl), PPh₃) to give secondary carbene complexes, $X(CO)(L)_3Os[C(SCH_3)H]^+$,¹¹ and it also reacts with Cp- $(CO)_2FeC(=S)SCH_3$ to give the $CF_3SO_3^-$ (triflate) salt of Ia in excellent yield (eq 1).

$$Cp(CO)_{2}Fe - C \xrightarrow{S} + CH_{3}SO_{3}CF_{3} \longrightarrow \begin{bmatrix} Cp(CO)_{2}Fe - C \xrightarrow{SCH_{3}} \\ Cp(CO)_{2}Fe - C \xrightarrow{SCH_{3}} \\ CF_{3}SO_{3} \quad (1) \end{bmatrix}$$
Ib (87%)

The significant improvement in yield over the previously reported route³ may be largely due to the elimination of the anion-exchange step. Complex Ib crystallizes very readily and has stability and solubility characteristics similar to those of Ia.3

The thiocarbonyl complex $Cp(CO)_2Fe(CS)^+$ may be readily converted to thioester derivatives by reaction with alkoxides, 12,13 mercaptides, and selenides (eq 2). When this reaction is

 $Cp(CO)_2Fe(CS)^+ + RY^- - Cp(CO)_2Fe^-C$ (2) $RY = CH_3O (IIa, 70\%)^{12}$ $= PhO (IIb)^{13}$ = PhS (IIc)= PhSe (IId, 56%)

attempted with PhTe⁻, much gas evolution results, and an

(11) Collins, T. J.; Roper, W. R. J. Organomet. Chem. 1978, 159, 73-89.

Table II. ¹H NMR Spectra of the New Complexes and Other Pertinent Carbene Complexes in Acetone- $d_{5}(\tau)^{a}$

complex	C₅H₅	C, H,	OCH ₃	SCH3	other resonances
Ia ^b		4.43		6.73	
Гb		4.34		6.69	
IId ^c	2.73	5.09			
IIIa		4.34	5.09	7.33	
ШЪď	2.53 (m)	4.80		7.22	
IIIc ^d	2.33 (br)	4.74 (br)		6.88	
IIId ^d	2.31 (br)	4.69 (br)		6.84	
ΓV		4.33	5.09	7.33	
V		4.48		7.88	
VIIa	2.41 (m)	4.30		6.99	
VIIb	2.42 (m)	4.32		7.06	
VIIIa		4.36			5.87 (2 CH ₂)
VIIIb		4.50			6.57 (t, 2 CH,),
					7.45 (m, CH,)
IX ^e		4.35	5.58		•
Xa		4.34	5.59		
Xb		4.36	5.63		5.18 (q, OCH,),
					8.50 (t, CH,)
\mathbf{XI}^{f}		5.07		7.80	6.03 (CH)

^a All resonances are singlets unless otherwise indicated. ^b Reference 3. ^c In CS₂. ^d In CD₃CN. ^e Reference 13. ^f In CCl₄.

unstable, intractable green tar is obtained. Nucleophilic attack by PhTe⁻ appears to occur with CO ligand displacement to give the unstable green Cp(CO)(CS)FeTePh and a very small amount of the desired thioester complex Cp(CO)₂FeC-(=S)TePh as suggested by IR spectra of the reaction solutions.

The thioester complexes IIa-d need not be isolated; IIb,c have been characterized only by their IR spectra. IR (IIb) (hexanes): 2042 (s), 1996 (s) cm^{-1.13} IR (IIc) (THF): 2028 (s), 1979 (s) cm^{-1} . Reaction of the crude thioester complexes with methyl fluorosulfonate followed by anion exchange affords cationic carbene complexes in reasonable yield (eq 3). Methyl

⁽⁹⁾ Dombek, D. B.; Angelici, R. J. Inorg. Synth. 1977, 17, 100-103.

⁽¹⁰⁾ McCormick, F. B.; Matachek, J. R.; Angelici, R. J., unpublished observations.

 ⁽¹²⁾ Busetto, L.; Graziani, M.; Belluco, U. Inorg. Chem. 1971, 10, 78-80.
 (13) Quick, M. H.; Angelici, R. J. J. Organomet. Chem. 1978, 160, 231-239.

Table III. ¹³C NMR Spectra of the New Complexes and Other Pertinent Carbene Complexes in Acetone-d₆ (singlets, ppm)

complex	C(carbene)	CO	C,H,	OCH,	SCH,	C ₆ H ₅	other resonances
Iaª	303.1	209.5	88.6		29.6		
Ia ^{a, b}	304.3	210.1	89.2		30.3		
Б ^b	304.2	210.5	89.4		30.3		
ШЬ	301.1	209.0	89.4		22.5	159.7, 131.6, 129.6, 122.6	
IIIb ^b	301.2	208.9	89.4		23.0	159.6, 131.7, 129.7, 122.6	
IIIc	308.9	209.6	89.3		30.4	134.4, 133.0, 131.3	
IIIc ^c	309.4	209.7	89.6		31.3	135.3, 134.8, 133.6, 131.8	
IIId ^c	321.0	209.8	9 0.0		34.4	136.4, 134.9, 133.0, 132.1	
IV	297.9	210.0	89.2	71.8	21.5		
V		212.5	88.6		28.9		
VIIa		209.6	88.7		26.6	134.5, 131.5, 131.0, 129.5	
VIIb		210.2	87.9			131.4, 131.2, 130.6, 128.4	17.8 (SeCH ₃)
VIIIa	294.7	209.8	89.7				48.2 (2 SCH,)
VIIIb	283.7	2 10. 9	89.4				39.6 (2 SCH ₂), 19.1 (CH ₂)
\mathbf{IX}^d	251.9	210.3	88.1	63.6			
Xa	251.8	210.3	88.2	63.8			
Xa ^b	251.9	210.2	88.1	63.9			
Xb	250.4	210.5	88.3	63.4			74.9 (OCH ₂), 14.3 (CH ₃)
${Cp(CO)_{2}Fe[CNH(CH_{2})_{2}NH]}PF_{6}^{a}$	200.0	212.2	87.6				46.4 (2 CH ₂)
${Cp(CO)_2Fe[CNH(CH_2)_3NH]}PF_6^a$	192.2	212.7	87.6				42.7 (2 CH ₂), 20.1 (CH ₂)
^a Reference 3. ^b In CD, CN, ^c In	CD. CN at 73	°C. ^d F	Referenc	e 13.			

