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A method for uniquely describing closed, fully triangulated, boron polyhedra with 4-24 vertices based on currently accepted 
procedures for numbering of coordination and boron polyhedra is proposed. Minor refinements and extensions to the numbering 
principles for closed polyhedra a r e  suggested.  

Introduction 

Befoie Hawthorne and co-workers* pioneered the develop- 
ment of metallopolyboron chemistry, describing the structure 
of known closed polyboron hydride systems was not very 
difficult. At that time, it did not appear that there would be 
more than one polyhedral structure for each [B,H,I2- com- 
position. Therefore, the descriptive prefix “c~ovo” ,~  later 
modified to “closo-”,“ derived from the Greek word for cage, 
K X W P ~ U ,  was sufficient to identify these polyhedral structures 
and to distinguish them from the nonclosed, or open, polyboron 
hydride structures already known.5 

The development of metallopolyboron chemistry has led to 
a need for a more extensive and definitive method for de- 
scribing closed polyhedral structures. Incorporating metal 
atoms into polyboron hydride systems substantially increased 
the variety of closed polyhedral structures. Metallopolyboron 
chemistry led to the preparation of polyhedra with more than 
12 vertices, the so-called suprai~osahedra,~~’  which, in turn, 
stimulated postulation of much larger polyhedra, containing 
as many as 32 vertices8 New structures for polyhedra with 
less than 12 vertices were also found in metalloboron systems9 
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A more comprehensive system for describing closed poly- 
hedral systems is also needed to provide the basis for naming 
many nonclosed polyboron structures, which often can be most 
effectively described as derived from closed polyboron systems. 
For example, metallopolyboron hydrides can be named as 
metal-ligand complexes in which the ligands are nonclosed 
anionic polyboron hydrides. Lack of a general system for 
describing a variety of nonclosed polyboron hydrides as anions 
or as anionic ligands led to the introduction of trivial names, 
such as ollide,Ioa zapide,lob and canastide,’& as well as new 
descriptive prefixes, such as “canasto-” and “anello-”.” One 
of the easiest and most general methods for visualizing and 
describing these complex, often nonicosahedral, polyboron 
fragments is the “debor” method4b in which the nonclosed 
frameworks are specified by removing boron vertices from 
relatively more symmetrical closed polyhedra.12 

(9) (a) K. P. Callahan, W. J. Evans, F. Y. Lo, C. E. Strouse, and M. F. 
Hawthorne, J .  Am. Chem. Soc., 97 (2), 296-302 (1975); (b) J. R. Pipal 
and R. N. Grimes, fnorg. Chem., 16 (12), 3255-3262 (1977); (c) V. 
R. Miller and R.  N. Grimes, J .  Am. Chem. Soc., 98 (6), 1600-1601 
(1976). 

(10) (a) M. F. Hawthorne, D. C. Young, T. D. Andrews, D. V. Howe, R. 
L. Pilling, A. D. Pitts, M. Reintjes, L. F. Warren, Jr.,  and P. A. Wegner, 
J .  Am. Chem. Soc., 90 (4), 879-896 (1968); (b) T. A. George and M. 
F. Hawthorne, ibid., 91 (20), 5475-5482 (1969); (c) J. N. Francis and 
M. F. Hawthorne, Inorg. Chem., 10 (4). 863-864 (1971). 

( I  1) (a) “Gmelin Handbuch der Anorganischen Chemie”, Vol. 15, Supple- 
ment, Boron Compounds 2, 8th ed., Springer-Verlag, Berlin, 1974, 
Chapter 1, pp 1-138. (b) W. Stumpf, Chem. Z .  99 ( I ) ,  1-12 (1975); 
(c) W. Stumpf, “Nomenclature, Compound Types and Chemistry of the 
Carbranes”  in “Themen zur Chemie des Bors”, H. Mollinger, Ed., 
Huthig Verlag GmbH, Heidelberg, 1976. 

