concerning computer simulation and complex spectra.

Registry No. (CF₃)₂PH, 460-96-8; (CH₃)₃N, 75-50-3; P₂(CF₃)₄, 2714-60-5; CHF₂(CF₃)P-P(CF₃)₂, 78673-09-3; CH₂F(CF₃)P-P(CF₃)₂, 78673-08-2; CH₃(CF₃)P-P(CF₃)₂, 78673-07-1; (CF₃)₂PCH₂(CF₃)-P-P(CF₃)₂, 78685-50-4; (CH₃)₃SiCl, 75-77-4; (CH₃)₃SiF, 420-56-4;

(CH₃)₃NHCl, 593-81-7; CH₃(CF₃)PCl, 4669-76-5; CH₂F(CF₃)PCl, 77846-29-8; CHF₂(CF₃)PCl, 4669-82-3; CHF₂(CF₃)PH, 77846-32-3; CH₂F(CF₃)PH, 77846-33-4; (CF₃)₂PCl, 650-52-2; (CH₃)₃SiP(CF₃)₂, 21658-00-4; (CF₃)₂PCH₂P(CF₃)Cl, 77846-30-1; (CF₃)₂PCH₂P(CF₃)F, 78673-14-0; (CF₃)₂PCH₂P(CF₃)N(CH₃)₂, 78673-15-1; [(CF₃)₂PC-H₂PCF₃]₂, 78673-16-2.

Contribution from the Department of Chemistry, University of South Carolina, Columbia, South Carolina 29208

Synthesis and Multinuclear Magnetic Resonance Studies of New Difluorophosphine Derivatives of Tetraborane(8)¹

J. D. ODOM* and A. J. ZOZULIN²

Received November 11, 1980

Several new difluorophosphine complexes of tetraborane(8) have been prepared and characterized. These new adducts include B_4H_8 ·PF₂OCH₃, B_4H_8 ·PF₂SCH₃, B_4H_8 ·PF₂CF₃, and B_4H_8 ·PF₂(*t*-C₄H₉). These specific molecules were prepared to gain additional insight into questions pertaining to the importance of steric and electronic effects of the X substituent in B_4H_8 ·PF₂X molecules on the relative populations of geometrical isomers at ambient temperature and on rotational isomers at low temperature. Multinuclear (¹¹B, ¹³C, ¹⁹F, and ³¹P) NMR studies employing decoupling, computer line narrowing, and partially relaxed Fourier transform techniques have demonstrated that all molecules except B_4H_8 -PF₂CF₃ exist as two geometrical isomers. Although ¹¹B and ³¹P NMR spectra indicate the presence of geometrical isomers, the fluorine-19 nucleus is the most sensitive indicator of the presence of these isomers. Rotational isomers were observed for some compounds in low-temperature ¹⁹F NMR spectra although only in $B_4H_8PF_2CF_3$ was a limiting low-temperature spectrum obtained. Conclusions concerning relative contributions of steric and electronic factors to the population of endo and exo isomers are discussed.

Introduction

Recently, this laboratory has completed multinuclear NMR studies^{1,3,4} of several difluorophosphine derivatives of tetraborane(8), B_4H_8 ·PF₂X (X = F, Cl, Br, I, H, and N(CH₃)₂). These studies, particularly low-temperature ¹⁹F NMR studies, have conclusively established that all molecules except B₄- H_8 ·PF₂H exist as geometrical isomers (endo and exo placement of the phosphine with respect to the B_4 framework as shown in Figure 1) at ambient temperature. Further, at low temperatures restricted rotation about the P-B bond in the endo geometrical isomer of these adducts gives rise to all possible combinations of rotational isomers (Figure 2).

Relative contributions of intramolecular interactions to the stabilization of the endo isomer with respect to the exo isomer are not known. There are still unanswered questions pertaining to the importance of steric and electronic effects of the X substituent of the phosphine on the relative populations of the geometrical isomers at high temperature and on the rotational isomers at low temperature. In order to gain additional insight into these factors, we have synthesized, characterized, and examined several new $B_4H_8 \cdot PF_2X$ complexes (where X = OCH_3 , SCH_3 , CH_3 , CF_3 , and $t-C_4H_9$) by multinuclear magnetic resonance employing decoupling, computer line-narrowing, and PRFT techniques. The results of this study are reported herein.

Experimental Section

Materials. The preparation and purification of the B_4H_8 PF₂X complexes were accomplished with use of standard high-vacuum techniques in an all-glass vacuum system equipped with greaseless stopcocks.⁵ The B_4H_8 ·PF₂X complexes were synthesized by base

- (1) Part 20 in the series, "Spectra and Structure of Phosphorus-Boron Compounds". For part 19 see: Odom, J. D.; Moore, T. F. Inorg. Chem. 1980, 19, 2651.
- Taken in part from the thesis of A. J. Zozulin, submitted to the De-(2)partment of Chemistry, University of South Carolina, in partial ful-fillment of the requirements for the Ph.D. degree.
- Odom, J. D.; Moore, T. F.; Garber, A. R. Inorg. Nucl. Chem. Lett. (3)1978, 14, 45.
- (4) Odom, J. D.; Moore, T. F.; Dawson, W. H.; Garber, A. R.; Stampf, E. Inorg. Chem. 1979, 18, 2179.