triflate, $CH_3SO_3CF_3$, also alkylates the thioester complexes, but with IIb-d the carbene complexes obtained are difficult to purify as they do not crystallize readily. With IIa, however, the corresponding carbene complex is obtained in excellent yield by alkylation with $CH_3SO_3CF_3$ (eq 4). Entirely sat-

IIa +
$$CH_3SO_3CF_3 \rightarrow \left[Cp(CO)_2Fe - C \underbrace{SCH_3}_{OCH_3}\right]CF_3SO_3$$
 (4)

IV (92%)

isfactory elemental analyses could not be obtained for IIIc,d on independent samples even after several recrystallizations. However, their spectral data (Tables I–III), especially the characteristic carbene carbon resonance in the ¹³C NMR spectra of IIIc,d, and their reactivity¹⁴ clearly show their formulation as carbene complexes to be correct.

Complex IIIc is quite stable toward air in the solid state. Complexes IIIb,d and especially IIIa and IV are less stable in this respect and are best stored at low temperatures (-20 °C). Samples of IIIa,b and IV stored in this manner, but handled periodically in air at room temperature, gradually develop small amounts of $CpFe(CO)_3^+$ as impurities. This may be due to a slight moisture sensitivity. Solutions of IIIa–d and IV, when not protected from the atmosphere, show little or no decomposition after storage for several days at -20 °C. Even at room temperature, decomposition of these solutions appears to be slow and is not noticeable for several hours.

In contrast to Ia,b and IIIb-d, the (methylthio)methoxycarbene complexes (IIIa and IV) display a marked thermal instability. When stored in air or under vacuum at room temperature, the yellow crystals of IIIa and IV become redorange after approximately 12 h and eventually become deep red. At elevated temperatures (~ 100 °C), this conversion becomes very rapid and represents the formation of a sulfido-bridged binuclear complex (eq 5). The evolution of

$$IV \xrightarrow[(solid state)]{} \{ [Cp(CO)_2Fe]_2SCH_3 \} CF_3SO_3 + V (61\%) \\ \{ CpFe(CO)_3 \} CF_3SO_3 + CH_3SCH_3 + \dots (5) \\ (12\%) \end{cases}$$

CH₃SCH₃ is confirmed by its characteristic odor as well as

by the mass spectrum and ¹H NMR spectrum of the volatile products from the reaction in eq 5, but the mechanism of this reaction is presently not understood as all of the side products have not been identified. In addition, IIIb shows no tendency to form V, even at higher temperatures (~150 °C). Refluxing IV in dried, degassed CH₃CN under an N₂ atmosphere for 10 h affords Cp(CO)₂Fe(CH₃CN)⁺ (47%) and a large amount of unstable, unidentified decomposition product. The acetonitrile complex could result from the conversion of IV to CpFe(CO)₃⁺ which is known to lose a CO ligand in refluxing acetonitrile.¹⁵ The decomposition product appears to be the same as that observed when V is refluxed under the same conditions as for IV.

The production (eq 5) of V and CpFe(CO)₃⁺ from IV would appear to be independent processes. The binuclear complex V may also be prepared by another route (eq 6). The iron Cp(CO)₂FeSCH₃ + {Cp(CO)₂Fe(acetone)}CF₃SO₃ \rightarrow V 33% (6)

sulfide complex is prepared from Cp(CO)₂FeX (X = Cl, Br, I)¹⁶ and CH₃S^{-,17} and {Cp(CO)₂Fe(acetone)}X species may be obtained by oxidation of [CpFe(CO)₂]₂ with the appropriate silver(I) salt.¹⁸ Complex V behaves very much like the ethyl derivative, {[Cp(CO)₂Fe]₂SCH₂CH₃]⁺, which was prepared by a route analogous to that of eq 6.^{19,20} Complex V shows three ν (CO) bands in its IR (CH₂Cl₂) spectrum (Table I); the two high-energy bands are sharp while the lower energy band is broad. This is due to rotational isomerism about the Fe–S bonds, as observed for {[Cp(CO)₂Fe]₂SCH₂CH₃]^{+.19} Three bands are observed, rather than the expected four, because the two asymmetric stretches are not resolved and give rise to one broad band.

The method outlined above (eq 2 and 3) for the preparation of carbene complexes from $Cp(CO)_2Fe(CS)^+$ cannot be extended to the $CpFe(CO)_3^+$ system. The alkoxycarbonyl

- (15) Green, M. L. H.; Ishaq, M.; Whiteley, R. N. J. Chem. Soc. A 1967, 1508-1515.
- (16) King, R. B. Organomet. Synth. 1965, 1, 175, 176.
 (17) Ahmad, M.; Bruce, R.; Knox, G. R. J. Organomet. Chem. 1966, 6,
- 1-10.
 (18) Williams, W. E.; Lalor, F. J. J. Chem. Soc., Dalton Trans. 1973,
- 1329-1332. (19) English, R. B.; Haines, R. J.; Nolte, C. R. J. Chem. Soc., Dalton Trans.
- 1975, 1030-1033.
 (20) English, R. B.; Nassimbeni, L. R.; Haines, R. J. J. Chem. Soc., Dalton Trans. 1978, 1379-1385.