(12) The “debor” method allows for rather easy visualization and numbering 
of polyhedral fragments by treatment as closed polyhedral structures 
from which one or more specific vertices and their associated edges have 
been removed. For example, the [B8Hslb ion can be described in t e r m  
of the tricapped trigonal prism from which one of the vertices of the 
trigonal prism has been removed. Further, the boron frameworks of the 
“normal” and “iso” nonabrane( 15) isomers can be depicted in terms 

[B,H,l‘- n-B9H,5 i -B9HlG 
framework framework framework 

of the closed [Bl,H11]2‘ polyhedron from which two vertices have been 
removed: the highest coordination vertex first, followed by the highest 
or lowest coordination vertex, respectively, from the resulting hexagonal 
open face. 
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Recent advances in the preparation of more irregular 
polyhedral metallopolyboron c o m p o ~ n d s ’ ~  have emphasized 
the need for even more closed polyhedra, often hypothetical, 
from which nonclosed polyboron hydride frameworks can be 
generated. Although the “debor” system is the most general 
method yet proposed for describing polyhedral fragments, other 
techniques, such as the prefix “seco” used in organic nomen- 
clature for indicating fission of rings,14a could be adapted to 
describe nonclosed polyboron hydride structures by derivation 
from appropriate closed po1~hedra.I~ Obviously, methods for 
describing nonclosed polyboron frameworks based on closed 
polyhedra can only be as useful as the structural information 
given or implied by the name for the appropriate closed 
polyhedron. Hence, it is necessary to have a fully descriptive 
system not only to differentiate among various closed polyboron 
polyhedral structures with the same number of vertices but 
also to describe structures of an increasing number of nonclosed 
polyboron compounds. 

Discussion 

Although attempts have been made to specify polyhedral 
geometries both qualitatively’ ‘ ~ ~ ~ 3 ~ ’  and quantitatively,I8 a 
general system has not resulted. Recently, Brown and Lip- 
scomb have published theoretical discussions on polyboron 
hydrides with more than 12 vertices,8 which illustrate the 
inherent problems in identifying polyhedral frameworks. They 
list& point group symmetry symbols, the total number of faces, 
edges, and vertices, the different types of vertices and edges, 
an “arrangement of vertices” following a method used by Foppl 
in a pre-quantum-mechanical description of electrons in atoms 
as points on a sphere,19 and an “arrangement of vertices” with 
six skeletal near neighbors. From this tabulation it is clear 
that the point group symmetry symbol alone, or even when 
coupled with the number of vertices, edges, or faces, is not 
sufficient to differentiate between some polyhedra having the 
same number of vertices, For example, Brown and Lipscomb 
discuss two C,, 17-vertex polyhedra, two C, 19-vertex poly- 
hedra, two C,, 23-vertex polyhedra, and three D3d 24-vertex 
polyhedra.8a The problem of distinguishing between polyhedra 
with the same number of vertices also has been recognized in 
polyhedra with less than 12 vertices.” 

The “arrangement of vertices” listed by Brown and Lip- 
scombsa is also not sufficient, by itself, to distinguish between 
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some polyhedra having the same number of vertices. However, 
their citation closely resembles the technique that has been 
used for numbering closed polyboron systems4 as well as as- 
signing locant designators in coordination polyhedra. 16b Al- 
though not yet fully consistent, these two procedures agree in 
that the vertices of a polyhedron should be numbered in se- 
quential planes perpendicular to a rotational symmetry axis 
of the polyhedron. 

It occurred to us that structural information, such as that 
tabulated by Brown and Lipscomb,8a could be combined with 
the basic principles for numbering closed polyhedra4 to form 
a descriptor that would uniquely define different polyhedra 
and also provide valuable assistance in visualizing the structure 
and in numbering the polyhedral vertices. Therefore, we 
propose a four-part structural descriptor for fully triangulated 
polyboron polyhedra (deltahedra) that have a t  least one ro- 
tational symmetry axis and a t  least one symmetry plane: (1) 
the point group symmetry symbol for the homogeneous pol- 
yboron framework; (2) a description of the arrangement and 
type of vertices, enclosed in parentheses or brackets; (3) a 
symbol giving the type and number of faces; and (4) the 
familiar descriptor “c~oso-”.~ 