Table I. Melting Points and Vapor Pressure (P) for $B_4H_8 \cdot PF_2X$ Complexes

compd	mp, °C	P, torr $(t, °C)$	
$B_4H_8 \cdot PF_2 OCH_3$ $B_4H_8 \cdot PF_2 SCH_3$ $B_4H_8 \cdot PF_2 CH_3$ $B_4H_8 PF_2 CF_3$ $B_4H_8 PF_2 CF_3$ $B_4H_2 \cdot PF_2 C_4$	-76 -112 to -110 -67 to -66 -153 to -149 -92 to -85	$ \begin{array}{c} 8 (25.8) \\ <1 (24.8) \\ 7 (24.0) \\ a \\ <1 (25.0) \end{array} $	

^a Complex was not available in sufficient quantity for vapor pressure measurement.

displacement from B_4H_8CO which was prepared directly from the pyrolysis of B_2H_6 in the presence of CO.⁶ The phosphine bases were prepared as previously reported. The $CH_3PF_2^7$ and $(t-C_4H_9)PF_2^8$ ligands were prepared by the fluorination of CH₃PCl₂ (Alfa) and (t-C₄H₉)PCl₂ (Alfa), with dry NaF (Allied) in sulfolane (Parish). Methyl difluorophosphite,⁹ CH₃OPF₂, was synthesized directly from PF₃(Ozark-Mahoning), CH₃OH (Baker), and C₅H₅N (Fisher). The sulfur analogue,¹⁰ CH₃SPF₂, was prepared from PF₂Cl¹¹ and CH₃SH (Matheson) in the presence of trimethylamine (Matheson). (Trifluoromethyl)difluorophosphine, CF₃PF₂, was obtained from repetitive fluorinations of CF₃PI₂ with freshly sublimed SbF₃ (Ozark-Mahoning) at 100 °C.12 Sulfolane, methanol, pyridine were dried and distilled before use. The purity of all compounds was monitored by mass spectral and ³¹P and ¹⁹F NMR spectral measurements.

The synthesis of B_4H_8 ·PF₂X complexes was accomplished by condensing B_4H_8CO (~2.0 mmol) and the PF_2X ligand (2.2 mol) into a small-volume reaction vessel equipped with a greaseless stopcock.

- Shriver, D. F. "The Manipulation of Air-Sensitive Compounds"; (5) McGraw-Hill: New York, 1969.
- (6)Onak, T.; Gross, K.; Tse, J.; Howard, J. J. Chem. Soc., Dalton Trans. 1973, 2633. Seel, V. F.; Rudolph, K.; Budeng, R. Z. Anorg. Allg. Chem. 1965, 341,
- (7) 196.
- Stelzer, O.; Schmutzler, R. Inorg. Synth. 1978, 18, 173. Centofanti, L. F.; Lines, L. Inorg. Synth. 1976, 16, 166. (8)
- (9) Foester, R.; Cohn, K. Inorg. Chem. 1972, 11, 2590. (10)
- Morse, J. G.; Cohn, K.; Rudolph, R. W.; Parry, R. W. Inorg. Synth. 1967, 10, 174. (11)
- (12) Bennett, F. W.; Emeleus, H. J.; Hazeldine, R. N. J. Chem. Soc. 1953, 1565.
- Stampf, E. J.; Garber, A. R.; Odom, J. D.; Ellis, P. D. Inorg. Chem. (13)1975, 14, 2446
- (14) Lowman, D. W.; Ellis, P. D.; Odom, J. D. Inorg. Chem. 1973, 12, 681.

Difluorophosphine Derivatives of Tetraborane(8)

Figure 1. Geometrical isomers of B_4H_8 ·PF₂X molecules: (A) endo placement of the ligand; (B) exo placement of the ligand.

Figure 2. Structures of the three possible rotational isomers in the endo isomer of B_4H_8 - PF_2X complexes.

The contents were slowly warmed to 0 °C and held at that temperature for 15 min. The tube was then frozen at -196 °C, and the liberated CO was removed. The reaction was continued until CO evolution ceased. The volatiles were reintroduced to the vacuum system and purified on a low-temperature distillation column.

Melting points (Table I) of all complexes were obtained with the use of a Stock melting point apparatus. Temperatures were measured with use of a copper-constant thermocouple with a reference junction at 0 °C. Low volatilities of the complexes at ambient temperature prevented the determination of meaningful boiling point data. Vapor pressures at ambient temperature for most of the complexes were obtained (Table I).

Instrumental Data. Nuclear magnetic resonance spectra (^{13}C , 25.2 MHz; ^{11}B , 32.1 MHz; ^{31}P , 40.5 MHz; ^{19}F , 94.1 MHz) were obtained on a highly modified Varian Associates XL-100-15 spectrometer operating in the Fourier transform mode. ^{31}P NMR spectra at 81.0 MHz were obtained on a Bruker WP-200 spectrometer. Standard variable-temperature accessories were employed. Spectra were obtained with use of ~20% solutions of the complex in a 1:1 and/or 1:2 (v/v) mixture of toluene- d_8 and isopentane.