⁽¹⁴⁾ McCormick, F. B.; Angelici, R. J. Inorg. Chem., following paper in this issue.

complex, $Cp(CO)_2FeC(=O)OCH_3$, is prepared by the reaction of $CpFe(CO)_3^+$ and CH_3O^- but decomposes to $[CpFe(CO)_2]_2$ fairly readily.²¹ In addition, the reaction of $Cp-(CO)_2FeC(=O)OCH_3$ with CH_3SO_3F or $CH_3SO_3CF_3$ affords $CpFe(CO)_3^+$ as the only isolable organometallic product by cleavage of the methoxy group. The reactions of $CpFe(CO)_3^+$ with PhS⁻ or PhSe⁻ do not yield ester complexes but rather iron sulfide or selenide complexes by displacement of a CO ligand (eq 7). Complex VIa behaves as previously reported,¹⁷

$$CpFe(CO)_{3}^{+} + PhY^{-} \rightarrow Cp(CO)_{2}FeYPh + CO(g)$$
(7)

$$Y = S (VIa),$$

Se (VIb)

and VIb forms an unstable green oil with two ν (CO) absorptions in its IR (CH₂Cl₂) spectrum at 2025 (s) and 1979 (s) cm⁻¹. The crude products obtained by the reaction in eq 7 are reacted with CH₃SO₃CF₃ followed by anion exchange to give stable, crystalline iron thio- or selenoether complexes (eq 8). The spectroscopic data (Tables I-III) for VIIa are

$$VIa,b \quad \frac{(1) CH_3SO_3CF_3}{(2) PF_6 - exchange} \quad \left[CP(CO)_2Fe - Y \underbrace{CH_3}_{Ph} \right] PF_6 \qquad (8)$$
$$Y = S (VIIa, 24\%)$$
$$= Se (VIIb, 34\%)$$

nearly identical with those in a previous report.¹⁸ The lower ν (CO) approximate force constant, k(CO),²² for VIIb indicates that the PhSeCH₃ ligand has a lower π -acceptor/ σ -donor ratio than the PhSCH₃ ligand.

Preparation of Carbene Complexes by "Heteroatom Metathesis". Complex Ia reacts with excess dithiol under reflux conditions by displacement of both CH_3S groups to give carbene complexes with cyclic dithiocarbene ligands (eq 9).

Ia +
$$HS(CH_2)_{n}SH \triangleq \left[Cp(CO)_2Fe - C \underbrace{S}_{S}(CH_2)_{n}\right]PF_6 + n = 2 (VIIIa, 78\%)$$

= 3 (VIIIb, 60%)

2CH3SH (9)

Enough solvent, CH_2Cl_2 or acetone, is added to the systems so that reflux is maintained at 50–60 °C. Both reactions are complete within 3.5 h. The reaction of Ia and PhSH under similar conditions for 6 h produces a mixture of Ia, Cp- $(CO)_2Fe[C(SCH_3)SPh]^+$, and $Cp(CO)_2Fe[C(SPh)_2]^+$. The mixture displays two $\nu(CO)$ bands in its IR (CH_2Cl_2) spectrum at 2058 (s) and 2020 (s) cm⁻¹. In the ¹H NMR (acetone-d₆) spectrum, the bis(phenylthio)carbene complex is the major component of the mixture with resonances at τ 2.29 (s, 2 C₆H₃) and 4.57 (s, C₃H₃). The carbene complexes VIIIa,b are yellow crystalline solids displaying the same stability and solubility characteristics as Ia.³ The spectral properties of VIIIb are nearly identical with those reported for an impure sample of

 $Cp(CO)_{2}Fe[CS(CH_{2})_{3}S]BF_{4}$ prepared by α -hydride abstraction from $Cp(CO)_{2}Fe[C(H)S(CH_{2})_{3}S]^{23}$

The dioxo analogues of VIIIa,b could not be obtained. Refluxing Ia with ethylene glycol yields $CpFe(CO)_3^+$ as the only organometallic product, and no organometallic products could be separated from the excess diol after stirring Ia in 1,3-propanediol and a small amount of acetone for 19 h. Refluxing Ia in dried CH₃OH under an N₂ atmosphere for

- (21) King, R. B.; Bisnette, M. B.; Fronzaglia, A. J. Organomet. Chem. 1966, 5, 341-356.
- (22) Cotton, F. A.; Kraihanzel, C. S. J. Am. Chem. Soc. 1962, 84, 4432-4438.
- (23) McCormick, F. B.; Angelici, R. J.; Pickering, R. A.; Wagner, R. E.; Jacobson, R. A., to be submitted for publication.

2.5 h affords no dioxocarbene complexes but rather an 81% yield of $CpFe(CO)_3^+$. The dimethoxycarbene complex, { $Cp-(CO)_2Fe[C(OCH_3)_2]$ }PF₆ (IX),¹³ also gives a high yield (88%) of $CpFe(CO)_3^+$ when refluxed with CH₃OH under similar conditions. Thus, dioxocarbene complexes may form when Ia is refluxed with CH₃OH or ethylene glycol, but they are not stable under these conditions and would decompose to $CpFe(CO)_3^+$.

The (methylthio)methoxycarbene complex, IV, reacts readily with methanol and ethanol by nucleophilic substitution of the CH_3S group (eq 10). This reaction is very similar to

that of IIIb with methanol in which both the CH₃S and the PhO groups are displaced to give IX in 44% yield.¹³ Stirring IV in CH₃SH at room temperature under slight pressure in a sealed tube for 12 h produces approximately equal amounts of Ib and CpFe(CO)₃⁺. Complex Ib results from displacement of the CH₃O group of IV, and CpFe(CO)₃⁺ may result from thermal decomposition of IV.

The dioxocarbene complexes IX and Xa,b are fairly stable, pale yellow crystalline solids. All show a tendency to slowly decompose to $CpFe(CO)_3^+$ on prolonged exposure to the atmosphere at room temperature in solution or in the solid state. Entirely satisfactory elemental analyses for Xb could not be obtained, but its spectral properties (Tables I–III), especially the characteristic carbene resonance in its ¹³C NMR spectrum, clearly show its formulation as a carbene complex to be correct.

