Perfluoroammonium and Cesium Fluorotungstates

WILLIAM W. WILSON and KARL O. CHRISTE*

Received May 22, 1981

The syntheses of NF₄⁺ salts containing fluorotungstate anions were studied. The new NF₄WOF₅ salt was prepared by the reaction of WOF₄ with a concentrated solution of NF₄HF₂ in anhydrous HF. It is a white solid, stable up to 60 °C. At higher temperatures it decomposes to NF₄W₂O₂F₉, NF₃, OF₂, and WF₆. The ionic nature of NF₄WOF₅ in the solid state was established by vibrational spectroscopy, but in dilute HF solutions the WOF₅ anion solvolyzes according to 2WOF₅ + HF \rightleftharpoons W₂O₂F₉⁻ + HF₂⁻. In HF solution WF₆⁻ is readily oxidized by NF₄⁺ to yield WF₆ and NF₃. The syntheses and some reaction chemistry and properties of CsWOF₅, CsW₂O₂F₉, Cs₂WO₂F₄, and CsWF₆ are discussed.

Introduction

The synthesis of a stable NF₄⁺ salt containing a fluorotungstate anion is of significant interest for solid-propellant WF₆ gas generators. In this paper the synthesis and characterization of the first known example of a stable NF₄⁺ fluorotungstate salt are reported, and some reaction chemistry of various cesium fluorotungstates in anhydrous HF is discussed.

Experimental Section

Apparatus. Volatile materials used in this work were handled in a stainless steel-Teflon FEP vacuum line. The line and other hardware used were well passivated with ClF, and, if HF was to be used, with HF. Nonvolatile materials were handled in the dry nitrogen atmosphere of a glovebox. Metathetical reactions were carried out in HF solution with use of an apparatus consisting of two FEP U-traps interconnected through a coupling containing a porous Teflon filter.1 Thermal decomposition measurements were carried out in a previously described² sapphire reactor.

Infrared spectra were recorded in the range 4000-200 cm⁻¹ on a Perkin-Elmer Model 283 spectrophotometer. Spectra of solids were obtained by using dry powders pressed between AgCl windows in an Econo press (Barnes Engineering Co.). Spectra of gases were obtained by using a Teflon cell of 5-cm path length equipped with AgCl windows.

Raman spectra were recorded on a Cary Model 83 spectrophotometer using the 4880-A exciting line of an Ar ion laser and a Claassen filter³ for the elimination of plasma lines. Sealed glass, Teflon FEP, or Kel-F tubes were used as sample containers in the transverse-viewing transverse-excitation mode. Lines due to the Teflon or Kel-F sample tubes were suppressed by the use of a metal mask.

The ¹⁹F NMR spectra were recorded at 84.6 MHz on a Varian Model EM390 spectrometer equipped with a variable-temperature probe. Chemical shifts were determined relative to external CFCl₃ with positive shifts being downfield from the standard.4

Elemental analyses were carried out as previously described.⁵ Materials. Literature methods were used for the syntheses of NF₄SbF₆, NF₄HF₂ solutions in HF, and WOF₄. Hydrogen fluoride (Matheson) was dried by storage over BiF₅ to remove the H₂O.⁹ Tungsten hexafluoride (Alfa) and CsI (Alfa, 99.9%) were used as received. Cesium fluoride (KBI) was dried by fusion in a platinum crucible and ground in the drybox. Sulfur dioxide (Matheson) was dried over P2O5 and purified by fractional condensation prior to use.

Preparation of CsWOF₅. Cesium fluoride (9.93 mmol) was loaded inside the drybox into a prepassivated Teflon FEP ampule. Anhydrous HF (15 mL, liquid) was added to the ampule on the vacuum line, and 9.9 mmol of distilled H₂O was added with a syringe. The mixture was allowed to homogenize, and WF₆ (9.96 mmol) was added in vacuo at -196 °C. After the ampule was kept at ambient temperature for several hours, all material volatile at 55 °C was pumped off. On the basis of its weight and vibrational spectra, the solid residue was mainly CsWOF₅^{10,11} containing only small amounts of CsW₂O₂F₉¹² and CsHF₂.