Chemical shifts were measured relative to external Si(CH₃)₄ (¹³C), BF₃·O(C₂H₅)₂ (¹¹B), 85% o-H₃PO₄ (³¹P), and CF₃COOH (¹⁹F). A negative sign (-) denotes increased shielding. Chemical shifts and coupling constants are accurate to ± 0.5 ppm and ± 1.0 Hz, respectively.

Mass spectral analysis was attempted on Perkin-Elmer RMU-6 (20 and 70 eV) and VG Micromass Model 7070 (The University of North Carolina at Chapel Hill) spectrometers. Analysis by electron impact (Perkin-Elmer) did not yield a parent ion for these compounds even at very low ionizing voltages. Efforts to obtain the exact mass of these compounds by chemical ionization mass spectrometry (VG Micromass) were also futile. Low-resolution spectra were obtained Inorganic Chemistry, Vol. 20, No. 11, 1981 3741

Figure 3. 32.1-MHz ¹¹B NMR spectrum of B₄H₈·PF₂OCH₃: (A) proton decoupled; (B) proton decoupled, computer line narrowed.

for several of the compounds on a VG Micromass ZAB-2F spectrometer which employed negative ion detection (NIEHS, Research Triangle Park, NC) (compound:ion, m/e (relative intensity)): B_4H_8 ·PF₂OCH₃:¹¹B₄H₈PF₂O⁻, 137 (1.9); CH₂OPF₂⁻, 99 (0.18); ¹¹B₄H₇⁻, 51 (100); B₄H₈·PF₂SCH₃: ¹¹B₄H₈·PF₂³S⁻, 153 (100); ¹¹B₄H₈PF₂⁻, 121 (40.7); CH₂³²SPF₂⁻, 115 (42.0); ³²SPF₂⁻, 101 (14.8); ¹¹B₄H₈⁻, 52 (18.7); B₄H₈·PF₂CH₃: ¹¹B₄H₇⁻, 51 (100); B₄H₈·PF₂C₄H₉:¹¹B₄H₈·PF₂⁻, 121 (0.78); ¹¹B₄H₇⁻, 51 (100); B₄H₈·PF₂C₄H₉:¹¹B₄H₈·PF₂⁻, 121 (100); ¹¹B₄H₇⁻, 51 (38).

Results

¹¹B NMR Spectra. B_4H_8 ·PF₂OCH₃. The proton-decoupled ¹¹B NMR spectrum (Figure 3A) of $B_4H_8PF_2OCH_3$ is consistent with previously reported ¹¹B NMR spectra of $B_4H_8PF_2X$ compounds.¹ Based on these results, the doublet at high field is assigned to the substituted boron atom (B_1, δ) -57.0) with the doublet structure arising from boron-phosphorus spin-spin coupling ($J_{BP} = 195 \text{ Hz}$). The lowest field resonance, a singlet, is assigned to the B_3 atom (B_3 , $\delta 0.4$) with the remaining resonance, also a singlet, assigned to the $B_{2,4}$ atoms (B_{2.4}, δ -6.3). An additional resonance which appears as a shoulder on the low-field side of the $B_{2,4}$ resonance is present (δ -3.0). With the application of computer line narrowing (Figure 3B), the resonance for the B_3 atom becomes a well-resolved quartet arising from ¹¹B-¹¹B spin-spin coupling $(J_{BB} = 24 \text{ Hz})$ while the shoulder develops into two lines. When partially relaxed Fourier transform (PRFT) techniques are applied at $\tau = 17$ ms, the B_{2,4} resonance is completely nulled, thus leaving two resonances at low field. On the basis of previous results, ^{1,3,4} the second resonance is assigned to a second geometrical isomer of B₄H₈PF₂OCH₃.

B₄**H**₈·**PF**₂**SCH**₃, **B**₄**H**₈·**PF**₂**CF**₃, **and B**₄**H**₈·**PF**₂(*t*-**C**₄**H**₉). The proton-decoupled ¹¹B NMR spectra of these compounds are very similar to that of B₄**H**₈·**PF**₂**OCH**₃ and to the other B₄**H**₈·**PF**₂**X** complexes.¹ Each spectrum consists of a shielded doublet (B₁) and two deshielded singlets (B₃, B₂,4). The chemical shifts and coupling constants are given in Table II. Unlike the B₄**H**₈·**PF**₂**OCH**₃ complex, the application of computer line narrowing does not yield any additional fine structure nor does the PRFT technique reveal any additional resonances.