The point group symmetry symbol (Schoenflies symbol) is 
assigned on the basis of a homogeneous polyboron polyhedron 
from which substitutents and/or ligands have been removed 
from each vertex, since heteroatoms, particularly metallic 
heteroatoms, and certain substituents or ligands, can signifi- 
cantly distort the polyhedral structure. Furthermore, in order 
to be structurally significant, the symmetry symbol and the 
arrangement of vertices (see below) must be assigned on the 
basis of an idealized closed deltahedral structure. Construction 
of idealized models using only equilateral triangles leads to 
difficulties not only in physically constructing stable polyhedral 
models but also in visualizing equivalent polyhedral vertices, 
especially in larger polyhedra. As noted by Brown and Lip- 
scomb,8 boron-boron distances in real polyhedral boron com- 
pounds vary according to the skeletal connectivities of the 
boron atoms. Skeletal connectivity is the coordination number 
of the boron atom in the polyhedron; Le., exopolyhedral 
bonding is not considered. Therefore, we have used different 
edge lengths in building models of the idealized triangulated 
polyhedra in this study. Our models were built with materials 
obtained from GEODESTIX, P.0 Box 308, Parkwater Sta- 
tion, Spokane, Wash. 99211. An edge length of 76 mm (3 
in.) was used for connections between polyhedral vertices with 
skeletal connectivities of 3, 4, and 5. Vertices with a skeletal 
connectivity of 5 were connected to vertices with skeletal 
connectivities of 6 or 7 by an edge length of 89 mm (3.5 in.). 
Connections between vertices with skeletal connectivities of 
6 and 7 were 102 mm (4 in.) long. These edge lengths were 
quite satisfactory for all models of the polyhedra shown in 
Table I. 

The part of the proposed descriptor giving the arrangement 
and type of uertices is most important since it provides very 
useful information for visualizing and building the polyhedral 
structure and for assigning locants (numbers) to its vertices. 
This segment consists of a series of Arabic numbers giving the 
number of vertices with the same skeletal connectivity, i.e., 
number of polyhedral edges associated with the vertex, in 
planes that are perpendicular to the reference axis of the 
polyhedron, i.e., the rotational symmetry axis that is preferred 
for numbering (see section on numbering, below). These 
primary Arabic numbers are cited in the order that the planes 
they define are preferred for numbering (see section on num- 
bering, below). Each of these Arabic numbers is followed by 
the symbol c“, where n is a superscript Arabic number giving 
the number of polyhedral edges associated with each of the 
vertices, i.e., the skeletal connectivity of each vertex. When 
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Figure 1. A 13-vertex polyhedron. 

all vertices assigned to a plane do not have the same number 
of associated polyhedral edges, Le., at least two v" symbols are 
needed to describe the vertices in that plane, or when it is 
virtually impossible to determine the vertical order of planes 
of symmetrically equivalent vertices for citation and num- 
bering, the Arabic numbers and their associated v" symbols 
are enclosed in parentheses or brackets. Structures N-2,4-3, 
T-1, U-3, and V-2  in Table I illustrate these situations. Al- 
though in most cases it should not be necessary to specify the 
precise arrangement of different vertices in the same plane 
because of the restrictions imposed by the requirement of a 
rotational symmetry axis, to be consistent with the principles 
of the descriptor, the first member within the parentheses 
includes the kind of vertex at which numbering begins in that 
plane. This part of the descriptor not only facilitates visu- 
alization of the polyhedral structure but also allows the locant 
numbers of the polyhedral vertices to be assigned quickly, 
without need to refer to all of the numbering rules. It also 
minimizes uncertainty about the assignment of various vertices 
to specific planes, as can occur occasionally; for example, see 
the polyhedron in Figure 5 .  Finally, although quite obvious, 
it should be noted that the sum of the primary Arabic numbers 
is the total number of vertices of the polyhedron. 

Although a symbol for denoting the type and number of 
faces in a closed polyhedral structure might appear to be 
unnecessary in a system designed for deltahedral polyboron 
hydrides, it does serve to emphasize that the descriptor refers 
to polyhedra having only one kind of face. It also illustrates 
the generality of the system by providing a mechanism for 
using the same principles to describe polyhedral systems having 
uniform faces other than triangular. Polyhedral structures with 
all tetragonal, pentagonal, or hexagonal faces are known or 
have been postulated, although triangulated polyhedra (del- 
tahedra) are by far the most common. An obvious symbol for 
indicating triangulated polyhedra is the captial Greek letter 
delta, A, or some simple reorientation of this character, as has 
been suggested.21 Tetragonal- and pentagonal-faced polyhedra 
could be denoted by appropriate symbols for the square and 
pentagon, respectively. The number of faces is specified 
conveniently by adding an appropriate superscript Arabic 
number to such symbols. Thus, the icosahedral deltahedron 
would be denoted by the symbol A20 and the cube by m6. 