Preparation of CsW₂O₂F₉ by Solvolysis of CsWOF₅ in HF. A sample of CsWOF₅ (2.35 mmol) in a Teflon ampule was stirred in anhydrous HF (10 mL, liquid) for 12 h at 24 °C. The undissolved material was separated from the solution by filtration at 24 °C, and all volatile material was pumped off at 55 °C. On the basis of the observed mass balance and vibrational spectra, the filter cake consisted of CsW₂O₂F₉¹² (~1.1 mmol) and the filtrate residue consisted of CsHF₂ (~1.2 mmol) containing as an impurity Cs₂WO₂F₄,¹³ which was formed by hydrolysis of some CsWOF₅.

Preparation of Cs₂WO₂F₄. Cesium fluoride (37 mmol) and 20 mL of 48% aqueous HF were combined in a Teflon FEP ampule to which WF₆ (18.47 mmol) was added at -196 °C on the vacuum line. When the mixture warmed to room temperature, initially a white precipitate formed, which subsequently dissolved, resulting in a clear solution. The solution was poured into a 250-mL Teflon beaker, and the aqueous HF solvent was evaporated on a hot plate at 60 °C. The resulting white residue (10.24 g, weight calculated for 18.47 mmol of Cs₂WO₂F₄ = 10.40 g) was shown by vibrational spectroscopy to be essentially pure cis-Cs₂WO₂F₄. ¹³ Treatment of Cs₂WO₂F₄ with anhydrous HF resulted in the partial conversion of Cs₂WO₂F₄ to CsWOF₅, Cs-W₂O₂F₉, and CsHF₂

Preparation of CsWF₆. Cesium iodide (21.2 mmol) was loaded in the drybox into a prepassivated Teflon U-tube, equipped with a Teflon filter, and anhydrous HF (26 mL, liquid) was added at -196 °C on the vacuum line. On warming toward ambient temperature, the HF reacted with the CsI to form HI, which accumulated in the bottom of the U-tube as a separate liquid phase. Tungsten hexafluoride (32.46 mmol) was added to the U-tube at -196 °C, and the mixture was allowed to warm to ambient temperature. A copious precipitate of black iodine crystals formed. The mixture was kept at 25 °C for 12 h, and the clear solution was filtered into a second prepassivated Teflon U-tube attached through Teflon tubing and valves to the first U-tube. The HF solvent and small amounts of I_2 were pumped off from the contents of the second U-tube at 55 °C for 2 h, resulting in a slightly off-white solid (4.856 g, weight calculated for 21.2 mmol of $CsWF_6 = 9.144$ g), which was identified by vibrational spectroscopy¹⁴⁻¹⁸ as $CsWF_6$. A second extraction of the precipitate with 16 mL of liquid HF resulted in an additional 3.011 g of CsWF₆, indicating that CsWF6 is only moderately soluble in HF.

Christe, K. O.; Schack, C. J.; Wilson, R. D. Inorg. Chem. 1977, 16, 849. Christe, K. O.; Wilson, R. D.; Goldberg, I. B. Inorg. Chem. 1979, 18, (2)

Claassen, H. H.; Selig, H.; Shamir, J. Appl. Spectrosc. 1969, 23, 8. Pure Appl. Chem. 1972, 29, 627.

Rushworth, R.; Schack, C. J.; Wilson, W. W.; Christe, K. O. Anal. Chem. 1981, 53, 845.

Christe, K. O.; Schack, C. J.; Wilson, R. D. J. Fluorine Chem. 1976,

Christe, K. O.; Wilson, W. W.; Wilson, R. D. Inorg. Chem. 1980, 19,

Paine, R. T.; McDowell, R. S. Inorg. Chem. 1974, 13, 2366. Christe, K. O.; Wilson, W. W.; Schack, C. J. J. Fluorine Chem. 1978, 11, 71.

Beuter, A.; Sawodny, W. Z. Anorg. Allg. Chem. 1976, 427, 37. Beuter, A.; Sawodny, W. Angew. Chem., Int. Ed. Engl. 1972, 11, 1020. Bougon, R.; Bui Huy, T.; Charpin, P. Inorg. Chem. 1975, 14, 1822.

⁽¹³⁾ Pausewang, G.; Schmitt, R.; Dehnicke, K. Z. Anorg. Allg. Chem. 1974, 408, 1 and references cited therein.

Peacock, R. D.; Sharp, D. W. A. J. Chem. Soc. 1959, 2762. Beuter, A. Dissertation, University of Ulm, Ulm, West Germany, 1974. Heath, G. A.; Hefter, G. T.; Boyle, T. W.; Desjardins, C. D.; Sharp, D. W. A. J. Fluorine Chem. 1978, 11, 399. Prescott, A.; Sharp, D. W. A.; Winfied, J. M. J. Chem. Soc., Dalton Trans. 1975, 936. (16)

⁽¹⁸⁾ Shamir, J.; Malm, J. G. Inorg. Nucl. Chem. Lett. 1976, 107.