³¹P NMR Spectra. B_4H_8 ·PF₂OCH₃, B_4H_8 ·PF₂SCH₃, and B_4H_8 ·PF₂(*t*-C₄H₉). The ³¹P NMR spectrum of each of these complexes indicates the presence of two geometrical isomers. The spectra consist of a triplet of quartets and an underlying resonance which is chemically shifted such that only part of the multiplet is clearly identifiable (Figure 4). The triplet structure arises from phosphorus spin-spin coupling to two equivalent fluorine nuclei, while the quartet is due to coupling to the directly bonded boron atom (B₁). The chemical shifts

Table II.	NMR Parameters	for B ₄ H	I ₈ ·PF₂X	Complexe
-----------	----------------	----------------------	----------------------	----------

		δ (** B)*								
	compd	B ₁	B ₃	B _{2,4}	$\delta({}^{31}P)^b$	δ(¹⁹ F) ^c	δ(¹³ C) ^d	$J_{\mathbf{PB}}, \mathrm{Hz}$	$J_{\rm PF},{ m Hz}$	
B	H ₈ ·PF ₂ OCH ₃	-57.0	0.4	-6.3	102.5 98.5	12.8 11.7	57.2	180 172	1201 1266	
B	H ₈ ·PF ₂ SCH ₃	-51.0	1.3	-5.2	172.7 181.1	21.2 15.0	12.5 10.3	1 44 1 3 0	1205 1239	
B	H ₈ ·PF₂CH₃	-52.5	1.2	-5.5	174.3	12.2 1.5		140	1080 1130	
B	H ₈ ·PF ₂ CF ₃ ^e	-58.0	0.2	-5.6	125.1	$-6.3 (PF_2)$ 10.2 (CF ₂)		125	1177	
B	H ₈ ·PF ₂ C ₄ H ₉	-55.4	1.3	-5.8	183.0 185.5	-18.6 -23.6		135 128	1145 1158	

^a Chemical shifts relative to $BF_3 \cdot O(C_2H_3)_2$. Negative sign denotes increased shielding. ^b Chemical shifts relative to 85% o-H₃PO₄. Negative sign denotes increased shielding. ^c Chemical shifts relative to F₃CCOOH. Negative sign denotes increased shielding. ^d Chemical shifts relative to Si(CH₃)₄. Negative sign denotes increased shielding. ^e ^JJ_{FCP} = 108.

Figure 4. Proton-decoupled 40.5-MHz ³¹P NMR spectrum of B_4 - H_8 -PF₂SCH₃. Resonance marked with an asterisk corresponds to the ³¹P resonance of H_3B -PF₂SCH₃.¹⁰

and coupling constants are given in Table II.

 B_4H_8 ·PF₂CH₃. The proton-decoupled ³¹P NMR spectrum of this compound consists of a single triplet of quartets, indicating the presence of only one geometrical isomer. The triplet structure results from phosphorus spin-spin coupling to two equivalent fluorine nuclei with each of these lines split into a quartet due to phosphorus spin-spin coupling to the directly bonded boron atom. The values of the chemical shifts and coupling constant for each compound are given in Table II.

B₄**H**₈·**PF**₂**CF**₃. The ³¹**P** NMR spectrum at -27 °C of **B**₄-H₈·**PF**₂**CF**₃ consists of a triplet of septets. The triplet structure arises from phosphorus spin–spin coupling to two equivalent fluorine atoms. The septet structure results from the overlapping of a 1:3:3:1 quartet arising from a two-bond spin–spin coupling of phosphorus to the fluorine atoms of the trifluoromethyl group and a 1:1:1:1 quartet arising from phosphorus spin–spin coupling to the directly bonded boron atom. When single-frequency ¹⁹F decoupling of the trifluoromethyl fluorine atoms is performed, the expected triplet of quartets is observed. Chemical shift and coupling constant values are given in Table II.

¹³C NMR Spectra. $B_4H_8 \cdot PF_2OCH_3$ and $B_4H_8 \cdot PF_2SCH_3$. The proton-decoupled ¹³C NMR spectrum consists of a single resonance for $B_4H_8 \cdot PF_2OCH_3$ and two resonances for B_4 - $H_8 \cdot PF_2SCH_3$. As expected, these resonances are deshielded with respect to the free base. The following parameters were obtained in this laboratory from the ¹³C NMR spectra of the free bases: $B_4H_8 \cdot PF_2OCH_3$, $\delta(^{13}C)$ 48.9 deshielded from Me₄Si; $B_4H_8 \cdot PF_2SCH_3$, $\delta(^{13}C)$ 7.5 deshielded from Me₄Si (² J_{CP} =23 Hz, ⁴ J_{CF} = 8 Hz). (See Table II for NMR parameters of the adduct.)

¹⁹F NMR Spectra. B_4H_8 ·PF₂OCH₃ and B_4H_8 ·PF₂SCH₃. The ¹⁹F NMR spectrum of each of these compounds consists of a pair of doublets resulting from the presence of two geometrical isomers in solution with the doublet structure arising from phosphorus-fluorine spin-spin coupling. The values of the chemical shifts and coupling constants are listed in Table II. Both compounds show similar spectral changes at low temperature. For B_4H_8 ·PF₂OCH₃, one of the doublets broadens significantly at -99 °C while the other resonance is unchanged (Figure 5). At -110 °C the resonance has

Figure 5. 94.1-MHz ¹⁹F NMR spectra of B₄H₈·PF₂OCH₃.

continued to broaden and collapse, until at -120 °C it has completely disappeared. Similarly, one of the doublets for B₄H₈·PF₂SCH₃ begins to broaden and collapse at -112 °C. At -120 °C this resonance has broadened significantly while the other remains unchanged (Figure 6). The spectrum at -125 °C is identical with the one at -120 °C. The acquisition of data at temperatures lower than -125 °C was not possible because the adducts precipitated from solution.

