Properties of Azidotrifluoromethane

KARL 0. CHRISTE* and CARL J. SCHACK

Received August 29, 1980

The infrared spectrum of gaseous and the Raman spectrum of liquid CF_3N_3 were recorded. A total of 14 fundamental vibrations out of 15, expected for a model of symmetry **C,** with hindered rotation, were observed and assigned. The UV, ¹⁹F NMR, and mass spectra were also recorded and confirm the presence of a covalent azido group. The melting point and vapor pressure curve of CF_3N_3 are reported.

Introduction

Although the existence of CF_3N_3 has been known for almost 2 decades,' very little is known about this interesting molecule. In 1961 Makarov and co-workers mentioned¹ that CF_3N_3 is formed during the chlorination of CF_3NNNH_2 , and in 1968 they described its synthesis in more detail.2 However, the compound was only characterized by elemental analysis, its boiling point, and a statement concerning its explosive properties at elevated temperature.2 No further information on $CF₃N₃$ could be found in the literature. This is not surprising in view of the explosive character generally exhibited by covalent azides. $3,4$ In view of this paucity of data, a characterization of CF_3N_3 was carried out, the results of which are summarized in this paper.

Experimental Section

Caution! Although no explosions were encountered in this study, covalent azides are in general explosive,^{3,4} and Makarov and co-workers reported that CF_3N_3 explodes at 330 °C.² Consequently, appropriate safety precautions should be taken when working with larger amounts of CF_3N_3 .

Materials and Apparatus. Volatile materials were manipulated in a stainless-steel vacuum line equipped with Teflon FEP U traps and 3 16 stainless-steel bellows-seal valves and a Heise Bourdon tube-type pressure gauge. Gas chromatographic data were obtained with use of a Varian GC under isothermal conditions with a stainless-steel column $\binom{1}{8}$ in. \times 10 ft) packed with Poropak PS. Trifluoronitrosomethane (PCR Research Chemicals, Inc.) and hydrazine (Olin-Mathieson) were used as received.

Infrared spectra were recorded in the range 4000-200 cm-I on a Perkin-Elmer Model 283 spectrophotometer using a Teflon cell of 5-cm path length equipped with CsI windows. The spectrometer was calibrated by comparison with standard gas calibration points,^{5,6} and the reported frequencies are believed to be accurate to ± 2 cm^{-l}.

The Raman spectra were recorded on a Cary Model 83 spectrophotometer using the 488-nm exciting line of an Ar ion laser and a Claassen filter' for the elimination of plasma lines. Quartz tubes (4-mm o.d.), closed by a metal valve, were used as sample containers in the transverse-viewing, transverse-excitation technique. A previously described⁸ device was used for recording the low-temperature spectra. Polarization measurements were carried out by method VI11 as described by Claassen et al.'

The ¹⁹F NMR spectra were recorded at 84.6 MHz on a Varian Model EM **390** spectrometer. Chemical shifts were determined relative to the CFCl₃ solvent with positive shifts being downfield from CFCl₃.⁹

- (1) Makarov, *S.* P.; Yakubovich, **A.** Ya.; Ginsburg, **V. A.;** Filatov, **A.** *S.;* Englin, M. **A.;** Privezentseva, N. F.; Nikiforova, T. Ya. *Dokl. Akad. Nauk SSSR,* **1961,** *141,* **357.**
- Makarov, **S.** P.; Yakubovich, **A.** Ya.; Filatov, **A.** *S.;* Englin, M. **A.;** Nikiforova, T. Ya. *Zh. Obshch. Khim.,* **1968,** *38,* **709.**
- (3) "The Chemistry of the Azido Group''; Patai, *S.,* Ed.; Wiley-Interscience: New **York, 1971.**
-
- Dehnicke, K. *Angew. Chem., Int. Ed. Engl.* **1967,** *6,* **240.** Plvler, E. **K.;** Danti. **A.:** Blaine, L. R.: Tidwell. E. D. *J. Res. Natl. Bur.*
- Stand., Sect. A, 1960, 64, 841.
International Union of Pure and Applied Chemistry, "Tables of Wavenumbers for the Calibration of Infrared Spectrometers"; Butter- worths: Washington, D.C.; **1961.**
- Claassen, H. H.; Selig, H.; Shamir, J. *Appl. Spectrosc.* **1969,** *23, 8.* Miller, F. **A,;** Harney, B. M. *Appl. Spectrosc.* **1970,** *24,* **271.**

The mass spectra were recorded with an EA1 Quad 300 quadrupole spectrometer at an ionization potential of 40 eV.

