Correspondence

Dynamics of Excited-State Rearrangement Processes in the Photochemistry of Transition-Metal Complexes

Sir:

Models' have been proposed for the stereochemical rearrangements often observed during the ligand field photosubstitution reactions of $d³$ and $d⁶$ transition-metal complexes. For the d^6 systems, we have expanded on this theoretical treatment² and supported this theory through a number of experimental papers.²⁻⁶ The model^{1,2} can be briefly outlined as follows for the d^6 system. (1) Photosubstitution of [MA₄XY] occurs by loss of \hat{Y} in the lowest triplet state. (2) With use of cis and trans to denote the positions of X and the vacant site, it is found that cis- and trans- $[MA₄X]$ are separated by an often low-activation barrier at the trigonal-bipyramidal structure when the triplet electronic configuration is maintained during loss of Y. (3) For the triplet $[MA₄X]$ fragment, the trans structure is favored when $e_{\sigma}^* \ge e_{\sigma}^*$ ^{X 1,2} while the cis structure is favored when $e_{\sigma}^{\ \ X} > e_{\sigma}^{\ A,2}$ Thus, specific product geometries are expected and usually observed²⁻⁸ when rearrangement is is favored when $e_{\sigma}^X > e_{\sigma}^A$. Thus, specific product geometries
are expected and usually observed²⁻⁸ when rearrangement is
faster than triplet \rightarrow singlet deactivation of the [MA₄X] fragment.

A recent report⁹ in this journal has argued that this model does not apply to d⁵ systems (specifically *cis*- and *trans*-Ru- $(en)_2Cl_2^+$) and raises doubt on its applicability to the M- $(\text{en})_2 X \bar{Y}^{\text{at}}$ d⁶ systems studied by our group $(M = Rh(III))^{3-6}$ and Ford's group $(M = Ir(III))$.¹⁰ To the contrary, Ford's interpretation of the Ir(III) work¹⁰ and our interpretation of the d^{6} ²⁻⁶ and d^{5} work are compatible with the excited-state rearrangement model and demonstrate the dynamics of the rearrangement/deactivation processes involved.

Figure 1 represents the simplest way to look at the application of the excited-state model to the rearrangement process in $M(en)_2X$ systems.¹⁰ It should be noted that a true equilibrium situation does not exist between SP_{apical}* and SP_{basal}* because of the complications of the nonradiative deactivation steps k_{na} and k_{nb} . Some limiting cases come out of this treatment and are outlined with experimental examples as follows. (1) $k_{ba} \gg k_{ab}$, k_{nb} or $k_{na} > k_{ba} \gg k_{nb}$ results in only trans products (e.g., $\tilde{M} = Rh(II\tilde{I}), X = Cl^3$, $\tilde{B}r$, \tilde{I}^5). (2) k_{ab} $\gg k_{ba}$, k_{na} or $k_{nb} > k_{ab} \gg k_{na}$ results in only cis products (e.g., $M = CO(III), \tilde{X} = CN^2; \tilde{M} = Ir(III), X = OH^{10}).$ (3) k_{na} $k_{\rm nb} \gg k_{\rm ab}$, $k_{\rm ba}$ results in only stereoretentive products (e.g., \widetilde{M} = Rh(III), $X = NH_3$ at 25 °C.³⁻⁷ [For this system, photolysis at 50 "C leads to a cis/trans mixture of products regardless of whether $SP_{\text{apical}}*$ or $SP_{\text{basal}}*$ is formed initially.⁷ This observation comes as a result of k_{ab} and k_{ba} becoming competitive with k_{na} and k_{nb} at higher temperatures, owing to the Arrhenius nature of the former rate constants and the relative temperature independence of the latter rate constants.¹¹]

When k_{ab} , k_{ba} , k_{na} , and k_{nb} are all competitive, a mixture

- **(2)** PurccU, **K. F.; Clark, S. F.; Petersen, J. D.** *Inorg. Chem.* **1980,19,2183. (3) Petersen, J. D.; Jakse, F. P.** *Inorg. Chem.* **1979,** *18,* **1818.**
-
- (4) Clark, S. F.; Petersen, J. D. *Inorg. Chem.* 1979, 18, 3394.
(5) Clark, S. F.; Petersen, J. D. *Inorg. Chem.* 1980, 19, 2917.
-
-
-
- (6) Clark, S. F.; Petersen, J. D. *Inorg. Chem.*, in press.
(7) Strauss, D.; Ford, P. C. J. Chem. Soc., Chem. Commun. 1977, 194.
(8) Skibsted, L. H.; Ford, P. C. J. Chem. Soc., Chem. Commun. 1979, 853.
(9) Rerek, M. E.; S
-
-
- **(11) Petersen, J. D.; Ford, P. C.** *J. Phys. Chem.* **1974,** *78,* **1144.**