B₄**H**₈**·PF**₂**CH**₃. The ¹⁹F NMR spectrum of B₄**H**₈**·PF**₂**CH**₃ at ambient temperature consists of a pair of doublets resulting from phosphorus-fluorine spin-spin coupling. The low-temperature ¹⁹F NMR spectra show no major spectral changes as the temperature is lowered from 35 to -120 °C. A slight broadening of one of the doublets occurs at -99 °C and remains nearly constant to the lowest temperature recorded. At temperatures below -120 °C the compound precipitates from solution, and attempts to use other solvents for lower temperature studies were unsuccessful.

 B_4H_8 ·PF₂CF₃. The ¹⁹F NMR spectrum at -21 °C of B₄-H₈·PF₂CF₃ consists of a pair of doublets (Table II). The high-field doublet, assigned to the fluorine atoms of the PF₂ group, results from phosphorus-fluorine spin-spin coupling. The low-field doublet is assigned to the fluorine atoms of the

Figure 6. 94.1-MHz ¹⁹F NMR spectra of B_4H_8 ·PF₂SCH₃. Resonances marked with an asterisk correspond to the ¹⁹F resonance of H_3B ·P-F₂SCH₃.¹⁰

Figure 7. 94.1-MHz ¹⁹F NMR spectra of B₄H₈·PF₂CF₃.

trifluoromethyl group with the doublet structure arising from two bond phosphorus-fluorine spin-spin coupling. The lowtemperature ¹⁹F NMR spectrum remains essentially unchanged until at -79 °C the PF₂ resonance broadens (Figure 7). At -112 °C the PF₂ resonance has disappeared and the CF₃ resonance has broadened considerably. At -125 °C two new features are apparent, i.e., the CF₃ resonance has sharpened and four new resonances have appeared, a pair of doublets. No further spectral changes are observed except for a sharpening of the resonances at -135 °C. The two new doublets are attributed to the presence of two nonequivalent fluorine atoms, each of which is spin-spin coupled to a phosphorus atom (δ -24.6, J_{PF} = 1170 Hz; δ 5.1, J_{PF} = 1180 Hz). The chemical shift and coupling constant for the CF₃ resonance at -135 °C are δ 8.2 and ² J_{FCP} = 110 Hz.

 B_4H_8 ·PF₂(*t*-C₄H₉). The proton-decoupled ¹⁹F NMR spectrum of B_4H_8 ·PF₂(*t*-C₄H₉) consists of a pair of doublets which arise from phosphorus-fluorine spin-spin coupling to

a phosphorus atom (Table II). The low-temperature protoncoupled ¹⁹F NMR spectra are shown in Figure 8. At -25 °C a new resonance has appeared as a broad doublet $(J_{PF} = 1162)$ Hz) at δ -28.9. The resonances assigned to the B₄H₈·PF₂(t- C_4H_9) complex have shifted by δ –1.5 although the $\Delta\delta$ between the two resonances is unchanged. At -50 °C the broad resonance at δ -28.9 has developed into a doublet of doublets (J = 54 Hz). In addition, the resonance at δ -23.6 has developed into a doublet of doublets (J = 18 Hz). When the temperature is lowered to -75 °C, the resonance due to the predominant isomer at ambient temperature begins to broaden slightly while the minor fine structure on the resonance due to the second isomer has sharpened. The proton-decoupled ¹⁹F NMR spectrum at -75 °C indicates the minor coupling on the second isomer is due to a fluorine atom spin-spin coupled to a hydrogen atom, possibly that bonded to the B_1 atom. It appears that proton decoupling has no effect on the resonance at δ -28.9; however, the signal to noise ratio for this resonance is very poor. As the temperature is lowered further, the resonance due to one of the isomers begins to broaden and finally disappears at -125 °C. The fluorine-hydrogen spin-spin coupling of the second isomer continues to collapse until at -135 °C it has nearly disappeared. At temperatures below -135 °C, the compound precipitated from solution, preventing the acquisition of additional information.

Discussion

Since these $B_4H_8 \cdot PF_2X$ complexes (X = OCH₃, SCH₃, CH₃, CF₃, and *t*-C₄H₉) have not been previously reported, characterization has been established from ¹¹B, ³¹P, ¹⁹F, and ¹³C NMR and mass spectral measurements. The ¹H-decoupled ¹¹B NMR spectrum for each complex consists of a doublet at high field which is assigned to the substituted boron atom (B₁). The doublet structure arises from boron–phosphorus spin–spin coupling. Two additional resonances which are deshielded with respect to the doublet are assigned to the B₃ and B_{2,4} atoms. This interpretation is consistent with the ¹¹B NMR spectra of known $B_4H_8 \cdot PF_2X$ complexes (X = N(CH₃)₂, F, Cl, Br, I, and H)^{1,3,4} as well as the X-ray structure for $B_4H_8 \cdot PF_2$ -N(CH₃)₂.¹⁵ The ³¹P NMR spectra are also in accordance