The UV spectra were recorded on Cary Model 14 spectrophotometer using a stainless-steel cell of IO-cm path length equipped with sapphire windows.

Synthesis of CF_3N_3 **.** A 200-mL glass ampule containing a stirring bar was loaded with 78.1 mmol of N₂H₄ and 40 mL of CH₃OH, stirred and cooled to -78 °C. After removal of air, CF₃NO (83 mmol) was bled into the cooled ampule during 2.5 h resulting in a blue-green solution. Trifluoronitrosomethane in the vapor phase was removed, and Cl₂ was added (78 mmol during 2 h) to the stirred -78 °C solution giving a light yellow liquid phase. The solution was allowed to warm slowly, and the gas generated was passed through a coarse glass frit, NaOH scrubber. In 4 h approximately 76 mmol of crude CF_3N_3 passed the scrubber. Final purification was effected by fractional condensation through traps cooled at -78 , -126 , -142 , and -196 °C. The -196 °C fraction was mainly CF₃NO while the -78 °C trap contained traces of material which was discarded without examination. The remaining traps contained the colorless CF_3N_3 (70 mmol, 89%) yield on the basis of N_2H_4 taken) whose GC indicated purity was 98-99%. Storage in stainless-steel cylinders for several weeks at ambient temperature at several atmospheres pressure did not result in any significant decomposition.

Results and Discussion

Synthesis and Properties of CF₃N₃. For the synthesis of $CF₃N₃$ the procedure of Makarov and coworkers² was followed. It involves reactions 1 and 2.

$$
CF3NO + H2NNH2 \rightarrow CF3N = NNH2 + H2O (1)
$$

$$
CF3N=NNH2 + Cl2 \rightarrow CF3N3 + 2HCI
$$
 (2)

Azidotrifluoromethane is white as a solid and colorless as a liquid and a gas. It melts at -152 °C. It is stable at room temperature and can be handled without noticeable decomposition. Vapor pressures were measured over the range -95 to -45 °C, and the data were fitted by the method of least squares to eq 3 with an index of correlation of 0.9998. The

$$
log P (mm) = 7.8748 - 1221.7/T (K)
$$
 (3)

extrapolated boiling point is -28.5 °C, in good agreement with that of -28.5 °C at 743 mm, previously reported.² Measured vapor pressures at the noted temperatures are as follows *(T,* $^{\circ}$ C, P, mm): -95.2, 10; -78.6, 40; -64.6, 108; -45.5, 324. The latent heat of vaporization of CF_3N_3 is 5.591 kcal/mol, and the derived Trouton constant is 22.9, indicating little association in the liquid phase.

Vibrational Spectra. Figure 1 shows the infrared spectrum of gaseous and the Raman spectrum of liquid $CF₃N₃$. The observed frequencies are listed in Table I. By analogy with the known structures of CH_3N_3 ,^{10,11} CF_3OF ,^{12,13} and CIN_3 ,¹⁴

-
- (9) Pure Appl. Chem. 1972, 11, 1215.
(10) Livingston, R. L; Rao, C. N. R. J. Phys. Chem. 1960, 64, 756.
(11) Salathiel, W. M.; Curl, R. F., Jr., J. Chem. Phys. 1966, 44, 1288.
(12) Buckley, P.; Weber, J. P. Can. J. Chem. 1
-
- **(13)** Diodati, F. P; Bartell, L. *S. J. Mol. Struct.* **1971,** 8, **395. (14)** Cook, R. L.; Gerry, M. C. L. *J. Chem. Phys.* **1970,** *53,* **2525.**

Figure 1. Vibrational spectra of CF_3N_3 . Traces A and B: infrared spectra of the gas recorded in a 5-cm path length cell equipped with CsI windows at pressures of 8 and 255 mm, respectively. The bands marked by a diamond and an asterisk are believed to be due to an impurity and CF₃NO, respectively. Traces C-E: Raman spectra of the liquid, recorded at -100 **"C** at two different sensitivities and with the incident polarization parallel and perpendicular.