Figure 1. Dynamics of the five-coordinate fragment rearrangement and deactivation. SP_{apical}^{*} and SP_{basal}^{*} refer to the lowest excited-state electronic configuration (quartet for d⁵, triplet for d⁶) and SP_{apical} and SP_{basal} represent the ground-state electronic configuration (doublet for d^5 , singlet for d^6) for the five-coordinate fragments. The individual rate constants pertain to the following processes: k_{ab} , rearrangement for d³, singlet for d⁵) for the five-coordinate fragmen
rate constants pertain to the following processes: k
of $SP_{p\text{mid}}^* \rightarrow SP_{b\text{mid}}^*$; k_{in} , rearrangement of $SP_{b\text{mid}}$ rate constants pertain to the following processes: k_{ab} , rearrangement
of $SP_{\text{signal}}^* \rightarrow SP_{\text{total}}^*$; k_{ba} , rearrangement of $SP_{\text{based}}^* \rightarrow SP_{\text{special}}^*$; k_{ba}
and k_{ab} , deactivation of $SP^* \rightarrow SP$ for the apical and basal con mations, respectively.

of products is obtained and, more importantly, the $cis/trans$ product ratio will be different for initial formation of $SP_{\text{apical}}*$ (photolysis of trans reactant) and initial formation of $SP_{basal} *$ (*photolysis of cis reactant*). For $[Ir(en)_2X^{2+}]^*$, the constraints on the rate constants correspond to $X = \text{Cl}, k_{\text{na}} \gg k_{\text{ab}}, k_{\text{nb}} \simeq$ $\gg k_{ab}$, $k_{ba} \gg k_{ab}$, for $X = I$ as suggested by Ford.¹⁰ 9k_{ba}, for X = Br $k_{na} \gg k_{ab}$, $k_{nb} \simeq 2.3$ k_{ba} , for X = I, and k_{na}

The situation in the d^5 Ru(III) system, cis- and trans-Ru- $(en)_2Cl_2^+$, is very interesting in that irradiation of either isomer results is a different cis/trans mixture of the $Ru(en)_2$ - $(H₂O)Cl²⁺ photoproduction outlined in$

$$
\begin{array}{ccc}\n&\c\prime s\text{-}\text{Ru(en)}_2\text{(H}_2\text{O)Cl}^{\text{C}+} \\
&\c\prime s\text{-}\text{Ru(en)}_2\text{Cl}_2^+ & \xrightarrow{\text{As }3436} & \text{S634} \\
&\c\prime s\text{-}\text{Ru(en)}_2\text{Cl}_2^+ & &\c\prime s\text{-}\text{Ru(en)}_2\text{Cl}_2^+ \\
&\c\prime s\text{-}\text{Ru(en)}_2\text{(H}_2\text{O)Cl}^{\text{2}+} & & & \\
&\mathbf{H}_2\text{-}\text{Ha}^{\text{-}\text{H
$$

eq 1 still fits the excited-state model with an infinite number of solutions. For example, if we assume for $[Ru(en)_2Cl^{2+}]*$ that $k_{na} = k_{nb}$, the relative rate constants that satisfy the product distribution in eq 1 are $k_{ab} = 4.0k_{ba}$ and $k_{na} = k_{nb} = 1.1k_{ba}$. However, the above relative rate constants place the energy of SP_{basal}^{*} below that of SP_{apical} ^{*}.
In our initial theoretical work on d⁶ systems,² we calculated

excited-state treatment (including configuration interaction and spin-orbit coupling) and found the two methods gave the same qualitative result. With use of a one-electron model for the d^5 system, the lowest quartet state should favor SP_{axial}^* over SP_{basal}* by $\frac{3}{4}[e_{\sigma}(\text{cn}) - e_{\sigma}(\text{Cl})]$ rather than the reverse

0020-1669/81/1320-3123\$01.25/0 © 1981 American Chemical Society

⁽¹⁾ Vanquickenborne, L. G.; Ceulemans, A. *J. Am. Chem.* **Soc. 1978,100, 475;** *Inorg. Chem.* **1978,** *17,* **2730.**

suggested by the prominence of cis products in eq 1. If the one-electron model is an accurate representation of the relative energies of the excited-state fragments, the results in *eq* 1 can still be explained by the stereochemical rearrangement model. If we arbitrarily set the rate constants pertaining to rearrangement as $k_{ba} = 8k_{ab}$, then the relative rate constants k_{ab} $= 3.5k_{\text{na}}$, $k_{\text{ba}} = 28k_{\text{na}}$, and $k_{\text{nb}} = 34k_{\text{na}}$ mimic the experimental values in eq 1. However, these results require that deactivation of SP_{basal}^* be much more rapid than deactivation of SP_{axial}^* .