Reaction of CsI with SO₂. Dry CsI (6.30 mmol) was loaded in the drybox into a Teflon ampule, and SO₂ (51.4 mmol), which had been stored over P₂O₅, was added at -196 °C on the vacuum line. On warming, all the CsI reacted with SO₂ to form a red solution. Removal of the excess of unreacted SO₂ at -10 °C resulted in a red-orange solid of the approximate composition CsI·4SO2, which at 25.5 °C exhibited a dissociation pressure of 450 torr. Exhaustive dissociation of the adduct at 25.5 °C produced pure SO₂ and CsI (6.3 mmol).

Preparation of NF₄WOF₅. A mixture of CsF (21.99 mmol) and NF₄SbF₆ (22.14 mmol) was loaded in the drybox into one half and WOF₄ (14.59 mmol) into the other half of a prepassivated Teflon double-U metathesis apparatus. Dry HF (16 mL, liquid) was added on the vacuum line to the half containing the NF₄SbF₆-CsF mixture and was warmed to 25 °C for 30 min with stirring. After this mixture was cooled to -78 °C, the metathesis apparatus was inverted and the NF₄HF₂ solution was filtered into the other half of the apparatus containing the WOF₄. The NF₄HF₂-WOF₄ mixture in HF was stirred for 30 min at 25 °C, and then the volatile material was pumped off for 12 h at 25 °C and 0.8 h at 50 °C. The volatile material, trapped at -196 °C, was shown by infrared spectroscopy to consist of HF and NF₃ and did not contain any tungsten species. The filter cake (8.06 g; weight calculated for 21.99 mmol of $CsSbF_6 = 8.11$ g) and the filtrate residue (4.99 g; weight calculated for 14.59 mmol of NF₄WOF₅ = 5.61 g) were shown by vibrational spectroscopy to consist of CsSbF₆ and mainly NF₄WOF₅, respectively. On the basis of its elemental analysis, the filtrate residue had the composition (wt %): NF₄WOF₅, 96.1; CsSbF₆, 2.0; NF₄SbF₆, 1.9. Anal. Calcd: NF₃, 18.14; Cs, 0.72; W, 45.91; Sb, 1.37. Found: NF₃, 18.05; Cs, 0.7; W, 46.0; Sb, 1.32.

Preparation of NF₄W₂O₂F₉. A sample of NF₄WOF₅ was placed into a sapphire tube equipped with a stainless steel valve. The contents of the tube were heated in a dynamic vacuum to 155 °C for 6.5 h and to 180 °C for 4 h. On the basis of the observed weight change and the vibrational spectra, the conversion of NF₄WOF₅ to NF₄-W₂O₂F₉ was essentially complete.

In an alternate method, NF₄WOF₅ was dissolved in anhydrous HF and formed a precipitate. This precipitate was separated from the solution by filtration and, on the basis of its vibrational spectra, consisted of NF₄W₂O₂F₉.

Results and Discussion

Syntheses and Reaction Chemistry of CsWOF₅, CsW₂O₂F₉, Cs₂WO₂F₄, CsWF₆, WOF₄, and H₃OWOF₅. The synthesis of CsWOF₅ was first reported¹⁹ in 1958 by Hargreaves and Peacock and involved the reaction of moist CsF with WF₆ in IF₅ solution. In subsequent reports, ^{10,20} either the original or slightly modified methods were used replacing the IF5 solvent by CH₃CN and using WOF₄ as a starting material. Since in Hargreave and Peacock's method an excess of water can result in WO₂F₄²⁻ formation, a better control of the amount of water used in the reaction was desirable. Furthermore, the intended reactions with NF₄⁺ salts required the use of anhydrous HF as a solvent. Consequently, our CsWOF5 preparation was carried out in such a manner that dry CsF, WF₆, and a stoichiometric amount of water were used in anhydrous HF solution. On the basis of its vibrational spectra, the resulting solid product consisted of CsWOF₅^{10,11} containing small amounts of CsW₂O₂F₉¹² and CsHF₂. During an attempt to determine the solubility of CsWOF₅ in anhydrous HF, it was found that the salt did not completely dissolve in anhydrous HF. The insoluble material was filtered off and identified by vibrational spectroscopy as CsW₂O₂F₉.¹² The residue isolated from the filtrate after solvent removal consisted mainly of CsHF₂ contaminated by a small amount of cis-Cs₂WO₂F₄.¹³ The latter was most likely produced by hydrolysis of some CsWOF₅ by a trace of water present in the large amount of HF used as a solvent. These results demonstrate the existence of the equilibrium reaction in anhydrous HF shown by eq 1.