the CF_3N_3 molecule is expected to possess a structure of symmetry C_s with a planar CN_3 backbone, an approximately linear N₃ group, a staggered CF₃ group, and $r_{N_1N_2}$ (~1.25 Å) being significantly longer than $r_{N_2N_1}$ (\sim 1.13 Å) due to II being

the most important resonance structure. Structure I would be analogous to that of $CF_3N=O^{15}$ in which the CF_3 and NO group are eclipsed. Whether the CF_3 is eclipsed or staggered depends on the coordination number of N_1 , including its sterically active valence electron pairs as ligands. If N_1 is three-coordinated, as in $CF₃NO$ or structure I, the highly repulsive free valence electron pair of N_1 will avoid the fluorine ligands of the CF_3 group and therefore cause the free valence electron pair of N_1 to be staggered and the N=X ligand to be eclipsed relative to the CF_3 group. However, if N_1 is four-coordinated, as in 11, the two free valence electron pairs on N_1 and the N-X group should all be staggered with respect to the CF_3 group.

Assuming hindered rotation of the CF_3 group, CF_3N_3 should exhibit 15 fundamental modes of vibration, all active in both the infrared and the Raman spectra. Of these, 10 belong to species a' and can be either polarized or depolarized, while *5* belong to species a" and should be depolarized in the Raman spectrum. An approximate description of these 15 fundamental vibrations is given in Table 11. Eight of them involve motions of the CF_3 group, four are due to the N₃ group, and three involve the C-N linkage.

Assignments for the four N_3 modes were made by comparison with the known spectra of the covalent azides, $FN₃¹⁶$,

(16) Milligan, D. E.; Jacox, M. E. *J. Chem. Phys. 1964, 40,* 2461.

Table I. Vibrational Spectra of $CF₃N₃$

obsd freq, cm ⁻¹ , and intens ^a		
IR (gas)	Raman (liquid)	assignt in point group C_s
3465 w 3436 sh 3327 w 3039 w 2755 vw 2567 w 2510 w 2440 mw 2410 sh 2354 vw 2302 vw 2270 vw 2183 s	2182 (1.1) p	$\nu_1 + \nu_2 = 3466$ (a') $\nu_1 + \nu_3 = 3436$ (a') $v_1 + v_4 = 3332$ (a') $\nu_1 + \nu_5 = 3041$ (a') $v_1 + v_2 = 2762$ (a') $2v_2 = 2568$ (a') $2\nu_3 = 2508$ (a') $v_2 + v_4 = 2434$ (a') $v_3 + v_4 = 2404$ (a') $v_1 + v_{10} = 2361$ (a') $2v_4 = 2300$ (a') ν , (a')
2140 m 2018 mw 1856 vw 1798 w 1713 vw 1629 mw 1613 mw 1590 w	2137 (0.1)	$v_2 + v_5 = 2143$ (a') $v_2 + v_6 = 2014$ (a') $v_2 + v_7 = 1864$ (a') $v_2 + v_8 = 1797$ (a') $2v_s = 1718$ (a') $\{$ impurity? $\nu_s + \nu_s = 1589$ (a') or CF ₃ NO?
1455 w 1427 mw		$2v_6 = 1460$ (a') $v_3 + v_{10} = 1432$ (a')
1370 mw 1316 m	1370 (0.1)	$v_s + v_s = 1372$ (a') $v_6 + v_7 = 1310$ (a')
1284 vs, PQR 1255 ms 1223 mw	$\left\{\begin{array}{c} 1280 \\ 1253 \end{array}\right\} (0.2)$ p	v_2 (a') ν_{3} (a')
1169 vs	1165 sh, dp?	C_2F_6 impurity? ν_{11} (a'')
1152 sh 1110 sh	1149 (0.5) p 1110 (0+)	ν_{4} (a') C_2F_6 impurity or $2\nu_{13} =$ 1112 (a') ?
1034 vw 1009 vw		$v_s + v_{10} = 1038$ (a')
859 mw, PQR	859 (10) p $814(0+)$	ν_{s} (a')
751 w, PQR 731 m, PQR 687 vw	$751(0+)$ 730 (3.8) p $685(0+)$	$v_7 + v_{10} = 759$ (a') v_{ϵ} (a') $v_{8} + v_{10} = 692$ (a')
594 mw 582 sh 557 w 513 mw, PQR	594 (0.2) dp 580 (1.1) p 555 sh 514 (1.7) p	v_{12} (a'') ν ₇ (a') ν_{13} (a'')
450 vw 402 w, PQR	403 (1.6) p 179 (4.3) p	ν_{8} (a') ν_{14} (a'') ν ₉ (a') ν_{10} (a')

a Uncorrected Raman intensities representing relative peak height.

