Correspondence

Dynamics of Excited-State Rearrangement Processes in the Photochemistry of Transition-Metal Complexes

Sir:

Models¹ have been proposed for the stereochemical rearrangements often observed during the ligand field photosubstitution reactions of d³ and d⁶ transition-metal complexes. For the d⁶ systems, we have expanded on this theoretical treatment² and supported this theory through a number of experimental papers.²⁻⁶ The model^{1,2} can be briefly outlined as follows for the d^6 system. (1) Photosubstitution of [MA₄XY] occurs by loss of Y in the lowest triplet state. (2) With use of cis and trans to denote the positions of X and the vacant site, it is found that *cis*- and *trans*- $[MA_4X]$ are separated by an often low-activation barrier at the trigonal-bipyramidal structure when the triplet electronic configuration is maintained during loss of Y. (3) For the triplet $[MA_4X]$ fragment, the trans structure is favored when $e_{\sigma}^{A} > e_{\sigma}^{X \, 1,2}$ while the cis structure is favored when $e_{\sigma}^{X} > e_{\sigma}^{A,2}$ Thus, specific product geometries are expected and usually observed²⁻⁸ when rearrangement is faster than triplet \rightarrow singlet deactivation of the [MA₄X] fragment.

A recent report⁹ in this journal has argued that this model does not apply to d⁵ systems (specifically *cis*- and *trans*-Ru- $(en)_2Cl_2^+$) and raises doubt on its applicability to the M- $(en)_2^2 X Y^{n+} d^6$ systems studied by our group $(M = Rh(III))^{3-6}$ and Ford's group $(M = Ir(III))^{10}$ To the contrary, Ford's interpretation of the Ir(III) work¹⁰ and our interpretation of the $d^{6} 2^{-6}$ and d^{5} work are compatible with the excited-state rearrangement model and demonstrate the dynamics of the rearrangement/deactivation processes involved.

Figure 1 represents the simplest way to look at the application of the excited-state model to the rearrangement process in $M(en)_2 X$ systems.¹⁰ It should be noted that a true equilibrium situation does not exist between SP_{apical}* and SP_{basal}* because of the complications of the nonradiative deactivation steps k_{na} and k_{nb} . Some limiting cases come out of this treatment and are outlined with experimental examples as follows. (1) $k_{ba} \gg k_{ab}$, k_{nb} or $k_{na} > k_{ba} \gg k_{nb}$ results in only trans products (e.g., M = Rh(III), X = Cl³, Br, ⁴ I⁵). (2) k_{ab} $\gg k_{ba}$, k_{na} or $k_{nb} > k_{ab} \gg k_{na}$ results in only cis products (e.g., M = Co(III), $X = CN^2$; M = Ir(III), $X = OH^{10}$). (3) k_{na} , $k_{\rm nb} \gg k_{\rm ab}$, $k_{\rm ba}$ results in only stereoretentive products (e.g., M = Rh(III), $X = NH_3$ at 25 °C.³⁻⁷ [For this system, photolysis at 50 °C leads to a cis/trans mixture of products regardless of whether SP_{apical}* or SP_{basal}* is formed initially.⁷ This observation comes as a result of k_{ab} and k_{ba} becoming competitive with k_{na} and k_{nb} at higher temperatures, owing to the Arrhenius nature of the former rate constants and the relative temperature independence of the latter rate constants.¹¹]

When k_{ab} , k_{ba} , k_{na} , and k_{nb} are all competitive, a mixture

- 475; Inorg. Chem. 1978, 17, 2730.
 (2) Purcell, K. F.; Clark, S. F.; Petersen, J. D. Inorg. Chem. 1980, 19, 2183.
 (3) Petersen, J. D.; Jakse, F. P. Inorg. Chem. 1979, 18, 1818.
 (4) Clark, S. F.; Petersen, J. D. Inorg. Chem. 1979, 18, 3394.
 (5) Clark, S. F.; Petersen, J. D. Inorg. Chem. 1978, 19, 2917.
 (6) Clark, S. F.; Petersen, J. D. Inorg. Chem. 1980, 19, 2917.
 (7) Strauss, D.; Ford, P. C. J. Chem. Soc., Chem. Commun. 1977, 194.
 (8) Skibsted, L. H.; Ford, P. C. J. Chem. Soc., Chem. Commun. 1979, 853.
 (9) Rerek, M. E.; Sheridan, P. S. Inorg. Chem. 1980, 19, 2646.
 (10) Talebinasab-Sarvari, M.; Ford, P. C. J. Chem. 1974, 78, 1144.