The fact that the series of M(III) systems d^5 Ru(III), \overline{q} d⁶ $Rh(III),$ ³⁻⁷ and d^6 Ir(III)¹⁰ show varying degrees of excitedstate rearrangement when the $[M(en)_2Cl^{2+}]^*$ fragment is formed is not surprising. The ability to traverse the barrier state rearrangement when the $[M(en)_2Cl^{2+}]^*$ fragment is
formed is not surprising. The ability to traverse the barrier
in both directions ($SP_{\text{pocal}}^* \leftrightarrow SP_{\text{bessel}}^*$) for $Ru(III)$, in only
and delay for $Bh(III)$ (SP_{bessel}) in formed is not surprising. The ability to traverse the barrier
in both directions $(SP_{apical}^* \leftrightarrow SP_{basal}^*)$ for Ru(III), in only
one direction for Rh(III) $(SP_{basal}^* \rightarrow SP_{apical}^*)$, and only a in both directions $(SP_{apical}^* \leftrightarrow SP_{basal}^*)$ for $Ru(III)$, in only
one direction for $Rh(III)$ $(SP_{basal}^* \rightarrow SP_{apical}^*)$, and only a
small amount in one direction $(SP_{basal}^* \rightarrow$ some $SP_{apical}^*)$ for Ir(III) can be linked to both the absolute magnitude of e_i ^{*i*} values $(\text{Ir(III)} > \text{Rh(III)} > \text{Ru(III)})$ and the spin-orbit coupling constant (Ir(III) > Rh(III) \simeq Ru(II)) which should make k_{na} and k_{nb} larger for the third-row Ir(III).

The current experimental data on d^6 system¹² of Rh(III)³⁻⁷ and Ir(III)¹⁰ are consistent with the stereochemical rear-

rangement model^{1,2} and demonstrate the fine balance between the dynamic processes leading to rearrangement and deactivation. Of greater importance is the observation that differing cis/trans product ratios from photodissociation of Y from *cis*and trans-[MA4XY] *does not* preclude the presence of a common set of five-coordinate intermediates. Lastly, initial data on the d^5 Ru(III) systems⁹ is compatible with the stereochemical model, although much more experimental work is needed to reinforce this point. However, the fact that the **Vanquickenborne/Ceulemans** model' may be applicable to **dS** systems as well as d³ and d⁶ systems suggests that a unifying concept relating ligand field photosubstitution processes of $dⁿ$ systems may be emerging.

Kinetic modeling of experimental data utilized a fouth-order Runge-Kutta integration of the rate equations on the Clemson University IBM 370/3033 computer. Initially, either SP_{apical}* or SP_{basal}* was given a unit concentration (all other concentrations were set at zero), and rate constants and reaction times were varied until at least 99% of the initial concentration appeared as ground-state SP_{apical} and SP_{basal}.

Department of Chemistry Clemson University Clemson, South Carolina 29631 **John D. Petersea**

Received November *24,* **1980**

Additions and Corrections

198 1, Volume 20

M. S. Delaney, C. B. Knobler, and M. F. Hawthorne*: A Designed Metallacarborane Catalyst. Synthesis, Structure, and Reactions of $[closo-1, 3 - [\mu-(\eta^2-3-CH₂=CHCH₂CH₂)] - 3-H-3-PPh₃-3,1,2 RhC_{2}B_{9}H_{10}$.

Page 1347. In Table VI, under substrate, the second to **last entry reads 3,3-dimethylbut-l-ene. The correct entry should read 3,3** dimethylbut-1-yne.-M. F. Hawthorne

1981, Volume 20

Edward H. Wong* and Fontaine C. Bradley: Hydrolysis of Chloro**diphenylphosphine Complexes of Molybdenum and Palladium.**

Page 2333. In **Table I, the 31P NMR chemical shift for cis-Mo-** $(CO)_{4}$ (PPh₂Cl)₂ should be 126.4 ppm and that for *trans*- $(CO)_{4}$ Mo-**(PPh2C1), should** be **137.4 ppm.-Edward H. Wong**

⁽¹²⁾ The kinetic treatment applied here can **be used to analyze the photc- chemical** reactions of **the Co(II1) analogues ci~-Co(en)~Cl~+ (Sheridan, P.** S.; Adamson, A. W. *J. Am. Chem. Soc.* **1974**, *96*, 3032) and *trans*-Co(en)₂Cl₂⁺ (Pribush, R. A.; Poon, C. K.; Bruce, C. M.; Adamson, **A. W.** *Ibid.* **1974,** *96,* **3027).**