The complete descriptor for the 13-vertex polyhedron shown 
in Figure 1 is [ CZc-( 1c42c52v64c52~52u5)-Azz-closo]. 

The descriptor, as proposed, is quite comprehensive, and any 
attempts to simplify it should be considered very carefully so 
that its generality will not be impaired. However, for boron 
polyhedra, and perhaps for all fully triangulated polyhedra, 
we believe it would be permissible to omit the v" symbol when 
n = 5 .  Accordingly, the descriptor for the 13-vertex polyhe- 
dron in Figure 1 would become [ Ck-( l ~ ' ~ 2 2 ~ ~ 4 2 2 ) - A ~ ~ - c l o s o ] .  
I t  may also be convenient to omit the L'" symbol when n = 3 

(21) R. M. Adams, private communication 

,reference axis 

terminal plane -*- 
reference plane 

parallel planes of 

terminal plane 

Figure 2. Schematic representation of the features for numbering 
a polyhedron. 

and 4 for the common polyhedra with 12 or fewer vertices. 
Thus, the descriptor for the Du dodecahedron shown as E-1 
in Table I could be [D2~(2222)-A12-c loso]  rather than 
[D26(2u4222v4)-A12-closo]. The proposed structural de- 
scriptors, including only the omission of the u5 symbol, and 
the numbering for 45 closed polyhedral systems are given in 
Table I. 

Polyhedra with capped triangular faces, except for the 
trigonal bipyramid, are not included in this proposal. Although 
some of these capped polyhedra can be incorporated directly 
into the system, others may require additional structural or 
numbering information in the descriptor in order to be un- 
ambiguous. Further, such capped polyhedra may be better 
described as "derivatives" of noncapped polyhedra in much 
the same way as bridged organic systems are named.14b 

Numbering of Closed Polyhedra 

For emphasis on the close relationship between the basic 
principles for numbering polyhedral structures and our pro- 
posed structural descriptor, the main numbering principles4 
relating to skeletal characteristics of closed polyboron struc- 
tures are included here. The principles have not been inten- 
tionally changed, but extensions have been proposed to deal 
with characteristics not previously encountered. To our 
knowledge, no changes in numbering of known polyboron 
compounds result from these extensions. 

Numbering for the great majority of closed polyboron 
polyhedra is based mainly on two elements of symmetry, a 
rotational axis and a symmetry plane. Closed polyboron 
polyhedra lacking either of these symmetry elements are 
outside the scope of this summary. The three features nec- 
essary for numbering a closed polyboron polyhedron having 
at  least one rotational symmetry axis and at  least one sym- 
metry plane are ( 1 )  a reference axis, (2) parallel planes con- 
taining polyhedral vertices, and (3) a reference plane. These 
features are identified schematically in Figure 2 .  

The reference axis is a highest order rotational symmetry 
axis of the polyhedron. Perpendicular to this axis are parallel 
planes containing symmetrically equivalent vertices,22 rigor- 
ously coplanar nonequivalent sets of symmetrically equivalent 
vertices,u or sets of symmetrically equivalent vertices so nearly 

(22) The criterion of symmetrically equivalent vertices is not a part of pub- 
lished rules for numbering closed polyboron structures.' However, it 
is, in fact, what has been done in numbering closed polyhedra, and it 
has the real advantage of avoiding some uncertainty about coplanarity 
of polyhedral vertices, which can be troublesome in some of the larger 
polyhedra. 
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coplanar that it is virtually impossible to select one set to cite 
and number first.23 Planes of polyhedral vertices furthest from 
the centroid of the polyhedron are called terminal planes. The 
reference plane is a symmetry plane of the polyhedron and 
must include the reference axis. 

The principles for numbering the closed polyhedral 
frameworks shown in Table I are given below. Further choices 
for assigning locants to polyhedral vertices should follow ac- 
cepted principles from other nomenclature systems but are not 
within the scope of this report. 