 CIN_3 ,^{16,17} BrN₃,¹⁶ IN₃,¹⁸ CH₃N₃,¹⁹⁻²² CD₃N₃,^{21,22} HN₃,²³⁻²⁷ DN_3 , $^{23-27}$ and $OPF_2N_3^{28}$ (see Table II). Of the four N_3 modes, two are due to stretching motions, one antisymmetric and one symmetric. Since the two NN bonds significantly differ in their bond strength, the higher frequency mode might equally well be described as mainly a stretching of the N_2N_3 bond and the lower one as mainly a stretching of the N_1N_2 bond; however, due to the linear N_3 structure, both modes should be strongly coupled.²² On the basis of its high frequency and relative intensity, the N_2N_3 stretch is readily assignable to the

-
- Fateley, **W.** G.; Miller, F. **A.** *Spectrochim. Acta 1961, 17,* 857. Manica, E.; Zerbi, G. *Garz. Chim. Ital. 1960, 90, 53.*
-
- (21) Miller, F. **A.;** Bassi, D. *Spectrochim. Acta 1963, 19,* 565.
- (22) Thompson, W. T.; Fletcher, W. H. *Spectrochim. Acra 1966, 22,* 1907. Dows, D. **A.;** Pimentel, G. C. *J. Chem. Phys. 1955, 23,* 1258.
- (23)
- Pimentel, G. C.; Charles, **S.** W.; Rosengren, **Kj.** *J. Chem. Phys. 1966, 44,* 3029.
- Moore, G. B.; Rosengren, Kj. J. *Chem. Phys. 1966, 44,* 4108. Levine, D. M.; Dows, D. **A.** *J. Chem. Phys. 1967,46,* 1168. Shimanouchi, T. *J. Phys. Chem. ReJ Data, 1972,* I, 202. (25)
- (26)
- $27)$
- O'Neill, S. R.; Shreeve, J. M. *Inorg. Chem. 1972, 11,* **1629.**

⁽¹⁵⁾ Davis, M. I.; Boggs, J. E.; Coffey, D., Jr.; Hanson, H. P. *J. Phys. Chem.* 1965,69,3727. Turner, H. P.; Cox, P. **A.** *Chem. Phys. Lett. 1976,19,* 585.

⁽¹⁷⁾ Clark, T. C.; Clyne, M. **A. A.** *Trans. Faraday SOC. 1969, 65,* 2994. Dehnicke. K. *Anaew. Chem. 1976.88.* 612.

band at about 2180 cm⁻¹. The N_1N_2 stretch should occur in the frequency range between 1090 and 1270 cm^{-1} and most likely be of higher Raman intensity than the CF_3 stretching modes. It is therefore assigned to the Raman band at about 1150 cm⁻¹. This assignment agrees well with those reported for CIN_3 ¹⁶ BrN₃¹⁶ and IN₃¹⁸ for which this mode occurs at 1144, 1160, and 1176 cm^{-1} , respectively.

The in plane (a') and out of plane (a'') N_3 deformation modes should occur in the 500-660-cm⁻¹ range (see Table II). Two polarized Raman bands were observed in this range at 580 and 514 cm-I, respectively, and must be due to the in plane N_3 deformation and the antisymmetric a' CF₃ deformation mode. Based on the similarity of the frequencies of the $CF₃$ modes in CF_3N_3 and $CF_3NO^{29,30}$ (see Table II), we prefer to assign the 580-cm⁻¹ fundamental to the N_3 a' deformation and the 514-cm⁻¹ one to the CF₃ a' deformation mode. A similar choice exists for the two corresponding a" modes for which two bands at 594 and 556 cm^{-1} are available for assignment. By comparison with the related compounds listed in Table I1 and based on intensity arguments, we prefer to assign 594 cm-' to $\delta(N_3)$ (a'') and 556 cm⁻¹ to δ_{as} (CF₃) (a''). Spectra of ¹⁵N-substituted CF_3N_3 would be required to confirm these assignments.