Preparation of an Unstable Secondary Carbene Complex. Complex Ia reacts rapidly with LiAlH₄ in THF to produce cyclopentadienyldicarbonylbis(methylthio)methyliron (XI) in nearly quantitative yield (eq 11). Complex XI is a low

Ia + LiAlH₄
$$\rightarrow$$
 Cp(CO)₂Fe $-C \xrightarrow{H}$ SCH₃ (11)

XI (91%)

melting, yellow, crystalline solid which is very stable in the solid state at low temperatures (-20 °C). Its properties are very similar to those of the related bis(organothio)methyliron complex $Cp(CO)_2Fe[C(H)S(CH_2)_3S]$.²³

The reaction of XI with strong acid, CF_3SO_3H , in Et_2O causes the immediate precipitation of a new secondary carbene complex (eq 12). This reaction has precedent in the related

$$\times I + CF_3SO_3H \longrightarrow \left[C_P(CO)_2Fe - C \swarrow_H^{SCH_3} \right] CF_3SO_3 + CH_3SH$$

$$XII$$

$$(12)$$

conversion of tris(organothio)methyliron complexes, Cp-(CO)₂Fe[C(SR)₃], to cationic dithiocarbene complexes by reaction with CF₃SO₃H.²³ The new secondary carbene complex, XII, has been characterized by its IR spectrum (Table I) only due to its low stability. Exposure of XII to moisture in the atmosphere, in solvents, or in the acid reagent employed causes the rapid formation of CpFe(CO)₃⁺. This may proceed through a Fischer-Tropsch type intermediate, a secondary hydroxycarbene complex,¹ by nucleophilic attack of H₂O on the carbon carbon followed by loss of CH₃SH and possibly H_2 (eq 13).

XII + H₂O
$$\xrightarrow{-CH_3SH}$$
 $\left[Cp(CO)_2Fe - C \overbrace{H}^{OH^{\dagger}}\right] \xrightarrow{-H_2}{?} CpFe(CO)_3^{\dagger}$ (13)

The IR spectrum of XII is consistent with its formulation as a secondary carbene complex. The replacement of one π -donating CH₃S group in Ib with a H atom would induce more $M \rightarrow C \pi$ back-bonding and raise the $\nu(CO)$ frequencies. Comparison of Ib and XII show this indeed to be the case with XII having a k(CO) value which is 0.19 mdvn/Å larger than that of Ib. The IR spectrum of XII also compares favorably with its oxygen analogue, $\{Cp(CO)_2Fe[C(OCH_3)H]\}PF_6$ (XIII).²⁴ In going from a dithiocarbene complex (Ia,b, IIIc) to a dioxocarbene (IX, Xa) or a thiooxocarbene complex (IIIb), an increase in $\nu(CO)$ and k(CO) is observed. In accordance with this trend, the k(CO) value of XIII is 0.30 mdyn/Å higher than that of XII. Like complex XII, complex XIII is also moisture sensitive²⁴ but hydrolyzes much slower than does XII. This difference in rate of hydrolysis may be due to the relatively poor leaving-group characteristics of the alkoxy group in nucleophilic substitution reactions.²⁵

Spectroscopic Analysis. The IR, ¹H NMR, and ¹³C NMR spectra of the complexes prepared herein and those discussed below are presented in Tables I-III, respectively. All $\nu(CO)$ force constants, k(CO), are calculated by the method of Cotton and Kraihanzel.22

Previous reports have shown that a linear correlation exists between k(CO) and the ¹³C NMR chemical shift of the CO ligands, $\delta(CO)$, for Cp(CO)₂FeX²⁶ and Cp(CO)₂FeL⁺²⁷ derivatives; $\delta(CO)$ moves to lower field as M-CO π backbonding increases.⁴ No such correlation exists among the various Cp(CO)₂Fe[carbene]⁺ complexes. As a group, however, these complexes come reasonably close to fitting the previously observed correlation,^{26,27} but the CO ligands are all slightly (0.2-2.5 ppm) more shielded in the ¹³C NMR spectra than would be predicted from their k(CO) values. The correlation between k(CO) and $\delta(CO)$ for Cp(CO)₂FeX derivatives fails when $X = SiR_3$, GeR₃, or SnR₃, and this was accounted for by possible π bonding between Fe and the group 4 ligands.²⁶ The lack of correlation between k(CO) and $\delta(CO)$ for the carbene complexes may also be a consequence of an Fe-C(carbene) π interaction. It is interesting to note that the diaminocarbene complexes, where Fe–C(carbene) π bonding should be at a minimum due to the strong nitrogen π -donor ability,^{3,28-31} come the closest to fitting the previously observed correlation.26,27

The ¹³C NMR chemical shift of the carbon δ -(carbene), has been shown to be more sensitive to changes in the electronic environment than $\delta(CO)^7$ and may be a measure of the degree of π donation from the heteroatomic substituents to the carbene carbon. For complexes of the type $(CO)_5 CrC(YR)R$,¹ a large upfield shift was noted in δ (carbene) on changing the YR group from an alkoxy to the better π -donating NR₂ group.⁷ It was also found that δ (carbene) moves to higher field with increasing π -donor ability of the

- Gansow, O. A.; Schexnayder, D. A.; Kimura, B. Y. J. Am. Chem. Soc. 1972, 94, 3406-3408. (26)
- (27) Bancroft, G. M.; Butler, K. D.; Manzer, L. E.; Shaver, A.; Ward, J. E. H. Can. J. Chem. 1974, 52, 782-787. Fischer, E. O. Pure Appl. Chem. 1972, 30, 353-372.
- (28)
- (29) Cardin, D. J.; Cetinkaya, B.; Lappert, M. F. Chem. Rev. 1972, 72, 545-574.
- (30) Cardin, D. J.; Cetinkaya, B.; Doyle, M. J.; Lappert, M. F. Chem. Soc. Rev. 1973, 2, 99-144.
- (31) Cotton, F. A.; Lukehart, C. M. Prog. Inorg. Chem. 1972, 15, 487-613.

aryl carbene substituent for a series of (CO),MC(p- C_6H_4X)OCH₃ (M = Cr, W) complexes.³² These trends seem logical considering that the low-field resonance of the carbene carbon is due, in part, to its presumed electron-deficient nature.^{6,7,29} Thus, relieving this electron deficiency by π donation from the carbene substituents could cause an upfield shift in δ (carbene).

However, no correlation between k(CO) and $\delta(carbene)$ exists for the $Cp(CO)_2Fe[carbene]^+$ complexes. In fact, the use of k(CO) and δ (carbene) data by themselves leads to very different conclusions concerning the π -donation ability of the various heteroatomic carbene substituents. Thus, it appears that k(CO) is the most reliable parameter of the bonding in these $Cp(CO)_2Fe[carbene]^+$ complexes.