1. Select the reference axis, Le., a rotational symmetry axis 
of highest order that lies in a symmetry plane of the polyhe- 
d r ~ n . ~ ~  

This criterion has been sufficient for choosing the reference 
axis of all known closed polyboron structures having at  least 
one rotational symmetry axis and one symmetry plane. 
However, it alone does not allow a reference axis to be chosen 
in a Du, polyhedron (see Figure 4 and discussion later). Hence, 
we suggest that, when a further choice is needed for selecting 
a reference axis, the following criteria be applied in sequence: 
(a) The reference axis should have a terminal plane with the 
fewest number of polyhedral vertices. (b) The reference axis 
should lie in the reference plane (see principle 3, below). 

2 .  Select the preferred terminal plane of symmetrically 
equivalent vertices, which defines the preferred end of the 
reference axis. The preferred terminal plane (a) contains the 
fewer number of polyhedral vertices and, if these are the same, 
(b) has the vertices with the fewer total number of skeletal 
connectivities. 

If a further choice is needed, the preferred terminal plane 
is nearer to the parallel plane of symmetrically equivalent 
vertices preferred by applying criteria 2(a) and 2(b), above, 
successively to pairs of parallel planes proceeding inward from 
each terminal plane. 

3. Select the reference plane, i.e., a symmetry plane of the 
polyhedron that contains the reference axis. 

If there is more than one symmetry plane containing the 
reference axis, or if a selection of a reference axis was not 
effected by principle 1, the reference plane is chosen by ap- 
plication of the following criteria, sequentially, until a decision 
is made: (a) The reference plane passes through the least 
number of polyhedral vertices; a symmetry plane that does not 
pass through any vertex is preferred. (b) The reference plane 
passes through a polyhedral vertex in a plane of symmetrically 
equivalent vertices that is nearer to the preferred terminal plane 
(see principle 2, above); Le., polyhedral vertices in the reference 
plane have the lower locant numbers when assigned according 
to principles 4 and 5, below. (c) The reference plane passes 
through a polyhedral vertex with the fewest number of asso- 
ciated polyhedral edges; Le., polyhedral vertices with the lowest 
skeletal connectivity in the reference plane have the lower 
locant numbers when assigned according to principles 4 and 
5, below. 
4. Orient the polyhedron, in order to provide a consistent 

reference point for numbering, by looking down the reference 
axis from the preferred end (see principle 2, above) and ro- 
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These situations are illustrated by structures N-2,  4 - 3 ,  T-1, U-3, and 
V-2 and are indicated in the descriptor by enclosing the rigorously 
coplanar nonequivalent sets of symmetrically equivalent vertices in 
parentheses and the nearly coplanar symmetrically equivalent sets in 
brackets. In such cases, it seems to be more convenient to number these 
polyhedral vertices sequentially rather than discontinuously. In each 
case, the first set cited in the descriptor is the one where the numbering 
begins in that plane. 
The published rules for numbering closed polyboron structures4 require 
the reference axis to be the “longest highest-order” rotational symmetry 
axis but do not define “longest”. To our knowledge, the criterion of 
“longest” has not yet been needed for numbering closed polyhedral 
frameworks. Since we did not find a need for this criterion and it might 
not be easy to define “longest”, we have not included it in this summary 
of numbering rules. 

-C: axis “z ’ 

reference axle 

 symmetry plane A 

reference plane -- 
symmetry plane B 

-- -- 

i 

Figure 3. Du 8-vertex dodecahedron. 
c, axis “z” 

/reference axis 

symmetry plane A 

reference piane 

symmetry plane E 

mmetry plane c 

. 
’i- 

I 

Figure 4. DZh 16-vertex octacosahedron. 

tating the polyhedron until the reference plane (see principle 
3, above) is vertical. If a choice is needed, the preferred 
orientation has a polyhedral vertex of the preferred terminal 
plane, or in a parallel plane nearest to it, a t  the top of the 
orientation in the reference plane. 