Figure 1. Dynamics of the five-coordinate fragment rearrangement and deactivation. SP_{apical}^* and SP_{basal}^* refer to the lowest excited-state electronic configuration (quartet for d⁵, triplet for d⁶) and SP_{apical} and SP_{basel} represent the ground-state electronic configuration (doublet for d^5 , singlet for d^6) for the five-coordinate fragments. The individual rate constants pertain to the following processes: k_{ab} , rearrangement of $SP_{apical}^* \rightarrow SP_{basel}^*$; k_{ba} , rearrangement of $SP_{basel}^* \rightarrow SP_{apical}^*$; k_{na} and k_{nb} , deactivation of $SP^* \rightarrow SP$ for the apical and basal conformations, respectively.

of products is obtained and, more importantly, the cis/trans product ratio will be different for initial formation of SP_{apical}* (photolysis of trans reactant) and initial formation of SP_{basal}* (photolysis of rans reactant) and mining formation of St based (photolysis of cis reactant). For $[Ir(en)_2 X^{2+}]^*$, the constraints on the rate constants correspond to X = Cl, $k_{na} \gg k_{ab}$, $k_{nb} \simeq$ $9k_{ba}$, for X = Br $k_{na} \gg k_{ab}$, $k_{nb} \simeq 2.3$ k_{ba} , for X = I, and $k_{na} \gg$ k_{ab} , $k_{ba} \gg k_{nb}$, for X = I as suggested by Ford.¹⁰ The situation in the d⁵ Ru(III) system, cis- and trans-Ru-

 $(en)_2Cl_2^+$, is very interesting in that irradiation of either isomer results is a different cis/trans mixture of the $Ru(en)_2$ - $(H_2O)Cl^{2+}$ photoproduct (eq 1).⁹ The situation outlined in

$$\frac{c/s - \operatorname{Ru}(\operatorname{en})_{2}(\operatorname{H}_{2}O)\operatorname{Cl}^{2+}}{c/s - \operatorname{Ru}(\operatorname{en})_{2}\operatorname{Cl}_{2}^{+}} \frac{h_{\nu}}{16\%} \frac{84\%}{16\%} \frac{66\%}{34\%} \frac{h_{\nu}}{trans - \operatorname{Ru}(\operatorname{en})_{2}\operatorname{Cl}_{2}^{+}}}{trans - \operatorname{Ru}(\operatorname{en})_{2}(\operatorname{H}_{2}O)\operatorname{Cl}^{2+}}$$
(1)

eq 1 still fits the excited-state model with an infinite number of solutions. For example, if we assume for $[Ru(en)_2Cl^{2+}]^*$ that $k_{na} = k_{nb}$, the relative rate constants that satisfy the product distribution in eq 1 are $k_{ab} = 4.0k_{ba}$ and $k_{na} = k_{nb} =$ $1.1k_{ba}$. However, the above relative rate constants place the energy of SP_{basal}^* below that of SP_{apical}^* . In our initial theoretical work on d⁶ systems,² we calculated

excited-state treatment (including configuration interaction and spin-orbit coupling) and found the two methods gave the same qualitative result. With use of a one-electron model for the d⁵ system, the lowest quartet state should favor SP_{axial}* over SP_{basal}^* by $3/4[e_{\sigma}(en) - e_{\sigma}(Cl)]$ rather than the reverse

0020-1669/81/1320-3123\$01.25/0 © 1981 American Chemical Society

Vanquickenborne, L. G.; Ceulemans, A. J. Am. Chem. Soc. 1978, 100, 475; Inorg. Chem. 1978, 17, 2730. (1)

suggested by the prominence of cis products in eq 1. If the one-electron model is an accurate representation of the relative energies of the excited-state fragments, the results in eq 1 can still be explained by the stereochemical rearrangement model. If we arbitrarily set the rate constants pertaining to rearrangement as $k_{ba} = 8k_{ab}$, then the relative rate constants $k_{ab} = 3.5k_{na}$, $k_{ba} = 28k_{na}$, and $k_{nb} = 34k_{na}$ mimic the experimental values in eq 1. However, these results require that deactivation of SP_{basal}* be much more rapid than deactivation of SP_{basal}*