The assignment of the three fundamental vibrations involving mainly the C-N linkage presents no difficulties because they occur at frequencies outside of the ranges expected for the CF_3 and N_3 modes. Thus, the C-N stretching mode obviously22 must be assigned to the strongest Raman band at 859 cm⁻¹, and the second strongest Raman band at 179 cm⁻¹ must be due to the CNN angle deformation. The latter mode was observed²² at 245 and 231 cm⁻¹ for CH₃N₃ and CD₃N₃, respectively, and the further mass increase of the methyl group in $CF₃N₃$ can account for the observed additional frequency decrease. The C-N torsional modes in $CH₃N₃$ and $CD₃N₃$ have frequencies of 126 and 90 cm⁻¹, respectively.¹⁹ On the basis of the larger mass of the CF_3 group, this mode should show again a frequency decrease for CF_3N_3 and should occur well below 90 cm^{-1} . Due to its low frequency, this mode could not experimentally be observed in the present study.

Assignments for a CF_3 group with hindered rotation (C_s) symmetry) are generally difficult; however, several recent thorough studies of the vibrational spectra of CF_3X type compounds such as CF_3COX ,^{31,32} CF_3NO ,^{29,30} and CF_3OF ³³⁻ have provided valuable information and permit assignments for most of the CF_3 modes.

As previously pointed out by Redington,³² the CF₃ modes of molecules of symmetry *C,* can be related to those of molecules of symmetry C_{3v} , for which the assignments are well established. Such a correlation is shown in Table I11 for CF_3N_3 , CF_3NO , 29,30 CF_3COOH , 32 CF_3CN , 38 CF_3CCH , 38 and $CF₃H³⁹$ Under C, symmetry the doubly degenerate e modes of C_{3v} split into one a' and one a'' component. Although the degree of splitting can significantly vary from compound to compound, the average of the a' and the a" frequency is similar

- (30) Demuth, R.; Burger, H.; Pawelke, *G.;* Willner, H. *Spectrochim. Acta, Part A* **1978**, 34A, 113.
- (31) Berney, C. **V.** *Spectrochim. Acta, Part A* **1971,** *27A,* 663.
- (32) Redington, R. L *Spectrochim. Acta, Part A* **1975,** *31A,* 1699.
- (33) Wilt, P. M. Dissertation, Vanderbilt University. 1967. (34) Wilt, P. M.; Jones, E. **A.** *J. Inorg. Nucl. Chem.* **1967,** *29,* 2108.
- (35) Smardzewski, R. R.; **Fox,** W. B. *J. Fluorine Chem.* **1975,** *6,* 417; J. *Phys. Chem.* **1975,** *79,* 219.
- (36) Kuo, **J.** C.; DesMarteau, D. D.; Fateley, W. G.; Hammaker, R. M.; Marsden, C. J.; Witt, J. D. *J. Raman Spectrosc.* **1980,** *9,* 230. Wahi, P. K.; Patel, N. D. *Can. J. Spectrosc.* **1980,** *25,* 70.
- (37) Hammaker, R. M.; Fately, W. G.; Manocha, A. S.; DesMarteau, D.
D.; Streusand, B. J.; Durig, J. R. *J. Raman Spectrosc*. 1980, 9, 181.
(38) Shimanouchi, T. *J. Phys. Chem. Ref. Data* 1973, 2, 247 and 250.
-
- (39) Shimanouchi, T. J. *Phys. Chem. Ref. Data* **1972,** *I,* 54.

⁽²⁹⁾ Shurvell, H. F.; Dass, S. C.; Gordon, R. D. *Can. J. Chem.* **1974**, 52,

^a Data from ref 38. ^b Data from ref 39. ^c Data from ref 32. ^d p and dp indicate polarization in the Raman spectra. In C_s symmetry, a'' modes cannot be polarized. e Strongly coupled modes (see text). f Average frequency of a' + a''.

to that of the corresponding degenerate e mode. However, the following secondary effects which can influence the frequencies must be kept in mind: (i) the covalency, and thereby the bond strength and frequency values, of the C-F bonds in $CF₁X$ increases with increasing electronegativity of X, and (ii) coupling between certain modes can result in large frequency shifts. The tendency for strong coupling is particularly pronounced in the a' block, when the symmetric CF_3 stretching, the C-X stretching, and the symmetric CF_3 deformation strongly mix with each other.