5 .  Number the vertices of the polyhedron consecutively, 
clockwise or anticlockwise, starting with vertices in the pre- 
ferred terminal plane and proceeding successively to succeeding 
planes of vertices, working down the reference axis from the 
preferred end. The vertices in each plane are numbered in 
the same direction as the preceding and/or following planes, 
beginning in each plane with a vertex at  the top of the pre- 
ferred orientation (see principle 4, above), or with the first 
vertex encountered, in the direction chosen for numbering, 
from the top of the preferred orientation. 

Most of these principles are illustrated by the two polyhedra 
shown in Figures 3 and 4. 

The familiar DU dodecahedron shown in Figure 3 (structure 
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E-1 in Table I) has three C2 axes: “x”, passing through edges 
3-6 and 4-5; “y” ,  passing through edges 3-5 and 4-6; and 
“z”, passing through edges 1-2 and 7-8. It also has two 
symmetry planes: A, passing through vertices 1, 2, 5, and 6; 
and B, passing through vertices 3, 4, 7, and 8. In this poly- 
hedron, only the “z” C2 axis can be the reference axis since 
it is the only C2 axis lying in a symmetry plane of the poly- 
hedron. The two symmetry planes of this polyhedron are 
equivalent in that both contain the reference axis (the “z” C2 
axis), and both pass through four polyhedral vertices. Sym- 
metry plane A is shown as the reference plane in Figure 3, 
because in the preferred orientation it passes through the 
polyhedral vertices of a terminal plane. 

The DU polyhedron in Figure 3 is oriented for numbering 
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5* cb 22-vertex tetracontahedron. 
_ _  . 

by looking down the “z” C2 axis, in this case from either end, 
and rotating the structure until one of the symmetry planes 
containing the vertices in a terminal plane is vertical. For this 
structure, this symmetry plane is the reference plane. The 
vertex at  the top of the reference plane is assigned the locant 
number 1, and the vertex a t  the bottom, the locant number 
2.  The two vertices in the next plane of vertices perpendicular 
to the “z” C2 axis are assigned locant numbers 3 and 4,25 and 
the vertices in the third and fourth perpendicular planes are 
assigned the locant numbers 5, 6 and 7, 8, in the same way 
as for the first two planes. 

The DZh 16-vertex polyhedron shown in Figure 4 (structure 
N-2 in Table I) also has three C2 axes: “x”, passing through 
vertices 7 and 10; “y”, passing through edges 6-1 1 and 8-9; 
and “z”, passing through vertices 1 and 16. It has three 
symmetry planes: A, passing through vertices 1, 2, 4, 12, 14, 
and 16; B, passing through vertices 1, 3, 5, 7, 10, 13, 15, and 
16; and C, passing through vertices 6 ,7 ,8 ,9 ,  10, and 11. Each 
C2 axis in this polyhedron is contained in two symmetry planes: 
the “x” C2 axis in symmetry planes B and C; the “y” C2 axis 
in A and C; and the “z” C2 axis in A and B. Therefore, for 
this polyhedron, it is necessary to consider the additional 
criteria of principle 1 in order to select the reference axis. 

Since the terminal plane perpendicular to the “y” C2 axis 
contains two polyhedral vertices, according to principle l a  it 
is less preferred than the  “x” or “z” C2 axis, each of which 
has a perpendicular terminal plane with only one polyhedral 
vertex. The next criterion for selecting the reference axis under 
principle 1 involves selection of the reference plane (see 
principle 3). Since symmetry plane B passes through eight 
polyhedral vertices, according to principle 3a, above, it is less 
preferred than symmetry planes A or C, each of which passes 
through six vertices. Symmetry plane A passes through a 
vertex in the second plane of vertices perpendicular to the “z” 
C2 axis, but symmetry plane C does not pass through a vertex 
until the third plane of vertices perpendicular to the “x” C2 
axis. Therefore, according to principle 3b, symmetry plane 
A is the reference plane, and since the “z” C, axis lies in the 
reference plane, it is the reference axis. 