with a phosphorus atom spin coupled to two equivalent fluorine atoms and one boron atom. The doublet(s) observed in the ¹⁹F NMR spectrum confirms that a fluorine nucleus is spin coupled to another nucleus of spin 1/2 with the magnitude of this coupling constant being consistent with phosphorus– fluorine coupling in other B₄H₈·PF₂X complexes. Therefore, the phosphorus and fluorine NMR spectra confirm the presence of a PF₂ group while the boron NMR spectrum characterizes the B₄H₈ moiety. Additionally, the typical fragmentation pattern from electron-impact mass spectrometry exhibited cleavage of the X substituent and of the entire phosphine base while the entire fragmentation pattern was consistent for compounds of the type B₄H₈·PF₂X.

In recent multinuclear NMR studies of B₄H₈·PF₂X compounds (X = F, Cl, Br, I, N(CH₃)₂, and H),^{1,4} the⁻¹¹B and ³¹P NMR data were found to be of limited assistance in determining the presence of geometric isomers. Similarly, in this study the ¹¹B NMR data only indicated the existence of isomers for B₄H₈·PF₂OCH₃. It is interesting that when resonances due to two geometrical isomers are observed in ¹¹B NMR spectra of B_4H_8L molecules^{1,4,13} the B_3 resonance indicates the presence of these isomers. Only in the ¹¹B spectrum of B_4H_8CO have we been able to observe¹³ two lines for the $B_{2,4}$ resonance and at no time has the resonance of the substituted boron (B_1) indicated the presence of isomers. It should also be noted that the B_1-B_3 coupling constant remains constant at approximately 24 Hz in all compounds studied.^{1,4,13} This is in contrast to the substantial substituent effect which exists for J_{BB} in apically substituted pentaborane(9) molecules.14

The ³¹P NMR spectra clearly demonstrate the presence of two isomers for $B_4H_8 \cdot PF_2OCH_3$, $B_4H_8 \cdot PF_2SCH_3$, and $B_4H_8 \cdot PF_2(t-C_4H_9)$. No isomers were observed in the ³¹P spectra for the $B_4H_8 \cdot PF_2CH_3$ and $B_4H_8 \cdot PF_2CF_3$ complexes. The ³¹P chemical shifts in these complexes are in the same relative order as the ³¹P shifts of the ligands themselves. That is, the ³¹P resonance in the methyl complex is deshielded with respect to the ³¹P resonance of the trifluoromethyl and the resonance of the SCH₃ complex is deshielded with respect to that of the OCH₃ complex.

As observed previously,^{1,3,4} the fluorine nucleus is the most sensitive NMR indicator with regard to geometric isomers in these B_4H_8 ·PF₂X molecules. All compounds except B_4H_8 ·P- F_2CF_3 are shown by ¹⁹F NMR to exist as two isomers. The ¹⁹F NMR spectrum of each of these compounds obtained from +35 to -40 °C consists of two doublets. The spectral changes observed below -40 °C are similar to those observed for other B_4H_8 ·PF₂X complexes^{1,3,4} and demonstrate that the isomers arise from endo and exo placement of the ligand with respect to the boron framework. Only in the spectrum of the B_4 - H_8 -PF₂CF₃ molecule is the limiting low-temperature spectrum obtained. This spectrum arises from one rotational isomer at low temperature. The configuration of this rotamer which would yield two nonequivalent fluorine resonances for the PF_2 group is similar to that found for B_4H_8 PF₂N(CH₃)₂³ in which one fluorine atom is over the folded B_4 ring, and one fluorine atom is directed away from the ring. It is possible to speculate on the rotational conformation of the isomers for the other compounds. On the basis of the results of the low-temperature ¹⁹F NMR spectra for the B_4H_8 ·PF₂CH₃ complex and a comparison of the steric requirements of the X substituent, it would be anticipated that at low temperature all compounds would have one rotational isomer in which the X substituent would not reside over the B_4 ring. This, of course, assumes that steric requirements assume a significant role in the stability of various rotamers.

At this point one can draw some conclusions regarding the relative contributions of steric and electronic contributions to the population of endo and exo geometric isomers. We have observed¹ in the halodifluorophosphine complexes of tetraborane(8) $(B_4H_8 PF_2X)$ that the population of the endo and exo isomers follow, for the most part, the steric requirement for the X substituent. The ratio of the endo to exo isomer for each of the compounds in this study are $B_4H_8 \cdot PF_2(t-C_4H_9)$ 58:42, B₄H₈·PF₂OCH₃ 58:42, B₄H₈·PF₂SCH₃ 70:30, B₄H₈·P- F_2CH_3 88:12, and B_4H_8 PF_2CF_3 , 100:0. If steric effects were the sole factor in determining the relative populations, the endo:exo ratio for the B₄H₈·PF₂OCH₃ complex suggest that the steric requirements of OCH₃ are comparable to the $t-C_4H_9$ substituent which is highly improbable. The similarities of the values for the OCH₃ and t-C₄H₉ substituents as well as similarities for other X substituents suggest that steric and electronic effects are both important in determining isomer ratios. It is interesting to note that crystalline B_4H_8 PF₂- $N(CH_3)_2$ exists only as the endo isomer as shown by its crystal structure.¹⁵ The interactions which are responsible for the all endo configuration in the crystalline state may also be important for the complexes in solution.