The k(CO) values for the iron carbene complexes are probably related to the π -acceptor/ σ -donor ratio of the carbene ligand which is, in turn, inversely related to the π -donor ability of the carbone substituents. Therefore, higher k(CO) values are indicative of a lower degree of carbene π stabilization by the heteroatomic substituents.

The k(CO) values of IIIb-d indicate that Se is slightly better than S and both are better than O in π -donor ability, while the δ (carbene) values for these complexes and for (CO)₅W- $C(YCH_3)CH_3$ (Y = O, 332.9; Y = S, 332.5; Y = Se, 355.5 ppm)⁸ suggest the opposite trend. Infrared data for complexes Ia,b, IX, Xa,b, and {Cp(CO)₂Fe[C(SCH₃)SCH₂CH₃]}PF₆ support the trend that S has a greater π -donation ability than O. The k(CO) values for the dioxocarbene complexes are all higher than the corresponding dithiocarbene complexes while the thiooxocarbene complexes have intermediate k(CO) values.

The ambient-temperature ¹H NMR spectra of IIIc,d show broad singlets for the Ph and Cp groups while IIIb shows a well-resolved multiplet for the Ph group and a sharp singlet for the Cp ligand. In addition, δ (carbene) cannot be observed for IIId and is quite broad for IIIc in the ambient-temperature ¹³C NMR spectra while δ (carbene) for IIIb is sharp. The δ (carbene) resonances for IIIc,d become sharp singlets when the ¹³C NMR spectra are obtained at elevated temperatures (73 °C). This behavior may be due to syn-anti isomerization by restricted rotation about the C(carbene)-YPh (Y = S, Se)bonds with coalescence occurring near the NMR probe temperature (\sim 30 °C). The increased barrier for such a rotation in IIIc,d as compared to Ia (coalescence at $-2.5 \,^{\circ}\text{C}$)³ is likely due to the steric bulk of the Ph group and/or slightly better π donation from the PhY groups,³³ compared to the CH₃Y carbene substituents, as indicated by the k(CO) values of Ia and IIIa-c. The fact that IIIb does not show this behavior at ambient temperatures may be a consequence of the weaker $O \rightarrow C(\text{carbene}) \pi$ donation. It should be noted that any barrier to rotation around the Fe-C(carbene) bond in these complexes should be lower, because of heteroatom π stabilization, than that reported for the methylidene analogues, $Cp(L)_2Fe = CH_2^{+.34}$

Comparison of the k(CO) values for complexes VIIIa, b and their diamino analogues, {Cp(CO)₂Fe[CNH(CH₂)_nNH]}PF₆ (n = 2, 3), indicate a significantly stronger π donation from nitrogen to the carbone carbon than from sulfur. For these complexes, $\delta(CO)$ and $\delta(carbene)$ follow the expected trends with $\delta(CO)$ shifted to lower and $\delta(Carbene)$ to higher field for the diaminocarbene complexes.

There is also a difference in k(CO) values between VIIIa and VIIIb which indicates a significantly poorer $S \rightarrow C$ -

(33)

 ⁽²⁴⁾ Cutler, A. R. J. Am. Chem. Soc. 1979, 101, 604-606.
 (25) Connor, J. A.; Jones, E. M. J. Chem. Soc. A 1971, 3368-3372.

⁽³²⁾ Bodner, G. M.; Kahl, S. B.; Bork, K.; Storhoff, B. N.; Wuller, J. E.;

Bouher, G. M., Kan, S. B., Bork, K., Stonion, B. N., Wuller, J. E.;
 Todd, L. J. Inorg. Chem. 1973, 12, 1071-1074.
 Senoff, C. V.; Ward, J. E. H. Inorg. Chem. 1975, 14, 278-282.
 Brookhart, M.; Tucker, J. R.; Flood, T. C.; Jensen, J. J. Am. Chem. Soc.
 1980, 102, 1203-1205. Schilling, B. E. R.; Hoffmann, R.; Lichtenberger, D. L. Ibid. 1979, 101, 585-591. (34)

Figure 1. Newman-type projections down the Fe-C(carbene) bond axis for (a) $Cp(CO)_2Fe[CS(CH_2)_3S]^+$ and (b) $Cp(CO)_2Fe[CS (CH_2)_2 S]^+$.

(carbene) π donation in the five-membered ring carbene ligand of VIIIa. The same trend is seen in the k(CO) values for the cyclic diaminocarbene complexes, although the difference between the five- and six-membered ring carbene ligands is smaller for these complexes.

Better π donation from the heteroatoms to the carbene carbon in the six-membered ring complexes may be rationalized by comparing ring conformations in the five- and sixmembered ring carbene ligands (Figure 1). Models show that the ring strain introduced by the planarity of the carbene linkage (both heteroatoms and the carbene carbon are sp² hybridized) may be easily alleviated by the six-membered ring on the assumption of a half-chair conformation (Figure 1a). This leaves the filled p, orbitals of the heteroatoms coplanar with the p_z of the carbon earbon allowing for good π overlap. In the five-membered ring, the strain may only be alleviated by a twisting of the ethylene linkage (Figure 1b). This would tend to force the filled p_z orbitals of the heteroatoms out of coplanarity with the p_z orbital of the carbon carbon and, thus, reduce the π overlap of these orbitals. Another, but related, explanation would suggest that the strain in the five-membered ring complex would cause rehybridization of the sulfur atoms from sp² toward sp³ and thereby lower their π -donor ability. This explanation, referred to as the "hinge effect", accounts for several observations for cyclic and acyclic phosphates and phosphites.35

Conclusion

Infrared data indicate that the order of decreasing π donation to the carbone carbon by the heteroatoms in Cp- $(CO)_{2}Fe[C(XR)YR]^{+}$ carbone complexes is N \gg Se \geq S > O and that the differences between Se, S, and O are small. This compares well with previously reported trends.^{3,25,28,36-38} The large range of δ (carbene) values (~130 ppm) and small range of $\delta(CO)$ values (~4 ppm) observed for these complexes further confirms the higher sensitivity of δ (carbene) to changes in the electronic environment.⁷ The lack of correlation with k(CO) suggests that δ (carbene) resonances are best used at this time to confirm the presence of a carbene ligand and not for discussions of bonding. Exceptions to this may be when the π -donation differences are large such as N vs. Se, S, or O or when the atoms directly bound to the carbone carbon are not changed such as in the series of complexes $(CO)_5MC(p-C_6H_4X)OCH_3$ (M = Cr, W).³² Some definite trends in δ -(carbene) are observed as the heteroatoms are changed for the $Cp(CO)_2Fe[C(XR)YR]^+$ carbone complexes: the selenothiocarbene derivative resonates at approximately 320 ppm, dithio- and thiooxocarbene complexes between 280 and 310 ppm, dioxocarbene complexes at approximately 250 ppm, and diaminocarbene derivatives between 190 and 200 ppm. It is also apparent that ring strain and conformation play an im-