The DZh polyhedron in Figure 4 also illustrates the type of 
structure with rigorously coplanar nonequivalent sets of sym- 
metrically equivalent vertices. As noted earlier, it seems more 
convenient to number the vertices in each such plane se- 
quentially rather than discontinuously. Hence, after the locant 
number 1 is assigned to the polyhedral vertex in the preferred 
terminal plane, the locant numbers 2, 3, 4, and 5 are assigned 
sequentially, clockwise or a n t i c l o ~ k w i s e , ~ ~  to the vertices in 
the next plane starting with the c5 vertex at  the top of the 
projection in the reference plane. In the same “iay, locant 

( 2 5 )  Although the locant number 3 may be assigned either to the right or 
to the left of the reference plane in accordance with a clockwise or 
anticlockwise direction, respectively, i t  is customary to use a clockwise 
direction in the absence of specific atoms and substituents or ligands 
at the vertices of the polyhedron. 

numbers 6, 7, 8,9, 10, and 11 are assigned to the vertices in 
the third plane in the same direction from the reference plane 
as the numbering was done in the second plane beginning with 
the u6 vertex nearest to the top of the projection. 

In the descriptor for this polyhedron, [DZh-[ lv4(22u6)- 
(4v62v4)(22v6) lv4]-A2*-closo], the notations for the polyhedral 
vertices in the three nonterminal planes are enclosed in par- 
entheses and cited in the order of increasing initial locant 
numbers. Thus, since a u5 vertex in the second plane is as- 
signed locant number 2, the u5 vertices are cited first in the 
descriptor. Similarly, since a u6 vertex in the third plane is 
assigned locant number 6, the v6 vertices a re  cited first. 

Occasionally, polyhedra may be encountered where sets of 
symmetrically equivalent vertices are not coplanar but are close 
enough to each other to make it quite difficult, perhaps im- 
possible, even in an idealized model, to determine which co- 
planar sets of vertices to identify and number first. This 
situation tends to be more prevalent in larger polyhedra. One 
such polyhedron is shown in Figure 5 (structure U-3 in Table 
I). In our model of this polyhedron, it is reasonably clear that 
the symmetrically equivalent vertices 13, 14, 15, and 16 are  
above vertices 17, 18, 19, and 20. However, it is equally 
uncertain which of the two nonequivalent sets of symmetrically 
equivalent vertices, 17 and 19, or 18 and 20, occurs next in 
thz sequence of parallel planes and should be numbered and 
cited next. It seems quite reasonable that such sets should not 
be treated exactly as the rigorously coplanar nonequivalent 
sets, illustrated by the polyhedral structures N-2 and 4 - 3  in 
Table I. However, it also seems quite reasonable and con- 
venient to number such nearly coplanar nonequivalent sets 
sequentially. Therefore, when it is difficult, or virtually im- 
possible to separate sets of symmetrically equivalent vertices 
into individual planes, we suggest that these sets be enclosed 
in brackets, instead of parentheses, but be numbered and cited 
in the descriptor in the same way as for the rigorously coplanar 
nonequivalent sets. Thus, the descriptor for the 22-vertex 
tetracontahedron in Figure 5 (structure U-3 in Table I)  is 

Structures T-1 and V-2 in Table I are further examples of 
polyhedra with nearly coplanar sets of symmetrically equiv- 
alent vertices. However, in these structures, the nearly co- 
planar sets have vertices with the same skeletal connectivity. 
The vertices are numbered sequentially, and the u” symbol is 
enclosed in brackets in the descriptor since they a re  not rig- 
orously coplanar. 

We would emphasize, however, that the technique sugested 
for the structure of Figure 5 should be used only when there 
is real uncertainty regarding the position of planes of sym- 
metrically equivalent vertices. It should not be a substitute 
for the rigorous system. 
Summary 

A method for uniquely describing the structure of closed 
polyhedral systems, with at  least one rotational symmetry axis 
and one plane of symmetry, has been developed that is con- 

[C2,-(22v64v644[2v62] 2u6)-A~-closo]. 
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point groups, capped polyhedral systems, encapsulating 
polyhedra, and extensions specific to metal clusters are not 
included in this paper, but proposals in this area are in 
preparation. 

sistent with present procedures for numbering coordination 
polyhedra and boron polyhedral frameworks. Comments on 
this proposal are encouraged. 