The fact that the series of M(III) systems d⁵ Ru(III),⁹ d⁶ Rh(III),³⁻⁷ and d⁶ Ir(III)¹⁰ show varying degrees of excitedstate rearrangement when the $[M(en)_2Cl^{2+}]^*$ fragment is formed is not surprising. The ability to traverse the barrier in both directions (SP_{apical}* \leftrightarrow SP_{basal}*) for Ru(III), in only one direction for Rh(III) (SP_{basal}* \rightarrow SP_{apical}*), and only a small amount in one direction (SP_{basal}* \rightarrow some SP_{apical}*) for Ir(III) can be linked to both the absolute magnitude of e_r^i values (Ir(III) > Rh(III) > Ru(III)) and the spin-orbit coupling constant (Ir(III) > Rh(III) \simeq Ru(II)) which should make k_{na} and k_{nb} larger for the third-row Ir(III).

The current experimental data on d⁶ system¹² of Rh(III)³⁻⁷ and Ir(III)¹⁰ are consistent with the stereochemical rearrangement model^{1,2} and demonstrate the fine balance between the dynamic processes leading to rearrangement and deactivation. Of greater importance is the observation that differing cis/trans product ratios from photodissociation of Y from *cis*and *trans*-[MA₄XY] *does not* preclude the presence of a common set of five-coordinate intermediates. Lastly, initial data on the d⁵ Ru(III) systems⁹ is compatible with the stereochemical model, although much more experimental work is needed to reinforce this point. However, the fact that the Vanquickenborne/Ceulemans model¹ may be applicable to d⁵ systems as well as d³ and d⁶ systems suggests that a unifying concept relating ligand field photosubstitution processes of dⁿ systems may be emerging.

Kinetic modeling of experimental data utilized a fouth-order Runge-Kutta integration of the rate equations on the Clemson University IBM 370/3033 computer. Initially, either SP_{apical}* or SP_{basal}* was given a unit concentration (all other concentrations were set at zero), and rate constants and reaction times were varied until at least 99% of the initial concentration appeared as ground-state SP_{apical} and SP_{basal}.

Department of Chemistry Clemson University Clemson, South Carolina 29631 John D. Petersen

Received November 24, 1980

Additions and Corrections

1981, Volume 20

M. S. Delaney, C. B. Knobler, and M. F. Hawthorne^{*}: A Designed Metallacarborane Catalyst. Synthesis, Structure, and Reactions of $[closo-1,3-[\mu-(\eta^2-3-CH_2=CHCH_2CH_2)]-3-H-3-PPh_3-3,1,2-RhC_2B_9H_{10}]$.

Page 1347. In Table VI, under substrate, the second to last entry reads 3,3-dimethylbut-1-ene. The correct entry should read 3,3-dimethylbut-1-yne.—M. F. Hawthorne

1981, Volume 20

Edward H. Wong* and Fontaine C. Bradley: Hydrolysis of Chlorodiphenylphosphine Complexes of Molybdenum and Palladium.

Page 2333. In Table I, the ³¹P NMR chemical shift for *cis*-Mo-(CO)₄(PPh₂Cl)₂ should be 126.4 ppm and that for *trans*-(CO)₄Mo-(PPh₂Cl)₂ should be 137.4 ppm.—Edward H. Wong

⁽¹²⁾ The kinetic treatment applied here can be used to analyze the photochemical reactions of the Co(III) analogues cis-Co(en)₂Cl₂⁺ (Sheridan, P. S.; Adamson, A. W. J. Am. Chem. Soc. 1974, 96, 3032) and trans-Co(en)₂Cl₂⁺ (Pribush, R. A.; Poon, C. K.; Bruce, C. M.; Adamson, A. W. Ibid. 1974, 96, 3027).