- (35) Verkade, J. G. Phosphorus Sulfur 1976, 2, 251-281. Milbrath, D. S.; Verkade, J. G.; Kenyon, G. L.; Eargle, D. H. J. Am. Chem. Soc. 1978, 100, 3167-3170.
- (36)
- 105, 150-161. (38) Block, T. F.; Fenske, R. F. J. Organomet. Chem. 1977, 139, 235-269.

McCormick and Angelici

portant role in π stabilization of cyclic carbone ligands. Experimental Section

General Information. Reagent grade chemicals were used without further purification; $Cp(CO)_2FeC(\Longrightarrow)SCH_3$, $^9Cp(CO)_2FeC(\Longrightarrow)OCH_3$, $^{12} \{Cp(CO)_2Fe(CS)\}CF_3SO_3$, $^{13} \{CpFe(CO)_3\}CF_3SO_3$, $^{13} \{CpFe(CO)_3$ $(CO)_2Fe[C(SCH_3)_2]$ PF_6 (Ia),³ and $\{Cp(CO)_2Fe[C(OCH_3)_2]\}$ PF_6 (IX)¹³ were prepared as reported previously. Tetrahedrofuran (THF) was distilled from sodium benzophenone ketyl under N_2 immediately prior to use. Infrared spectra were recorded on a Perkin-Elmer 281 spectrophotometer. Routine ¹H NMR spectra were recorded on a Perkin-Elmer Hitachi R-20B spectrometer, and ¹³C NMR spectra were recorded on a JEOL FX-90Q spectrometer; $Cr(acac)_3$ (~0.1 M) was added to the ¹³C samples to reduce data collection time.³⁹ Tetramethylsilane (Me₄Si) was employed as the internal standard for all NMR spectra.

Preparation of the Complexes. {Cp(CO)₂Fe[C(SCH₁)₂]{CF₃SO₁ (Ib). A 50-mL solution of CH_2Cl_2 containing $Cp(CO)_2FeC(=S)SCH_3$ (2.50 g, 9.32 mmol) and CH₃SO₃CF₃ (1.05 mL, 9.32 mmol) was allowed to stir for 1 h. The brownish solution was then evaporated to dryness, and the resulting residue was washed with Et₂O. Crystallization of this residue from CH₂Cl₂ with Et₂O at -20 °C afforded 3.5 g (87%) of Ib as large, dark yellow crystals, mp 76–78 °C. Anal. Calcd for C₁₁H₁₁F₃FeO₅S₃: C, 30.57; H, 2.57. Found: C, 30.80; H, 2.61.

Cp(CO)₂FeC(=S)SePh (IId). An N₂ atmosphere was required for this preparation. A solution of 25 mL of THF containing PhSeSePh (0.16 g, 0.51 mmol) was stirred with 5 mL of Na/Hg (0.050 g of Na, 2.2 mmol) until the yellow color of the PhSeSePh disappeared (~15 min). The amalgam was removed, and $\{Cp(CO)_2Fe(CS)\}$ -CF₃SO₃ (0.37 g, 1.0 mmol) was added to the cloudy PhSe⁻/THF solution. A deep red-brown color developed rapidly. This solution was stirred for 10 min and was then evaporated to a red-brown oil. The N₂ atmosphere was not necessary beyond this point. The oil was extracted with CS₂ until the extracts were colorless (\sim 30 mL). These extracts were filtered and evaporated to give a red-orange solid which was crystallized from a minimum amount of hexanes by cooling the sample to -20 °C. Large red crystals of IId (0.21 g, 56%) were obtained; mp 76–79 °C. Anal. Calcd for $C_{14}H_{10}FeO_2SSe$: C, 44.59; H, 2.67. Found: C, 44.68; H, 2.77.

 $[Cp(CO)_2Fe[C(SCH_3)OCH_3]]PF_6$ (IIIa). A sample of Cp-(CO)₂FeC(=S)OCH₃ (0.300 g, 1.19 mmol) was stirred with CH₃-SO₃F (120 μ L, 1.48 mmol) in 15 mL of CH₂Cl₂ for 30 min. The yellow-brown solution was then evaporated to a yellowish oil which was washed with Et₂O. This oil was dissolved in a minimum amount of acetone, placed on an anion-exchange column (Amberlite IRA-400, 35×1 cm) in the PF₆ form, and eluted slowly with acetone. The yellow acetone fraction was collected and evaporated to dryness. The resulting yellow residue was crystallized from CH₂Cl₂ with Et₂O at -20 °C to give 0.20 g (41%) of IIIa as golden yellow crystals, mp 105 °C (conversion to PF_6^- salt of V). Anal. Calcd for $C_{10}H_{11}F_6FeO_3PS$: C, 29.15; H, 2.69. Found: C, 29.21; H, 2.72.