The trends in restricted rotation about the B-P bond for these complexes are not so clear. Intuitively, if steric effects are the primary consideration, the compound which should have the greatest restriction to rotation would be expected to be B_4H_8 ·PF₂(*t*-C₄H₉). The remaining compounds can probably be ordered as B_4H_8 ·PF₂SCH₃, B_4H_8 ·PF₂OCH₃, B_4H_8 ·P-F₂CF₃, and B_4H_8 ·PF₂CH₃. If one compares the sulfur and oxygen compounds, the sulfur complex would be expected to experience a more hindered rotation about the B-P bond than the methoxy complex on the basis of the size of sulfur and the presumed greater diffuseness of the sulfur lone pairs. However, from the low-temperature ¹⁹F NMR spectra, the B_4H_8 ·PF₂-OCH₃ complex apparently experiences more hindered rotation.

In this regard it is interesting to compare the magnitude of $J_{\rm BP}$ for these compounds. Several recent reports have addressed this question. Cowley and Damasco¹⁶ have indicated that for a given boron reference acid, BH₃, the magnitude of $J_{\rm BP}$ qualitatively correlates with the strength of a series of phosphine bases while Rudolph and Schultz¹⁷ have shown that the magnitude of J_{BP} empirically correlates with the dative bond strength of borane adducts of a series of smoothly varying phosphine bases. A further study of Rapp and Drake¹⁸ which was concerned with NMR parameters of some alkyl- and arylphosphine adducts of borane acids supported the conclusions of the above studies although an exception to the general relationship has been reported.¹⁰ In our case we are using the same reference acid and similar Lewis bases and if the value of $J_{\rm RP}$ can be used as a measure of the stability of the complex or the strength of the bond between the boron atom and the phosphorus atom, a stronger bond, and possibly a slightly shorter one, would be predicted for the OCH₃ complex $(J_{\rm BP})$ = 180 Hz vs. 144 Hz for the SCH₃ complex). This would increase the steric hindrance of the PF₂OCH₃ ligand and result in a higher barrier to rotation. Another explanation for the observed low-temperature ¹⁹F NMR spectra could involve a positive interaction between the methyl hydrogen atoms and the hydridic hydrogen atoms of the $B_{2,4}$ atoms in the boron cage. Due to the greater electronegativity of the oxygen, the carbon atom in B_4H_8 ·PF₂OCH₃ should be more negatively charged with respect to the carbon atom of B_4H_8 , PF_2SCH_3 . This is experimentally observed in the ¹³C NMR spectrum of the two compounds in which the OCH_3 shift is 45 ppm deshielded with respect to the SCH₃ shift. This shift of electron

 ⁽¹⁶⁾ Cowley, A. H.; Damasco, M. C. J. Am. Chem. Soc. 1971, 93, 6815.
 (17) Rudolph, R. W.; Schultz, C. W. J. Am. Chem. Soc. 1971, 93, 6821.

⁽¹⁸⁾ Rapp, B.; Drake, J. E. Inorg. Chem. 1973, 12, 2868.

density should also influence the methyl hydrogen atoms and would be expected to be greater for B_4H_8 PF₂OCH₃ than for B_4H_8 ·PF₂SCH₃. Thus, an attractive, albeit small, interaction can be envisioned as occurring between the methyl group hydrogens and the hydridic hydrogens of the B_{24} atoms. This would create a more hindered rotation for the B₄H₈·PF₂OCH₃ complex. Furthermore, this interaction would not necessarily predict a different order for the population of the two isomers at ambient temperature. If such an interaction exists in these compounds, then a repulsive interaction would probably exist between the fluorines of the CF₃ group and the hydridic hydrogens of the $B_{2,4}$ atoms in B_4H_8 ·PF₂CF₃. This should also result in a more hindered rotation, and this complex is the only compound of those prepared in this study in which rotation is clearly slow with respect to the NMR time scale at low temperatures.

A barrier calculation for the restricted rotation about the boron-phosphorus bond for a series of these complexes would be useful. Unfortunately, programs which calculate barriers to rotation from NMR line shapes require a low-temperature spectrum in which the limiting spectrum is obtained and the rotation has been stopped. Experimentally, this could not be accomplished. X-ray structure determinations of several of these compounds are clearly desirable. Correlations between B-P bond distance, interatomic distances between the hydrogens of the $B_{2,4}$ atoms and the phosphine substituents, and determinations of the dihedral angle between the boron rings as a function of the X substituent would be of interest.