Polyhedral structures belonging to D, , T, and C, symmetry 
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The synthesis and reactions of a designed metallacarborane catalyst, [closo-1,3-[p-(q2-3-CH2=CHCH2CH2)-3-H-3- 
PPh3-3,1,2-RhC2B9Hlo] (I), are reported. Complex I contains a chelating 4-butenyl side chain attached to the dicarbollide 
ligand, the alkenyl function of which formally replaces one of the triphenylphosphine ligands of the parent compound 
[closo-3-H-3,3-(PPh3),-3,1,2-RhC2B9HlJ (11). When I was exposed to conditions employed for the hydrogenation of alkenes 
or alkynes, the alkenyl ligand was hydrogenated to a noncoordinating butyl group, leaving an open coordination site on 
rhodium which greatly enhanced the rate of hydrogenation of added alkene. Complex I was, indeed, found to be among 
the most active homogeneous hydrogenation catalysts reported. Complex I also catalyzed the isomerization of hex- 1-ene. 
The crystal and molecb!ar structure of I has been determined by three-dimensional X-ray diffraction techniques. The compound 
crystallizes in the monoclinic space group P2, /a  with a = 16.494 (4) A, b = 11.193 (2) A, c = 17.006 (3) A, @ = 122.49 
(I) ' ,  and Z = 4. The observed and calculated densities are 1.229 and 1.386 g cm-3, respectively. Diffraction data to 20 
maximum = 45' (Mo K a  radiation) were collected on a Syntex P i  automated diffractometer, and the structure was solved 
by conventional Patterson, Fourier, and full-matrix least-squares techniques to a final discrepancy index of R = 0.044 for 
the 2253 independent observed reflections. All atoms, including hydrogen atoms, were located. The molecule has the closo 
12-vertex icosahedral geometry, and the rhodium is bonded to one hydrogen atom and one triphenylphosphine ligand and 
x bonded to the alkene function as well as symmetrically bonded to the C2B3 face of the C2B9 dicarbollyl group. The molecule 
is monomeric, and there are no intermolecular distances shorter than van der Waals distances. The reactions of I with 
hydrogen in the presence and absence of triphenylphosphine are reported. 

Introduction 
During the course of our studies of alkene hydrogenations 

catalyzed by [ closo-3-H-3 ,3-(PPh3)2-3, 1 ,2-RhC2B9H J (11) , I  
the first metallacarborane catalyst, we have noted that the rate 
of hydrogenation is inversely proportional to the concentration 
of added triphenylphosphine. This observation suggests that 
reversible dissociation of triphenylphosphine is an important 
equilibrium preceding the rate-determining step of the hy- 
drogenation sequence. The ease with which the parent catalyst 
could be modified through synthesis led us to explore the 
possibility of obtaining enhanced hydrogenation rates by re- 
placing one of the triphenylphosphine ligands with a chelated 
g2-3-buten- 1 -yl side chain attached to one of the dicarbollide 
carbon atoms. The resulting rhodacarborane [closo- 1,3- [p-  

(I) might well undergo irreversible hydrogenation of the alk- 
enyl side chain to produce an open coordination site on rho- 
dium and a noncoordinating butyl group attached to the di- 
carbollide ligand. The use of alkenyl ligands to produce an 
open coordination site in hydrogenation catalysts was first 
proposed by Schrock and Osborn in their studies of hydro- 
genations catalyzed by [(COD)MCl], (COD = 1,5-cyclo- 
octadiene, M = Rh, I I - )~ .  To our knowledge, I is the first 
rhodium member of the relatively rare hydrido alkene class 
of c ~ m p l e x e s ~ - ' ~  to be isolated and structurally characterized. 

(g2-3-CH2=CHCH2CH2)] -3-H-3-PPh3-3,l J-RhCzBgH i ~ ]  * 
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Regardless of the detailed mechanism of rhodacarborane- 
catalyzed hydrogenation (a subject which will be reported 
elsewhere), the removal of one coordinated triphenylphosphine 
molecule from the manifold of available ligands should faci- 
litate alkene or hydrogen coordination and lead to a marked 
rate acceleration. Preliminary catalytic screening of I con- 
clusively demonstrated this effect: indeed I is among the most 
active homogeneous hydrogenation catalysts reported to date 
(vide infra). 

Experimental Section 
Solvents and Reagents. All solvents were reagent grade and distilled 

under argon prior to use. Tetrahydrofuran (THF) was dried over 
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