 $[Cp(CO)_2Fe[C(SCH_3)OPh]]PF_6$ (IIIb). An N₂ atmosphere was required in this preparation. Phenol (0.060 g, 0.64 mmol) and NaH (50% mineral oil dispersion, 0.026 g, 0.54 mmol) were reacted in 40 mL of THF for 12 h. To this solution was added {Cp(CO)₂Fe-(CS)}CF₃SO₃ (0.20 g, 0.54 mmol), and the mixture was stirred for 1 h. The solution was then evaporated to a dark oil. The N_2 atmosphere was no longer required, and the oil was extracted with CS₂ until the extracts were colorless ($\sim 30 \text{ mL}$). After filtration, these extracts were evaporated to a dark oil. The oil was dissolved in 20 mL of CH_2Cl_2 and was stirred with CH_3SO_3F (50 µL, 0.62 mmol) for 1.5 h. The resulting dark solution was evaporated to an oil which was washed with Et_2O . This crude SO_3F salt was converted to its PF_6^- salt and crystallized by the method used for IIIa. The yield of IIIb, as clear yellow needles, was 0.11 g (43%); mp 153-154 °C. Anal. Calcd for C15H13F6FeO3PS: C, 38.00; H, 2.76. Found: C, 37.64; H, 2.75

 $Cp(CO)_2Fe[C(SCH_3)SPh]]PF_6$ (IIIc). This complex was prepared in the same manner as IIIb. Thus, PhSH (60 μ L, 0.58 mmol) and $Cp(CO)_2Fe(CS)$ CF₃SO₃ (0.20 g, 0.54 mmol) yielded 0.20 g (75%) of IIIc as bright yellow crystals, mp 155–157 °C. Anal. Calcd for $C_{15}H_{13}F_{6}FeO_{2}PS_{2}$: C, 36.75; H, 2.67. Found: C, 34.75; H, 2.68.

Gansow, O. A.; Burke, A. R.; LaMar, G. N. J. Chem. Soc., Chem. (39)Commun. 1972, 456-457.

Hoare, R. J.; Mills, O. S. J. Chem. Soc., Dalton Trans. 1972, 653-656. Fischer, E. O.; Leupold, M.; Kreiter, C. G.; Müller, J. Chem. Ber. 1972, (37)

{Cp(CO)₂Fe[C(SCH₃)SePh]}PF₆ (IIId). A solution of 10 mL of CH₂Cl₂ containing IId (0.095 g, 0.25 mmol) and CH₃SO₃F (25 μ L, 0.31 mmol) was stirred for 1.5 h. The resulting orange solution was then evaporated to dryness, and the residue was converted to the PF₆-salt by the method used for IIIa. Small yellow crystals of IIId (0.10 g, 74%) were obtained; mp 142–145 °C. Anal. Calcd for C₁₅H₁₃F₆FeO₂PSSe: C, 33.54; H, 2.44. Found: C, 31.23; H, 2.42.

 $[Cp(CO)_2Fe[C(SCH_3)OCH_3]]CF_3SO_3$ (IV). This complex was prepared by the method used for Ib. Starting with 0.271 g (1.08 mmol) of Cp(CO)_2FeC(\implies S)OCH₃ and 125 μ L (1.10 mmol) of CH₃SO₃CF₃ in 20 mL of CH₂Cl₂, 0.41 g (92%) of IV was isolated as yellow crystals, mp 92–95 °C (conversion to V). Anal. Calcd for C₁₁H₁₁F₃FeO₆S₂: C, 31.75; H, 2.66. Found: C, 31.55; H, 2.61.

 $[Cp(CO)_2Fe]_2SCH_3/CF_3SO_3$ (V). From $Cp(CO)_2FeSCH_3$ and $\{Cp(CO)_2Fe(acetone)\}CF_3SO_3$. This preparation required an N_2 atmosphere. A 40-mL solution of acetone (dried over CaSO₄ and N₂ saturated) containing [CpFe(CO)₂]₂ (0.416 g, 1.18 mmol) and AgSO₃CF₃ (0.604 g, 2.35 mmol) was stirred for 1 h. The maroon color of $[CpFe(CO)_2]_2$ was replaced by a red-orange color, and metallic silver was deposited as a silver mirror. This solution was then filtered through Celite to give a clear red solution. To this stirred solution was added 20 mL of acetone (dried over CaSO₄ and N₂ saturated) containing crude Cp(CO)₂FeSCH₃ (generated from Cp(CO)₂FeCl (0.500 g, 2.35 mmol) and a slight excess of CH_3S^{-17}) dropwise over a 15-min period. The reaction was allowed to stir for an additional 30 min and was then evaporated to a red oil. The oil was washed with Et₂O and was crystallized from CH₂Cl₂ with Et₂O at -20 °C to give 0.43 g (33%) of V as dark red needles, mp 110-112 °C. Anal. Calcd for C₁₆H₁₃F₃Fe₂O₇S₂: C, 34.94; H, 2.38. Found: C, 34.58; H, 2.37.

From IV. A sample of IV (0.050 g, 0.12 mmol) was placed in a sealed, evacuated tube, and the tube was placed in an oil bath at 115 °C for 5 min. The yellow crystals rapidly changed to a red oil. After cooling of the red oil to room temperature, it was fractionally crystallized from CH_2Cl_2 with Et_2O at -20 °C to afford 5.0 mg (12%) of {CpFe(CO)}_3CF_3SO_3 as yellow crystals and 0.020 g (61%) of V as red needles. Anal. Calcd for $C_{16}H_{13}F_3Fe_2O_7S_2$: C, 34.94; H, 2.38. Found: C, 34.80; H, 2.37.

{Cp(CO)₂Fe[S(CH₃)Ph]}PF₆ (VIIa). An N₂ atmosphere was required for this synthesis. Diphenyl disulfide (0.031 g, 0.14 mmol) and LiAlH₄ (0.012 g, 0.32 mmol) were stirred together in 30 mL of THF until gas evolution ceased (~ 5 h). To this PhS⁻/THF solution was added {CpFe(CO)₃}CF₃SO₃ (0.10 g, 0.28 mmol), and the mixture was stirred for an additional 1.5 h. Vigorous gas evolution was noted during this time. The reaction mixture was then filtered and evaporated to a red-brown oil. The use of the N₂ atmosphere was discontinued, and the oil was extracted with Et2O until the extracts were colorless ($\sim 40 \text{ mL}$). These extracts were then filtered and evaporated to an oil which was dissolved in 10 mL of CH₂Cl₂. This CH₂Cl₂ solution was stirred with CH₃SO₃CF₃ (35 µL, 0.31 mmol) for 2 h. The resulting dark yellow solution was then evaporated to a yellowbrown oil which could not be made to crystallize. The oil was then dissolved in 15 mL of warm H₂O, and 15 mL of a saturated NH₄PF₆(aq) solution was added. A yellow powder precipitated immediately and was crystallized from CH2Cl2 with Et2O at -20 °C to give VIIa (0.030 g, 24%) as bright yellow flakes, mp 145-148 °C. Anal. Calcd for C₁₄H₁₃F₆FeO₂PS: C, 37.69; H, 2.94. Found: C, 38.01; H, 2.98.