In CF_3N_3 , the corresponding three fundamentals occur at 1284, 859, and 730 cm⁻¹ and are readily identified by their PQR band contours (parallel bands of an approximate accidental spherical top molecule) and highly polarized Raman bands. On the basis of our experience with related molecules and the observed infrared and Raman intensities, the 1284 $cm⁻¹$ fundamental might be described as an antisymmetric combination of the symmetry coordinates of $\nu_s(CF_3)$ and those of $\nu(C-N)$, the 859-cm⁻¹ fundamental as a symmetric combination of the same symmetry coordinates with some contribution from $\delta_{s}(CF_3)$, and the 730-cm⁻¹ fundamental as mainly a symmetric combination of the symmetry coordinates of the ν (C-N) and δ _s(CF₃). Due to this pronounced mixing, arguments concerning the identity of these modes are not very meaningful. It should be kept in mind, however, that, particularly in the a' block of CF_3X type molecules, the above described coupling can cause the frequencies of $\nu_{s}(CF_{3})$ and δ_{s} (CF₃) to move apart, resulting in an unexpected high frequency for $\nu_s(CF_3)$ and a low one for $\delta_s(CF_3)$. This in turn may result for different CF,X type compounds in a different sequence of the a' and a" fundamentals and is one of the prrincipal reasons for the existing confusion concerning the proper assignment of CF_3 group fundamental vibrations. The coupling between $v_s(CF_3)$ and $\delta_s(CF_3)$ in a' of a CF₃X type molecule is enhanced when the C-X stretch has a frequency intermediate between those of $\nu_s(CF_3)$ and $\delta_s(CF_3)$, and in these cases great care should be exercised when the CF, fundamentals are assigned.

For CF_3N_3 , the following CF_3 modes can be assigned with reasonable confidence. The three CF_3 stretching modes are expected to occur in the 1150 —1300-cm⁻¹ region and therefore are assigned to the fundamental vibrations at about 1168, **1254,** and 1284 cm-'. Since the two higher frequency bands are definitely polarized in the Raman spectrum, the 1168 -cm⁻¹ band must represent the antisymmetric CF₃ stretch of species a", in good agreement with previous conclusions.^{31,32,40} On the basis of its PQR infrared band contour,

its higher Raman intensity and a comparison with similar m olecules, $31,32,40$ the highest frequency fundamental vibration is assigned to $\nu_{\rm r}({\rm CF}_3)$ (a'). On the basis of analogous arguments, the 730 -cm⁻¹ fundamental vibration must be assigned to the symmetric CF, deformation of species a'. Adopting the above assignments for the two N_3 deformation modes, the antisymmetric CF, deformation modes are ascribed to the **556** and 513-cm-' bands with the Raman polarization data unambiguously distinquishing the a' from the a" mode. The $CF₃N₃$ assignments also suggest that in Redington's³² and Berney's³¹ previous studies the assignments of the $\delta_{as}(CF_3)$ (a'), and $\delta_{\alpha s}$ (CF₃) (a'') might need to be interchanged. Although intensity arguments were cited against such an exchange, it is supported by Raman polarization data.^{31,32}

The two modes which in most studies could be assigned only with difficulties are the a' and a'' CF_3 rocking modes. As can be seen from Table 111, the corresponding degenerate e mode of symmetry C_{3v} occurs at about 460 cm⁻¹. Therefore, the polarized Raman band, generally observed for CF_3X compounds of symmetry C_s in the range 400-430 cm⁻¹ should represent the a' CF_3 rocking mode. Since the a'' CF_3 rocking mode must be depolarized in the Raman spectrum, the 179 cm^{-1} fundamental vibration of CF_3N_3 cannot be assigned to this mode. The only vibration left for a possible assignment to the a" CF, rocking mode is the weak infrared band at 450 cm-', unless a coincidence of the symmetric and of the antisymmetric CF_3 rocking mode is assumed at 403 cm⁻¹, which would leave no plausible assignment for the 450-cm⁻¹ band.