Finally, it is now clear that from the wide range of substituents in B_4H_8 ·PF₂X complexes which have been studied geometric isomers are usually formed. The only two compounds which have not exhibited isomers have been B₄H₈·P- F_2H^1 and B_4H_8 PF_2CF_3 while B_4H_8 PF_3^1 and B_4H_8 PF_2CH_3 exist primarily as one isomer (the endo isomer). Several factors are obviously important in determining whether or not isomers are formed and what their relative populations will be. Interestingly, the PF_2H complex exhibited no hindered rotation at low temperatures while the PF_2CF_3 complex clearly exists as one rotamer at low temperatures. Also, the PF_2H complex is the only B_4H_8 ·PF₂X complex which exhibits long range coupling between the phosphorus atom and the ring hydrogens.¹ This implies that the electronic structure of the PF₂H complex may be different and this point deserves further study.

Acknowledgment. We gratefully acknowledge the financial support of this study by the National Science Foundation by Grants CHE 80-13694 and CHE 78-03115, which provided funds for the purchase of the WP-200 NMR spectrometer.

Registry No. B_4H_8 ·PF₂OCH₃, 78890-52-5; B_4H_8 ·PF₂SCH₃, 78890-50-3; B_4H_8 ·PF₂CH₃, 78890-51-4; B_4H_8 ·PF₂CF₃, 78920-38-4; B_4H_8 ·PF₂C₄H₉, 78965-40-9; B_4H_8 CO, 12539-64-9.

Contribution from the Department of Chemistry, University of Missouri, Columbia, Missouri 65211

Reduction of Peroxomonosulfate by Oxovanadium(IV) in Acidic Solution. Role of the Sulfate Radical Anion

RICHARD C. THOMPSON

Received March 27, 1981

The reduction of HSO_5^- by the 1-equiv reducing agent VO^{2+} cleanly obeys the rate expression $-d(HSO_5^-)/dt = k(HSO_5^-)(VO^{2+})$, although a mild inverse hydrogen ion dependence was observed over the range 0.010–1.0 M H⁺. Competition studies utilizing the trapping agents HN_3 and Ce(III) strongly indicate a free-radical mechanism involving the SO_4^- radical. A cursory stoichiometric study of the $HSO_5^--Cr^{2+}$ reaction provides additional support for this mechanistic feature. The straightforward kinetic results obtained in this study are contrasted with the complicated profiles frequently encountered in analogous reductions of hydrogen peroxide by 1-equiv species. The principal difference in the two systems is proposed to be the rare $HSO_5^--HSO_5^-$ transformation in peroxomonosulfate reactions compared to the common $H_2O_2-HO_2^-$ involvement in hydrogen peroxide chemistry.

Introduction

Peroxomonosulfate, O_3SOOH^- , is an intermediate in the outdated electrolytic preparation of hydrogen peroxide. A convenient source of this oxidant is the commercial product OXONE, although several syntheses of reasonably pure aqueous solutions have been described.¹ A number of oxidations by peroxomonosulfate have been studied with potentially 2-equiv reducing agents.² The general mechanistic feature that has emerged is a nonradical reaction involving nucleophilic attack by the substrate at the peroxomoiety.³ Oxygen transfer from the terminal peroxide position has been demonstrated in several cases.²⁴ Analogous mechanisms have

been proposed for a number of peroxides including hydrogen peroxide.^{3a} The principal exception is peroxodisulfate, in that radical mechanisms involving the sulfate radical anion, SO_4^{-} , predominate.⁵

Conversely, free-radical reactions may be anticipated in oxidations by peroxomonosulfate if 1-equiv reductants are used. Suprisingly, scant attention has been given to these systems, but the formation of the sulfate radical anion has been proposed in pulse radiolysis studies of the reduction of peroxomonosulfate by the hydrated electron.⁶ In this communication we report the results of a study of the reaction of oxovanadium(IV), VO²⁺, and HSO₅⁻ in acidic solution. Competition studies strongly indicate a free-radical mechanism

 ⁽a) Billing, W. H. O.; Bridgart, G. J.; Wilson, I. R. Aust. J. Chem. 1970, 23, 641.
 (b) Kuhn, L. P. J. Am. Chem. Soc. 1957, 79, 3661.
 (c) Ball, D. L.; Edwards, J. O. Ibid. 1956, 78, 1125.
 (d) Kolthoff, I. M.; Miller, I. K. Ibid. 1951, 73, 3055.

⁽²⁾ Thompson, R. C.; Wieland, P.; Appelman, E. H. Inorg. Chem. 1979, 18, 1974.

^{(3) (}a) Edwards, J. O. In "Peroxide Reaction Mechanisms"; Interscience: New York, 1962; pp 67-106. (b) Johnson, R. W.; Edwards, J. O. Inorg. Chem. 1966, 5, 2073.

⁽⁴⁾ Anbar, M.; Taube, H. J. Am. Chem. Soc. 1954, 76, 6243.

 ^{(5) (}a) Wilmarth, W. K.; Haim, A. In "Peroxide Reaction Mechanisms"; Interscience: New York, 1962; p 175. (b) House, D. A. Chem. Rev. 1962, 62, 185.

^{(6) (}a) Roebke, W.; Renz, M.; Henglein, A. Int. J. Radiat. Phys. Chem. 1969, 1, 29. (b) Hayon, E.; Treinen, A.; Wilf, J. J. Am. Chem. Soc. 1972, 94, 47. (c) Maruthamuthu, P.; Neta, P. J. Phys. Chem. 1977, 81, 937.