 $[Cp(CO)_2Fe[Se(CH_3)Ph]]PF_6$ (VIIb). This complex was prepared by the method used for VIIa. Thus, PhSeSePh (0.045 g, 0.14 mmol) and the same quantities of other reagents as used for VIIa produced 0.047 g (34%) of VIIb as small yellow crystals, mp 141–143 °C. Anal. Calcd for $C_{14}H_{13}F_6FeO_2PSe: C, 34.11; H, 2.66$. Found: C, 34.11; H, 2.64.

{Cp(CO)₂Fe(CS(CH₂)₂S]PF₆ (VIIIa). A solution consisting of 5 mL of acetone (dried over CaSO₄), 1,2-ethanedithiol (3.00 mL, 35.8 mmol), and Ia (1.00 g, 2.34 mmol) was refluxed under an N₂ atmosphere for 3 h. The resulting orange solution was evaporated to an oil (~3 mL). The addition of 40 mL of Et₂O to this oil followed by cooling of the solution to -20 °C caused the formation of a yellow precipitate. This precipitate was crystallized from CH₂Cl₂ with Et₂O at -20 °C to afford 0.78 g (78%) of VIIIa as dark yellow crystals, mp 109–110 °C. Anal. Calcd for C₁₀H₉F₆FeO₂PS₂: C, 28.19; H, 2.13. Found: C, 28.48; H, 2.21.

 $[Cp(CO)_2Fe[CS(CH_2)_3S]]PF_6$ (VIIIb). A 10-mL solution of CH₂Cl₂ (dried over CaSO₄) containing Ia (1.00 g, 2.34 mmol) and 1,3-propanedithiol (3.00 mL, 29.9 mmol) was refluxed under an N₂ atmosphere for 3.5 h. The resulting black solution was evaporated to a yellow-green oil (~3 mL). Diethyl ether (40 mL) was added to the oil, and a greenish yellow precipitate formed when the solution was cooled to -20 °C. Crystallization of this precipitate from CH₂Cl₂, after treatment with decolorizing carbon, with Et₂O at -20 °C yielded 0.62 g (60%) of VIIIb as yellow needles, mp 166–168 °C. Anal. Calod for C₁₁H₁₁F₆FeO₂PS₂: C, 30.02; H, 2.52. Found: C, 30.34; H, 2.65.

 $[Cp(CO)_2Fe[C(OCH_3)_2]]CF_3SO_3$ (Xa). A sample of IV (0.102 g, 0.245 mmol) was dissolved in 10 mL of CH₃OH (dried over CaSO₄), and the solution was stirred for 30 min. The residue obtained after evaporation of this solution was crystallized from CH₂Cl₂ with Et₂O at -20 °C, and 0.087 g (89%) of Xa was obtained as small, pale yellow crystals, mp 128-131 °C. Anal. Calcd for C₁₁H₁₁F₃FeO₇S: C, 33.02; H, 2.77. Found: C, 33.07; H, 2.77.

 $[Cp(CO)_2Fe[C(OCH_3)OCH_2CH_3]]CF_3SO_3$ (Xb). A 0.094-g (0.23 mmol) sample of IV was dissolved in 10 mL of CH_3CH_2OH (dried over CaSO₄), and the solution was stirred for 1 h. The yellow oil obtained on evaporation of this solution was crystallized from CH₂Cl₂ with Et₂O at -20 °C to give 0.053 g (57%) of Xb as yellow needles, mp 66-68 °C. Anal. Calcd for C₁₂H₁₃F₃FeO₇S: C, 34.80; H, 3.16. Found: C, 33.89; H, 3.04.

Cp(CO)₂**Fe[C(SCH**₃)₂**H] (XI).** This procedure required an N₂ atmosphere. A solution of 100 mL of THF containing Ia (0.10 g, 0.23 mmol) and LiAlH₄ (0.018 g, 0.47 mmol) was stirred for 20 min. This solution was then evaporated to a yellow oil which was extracted with hexanes until the extracts were colorless (\sim 20 mL). These extracts were filtered and reduced in volume to 2 mL by evaporation under an N₂ stream. Cooling this hexanes solution to -20 °C afforded 0.053 g (91%) of XI as small, bright yellow crystals, mp 36-38 °C. Anal. Calcd for C₁₀H₁₂FeO₂S₂: C, 42.27; H, 4.26. Found: C, 42.29; H, 4.28.

Acknowledgment. The JEOL FX-90Q NMR spectrometer was partially funded by an instrumentation grant from the National Science Foundation.

Registry No. Ia, 69532-11-2; Ib, 76136-25-9; IIa, 32801-01-7; IIc, 76136-26-0; IId, 76136-27-1; IIIa, 76136-29-3; IIIb, 76136-30-6; IIIc, 76136-32-8; IIId, 76136-64-6; IV, 76136-33-9; V, 76136-34-0; VIIa, 43105-63-1; VIIb, 76136-36-2; VIIIa, 76136-38-4; VIIIb, 76136-40-8; Xa, 76136-41-9; Xb, 76136-43-1; XI, 76136-44-2; XII, 76136-46-4; Cp(CO)₂FeC(\Longrightarrow)SCH₃, 59654-63-6; {Cp(CO)₂Fe(CS)}CF₃SO₃, 60817-01-8; [CpFe(CO)₂]₂, 12154-95-9; Cp(CO)₂FeSCH₃, 12080-10-3; {CpFe(CO)₃]CF₃SO₃, 76136-47-5; CH₃SO₃CF₃, 333-27-7; PhSeSePh, 1666-13-3; CH₃SO₃F, 421-20-5; PhOH, 108-95-2; PhSH, 108-98-5; PhSSPh, 882-33-7; HS(CH₂)₂SH, 540-63-6; HS(CH₂)₃SH, 109-80-8; CH₃OH, 67-56-1; CH₃CH₂OH, 64-17-5.