A normal coordinate analysis was not carried out because of the grossly underdetermined nature of the problem and the strong coupling experienced by us and others^{30,36} for CF_3X type species. Since the force constants and the resulting potential energy distributions can be varied over a wide range with exact reproduction of the observed frequencies, PED-based conclusions concerning the identities of certain fundamental vibrations should be treated with the necessary scepticism.

Numerous overtones and combination bands were observed in the infrared spectrum at higher sample pressures. Almost all of them could be readily assigned (see Table I) and confirm the proposed assignments. The only detectable impurities were possibly traces of C_2F_6 and CF_3NO .

¹⁹F **NMR Spectrum.** The ¹⁹F NMR spectrum of CF₃N₃ was recorded at 27 °C in CFCl, solution. It consisted of a sharp singlet at -57.6 ppm, upfield from internal CFCl₃, characteristic for a $CF₃$ group with all three fluorines being equivalent on a NMR time scale. This is not surprising in view of the relatively low barrier to internal rotation expected^{19,29,37} for a molecule such as CF_3N_3 .

Mass Spectrum. The mass spectrum of $CF₃N₃$ is listed in Table IV. It shows a strong parent ion at m/e 111 and a

⁽⁴⁰⁾ Christe, K. *0.;* Naumann, **D.** *Spectrochim. Acta, Parr A* **1973,** *29A,* **2017.**

Figure 2. UV absorption spectrum of gaseous CF_3N_3 .

strong N3+ fragment, typical for covalent azides. **As** expected, the base peak is due to CF_3^+ , but surprisingly, the CF_3N^+ peak at m/e 83 was extremely weak (less than 1%), in contrast to organic azides which generally show RN^{+} as base peak. However, the high intensity of the N_2^+ and CF_2N^+ peaks indicate that in $CF_3N_3 N_2$ elimination is also important, but that $CF₃N$ readily loses a fluorine to form the relatively stable $CF₂N$ radical.⁴¹

UV Spectrum. The **UV** absorption spectrum of gaseous CF3N3 is shown in Figure **2.** The spectrum shows two strong

(41) Ogden, P. **A.;** Mitsch, R. **A.** *J. Am. Chem. Sot.* **1967,** *89,* **3868.**

absorptions at 200 and 258 nm, which by analogy to previous assignments for similar covalent azides⁴² might be assigned to the sp_x $\rightarrow \pi y^*$ and $\pi y \rightarrow \pi x^*$ transitions of the azido group, respectively. The previous suggestions, 42 that the energy difference between these two electronic transitions in a given XN_3 molecule is both a measure for the polarity of the $X-N$ bond and an indication for a negatively polarized chlorine in CIN_3 , appear questionable. If these suggestions were correct, the replacement of the three hydrogens in $CH₃N₃$ by three fluorines should result in a closer match of the electronegativities of the methyl and the azido group and hence an increased covalency and a larger energy difference between the two electronic transitions. However, this is clearly not the case. The previously postulated $Cl^- - N_3^+$ polarization is also incompatible with the well-established 4 reaction chemistry of CIN_3 which clearly demonstrates the electropositive character of chlorine in this compound. The principle argument previously presented⁴ for the Cl⁻⁻N₃⁺ polarization in ClN₃ was the relatively high frequency of the N-Hal stretching modes in CIN_3 and BrN_3 . It was suggested that these high frequencies are due to partial $N=X$ double bonding and that this partial double-bond character can only be explained by the following resonance structure invoking a formal negative charge on the halogen atom

Obviously, the possibility of the more likely resonance structure

which results also in an $X=N$ double bond but with a positively polarized halogen was overlooked.

Summary. Azidotrifluoromethane is a relatively stable compound, and some of its physical properties were determined. The spectroscopic data show that $CF₃N₃$ contains a covalent azido group, similar to those of other covalent azides of known structure, such as CH_3N_3 or CIN_3 . Whether the azido group is linear, as in $CH₃N₃$ or $HN₃$, or slightly bent, as in $CIN₃$, is difficult to say on the basis of the available data.

Acknowledgment. We gratefully acknowledge financial support of this work from the Office of Naval Research, Power Branch, and the **US.** Army Research Office.

Registry No. CF₃N₃, 3802-95-7.

⁽⁴²⁾ Dehnicke, K.; Ruschke, P. Z. *Naturforsch. 8: Anorg. Chem., Org. Chem.* **1978,** *338,* **750.**