$$2C_{S}WOF_{5} + HF \rightleftharpoons C_{S}W_{2}O_{2}F_{9}\downarrow + C_{S}HF_{2}$$
 (1)

A large excess of HF and the low solubility of CsW₂O₂F₉ can

shift this equilibrium all the way to the right. Separation of the CsW₂O₂F₉ precipitate from the CsHF₂ solution, followed by washing with anhydrous HF, affords essentially pure $CsW_2O_2F_9$ and thus offers a convenient synthetic method for the preparation of this compound. Equilibrium 1 is in excellent agreement with that observed by Bougon and co-workers¹² for the HF-WOF₄ system (eq 2). If the CsHF₂ and CsW₂O₂F₉

$$2WOF_4 + 2HF \rightleftharpoons W_2O_2F_9^- + H_2F^+$$
 (2)

are not separated prior to HF removal, equilibrium 1 is shifted back to the left on HF removal and in our experiments resulted in a mixture containing about 95 mol % CsWOF5 and 5 mol % $CsW_2O_2F_9$.

The above described synthesis of CsWOF, by controlled hydrolysis of WF₆ in a CsF-containing HF solution is similar to the previously reported8 hydrolysis of WF6 in HF according to eq 3. However, on the basis of the results of this study,

$$SiO_2 + 4HF \rightarrow SiF_4 + 2H_2O$$

$$H_2O + WF_6 \xrightarrow{HF} WOF_4 + 2HF$$
(3)

care must be taken to use an excess of WF₆ in this reaction. In the presence of an excess of water, H₃O⁺WOF₅⁻ and H₃O⁺W₂O₂F₉⁻ are formed according to eq 4 and 5. Since

$$2H_2O + WF_6 \xrightarrow{HF} H_3O^+WOF_5^- + HF$$
 (4)

$$3H_2O + 2WF_6 \xrightarrow{HF} H_3O^+W_2O_2F_9^- + 3HF$$
 (5)

these oxonium salts are also volatile, they are difficult to separate from WOF₄ by sublimation. It should be noted that in the previous report²¹ on the synthesis of H₃O⁺WOF₅⁻ the observed anion spectra were incorrectly ascribed to a distorted WOF₅⁻ anion. The reported spectra²¹ are identical with those published¹² for W₂O₂F₉, which were also confirmed by the results of this study (see below).

For the synthesis of Cs₂WO₂F₄, the use of an HF-soluble tungsten species²² and of an aqueous HF solution are important. In agreement with a previous report, 22 WO₃ or $H_2WO_4^{23}$ was found difficult to dissolve completely in aqueous HF, but WF₆ and CsF in a 1:2 mole ratio were found to be a convenient alternate to Cs₂WO₄²² as a starting material for the preparation of pure cis-Cs₂WO₂F₄. If anhydrous HF is used in place of aqueous HF as a solvent, equilibria 6 and 1

$$Cs_2WO_2F_4 + 3HF \rightleftharpoons CsWOF_5 + CsHF_2 + H_2O$$
 (6)

were found to become important. Equilibrium 1 results in a precipitation of CsW₂O₂F₉, which can be isolated by filtration. while the residue obtained from the filtrate consists of Cs₂W- O_2F_4 and $CsHF_2$. The vibrational spectra observed for Cs_2 - WO_2F_4 agree well with those 13,23,24 previously reported and confirm that WO₂F₄²⁻ is present as the cis isomer.

For the synthesis of CsWF₆, the original method²⁵ based

on the reaction given by eq 7 did not lead to a pure product,

$$2CsI + 2WF_6 \xrightarrow{SO_2} 2CsWF_6 + I_2$$
 (7)

in agreement with previous reports. 16,26 Even when the reaction was carried out in a well-passivated sapphire reactor with carefully dried reagents, the product always contained

⁽¹⁹⁾ Hargreaves, G. B.; Peacock, R. D. J. Chem. Soc. 1958, 2170.
(20) Meinert, H.; Friedrich, L.; Kohl, W. Z. Chem. 1975, 15, 492.

⁽²¹⁾ Selig, H.; Sunder, W. A.; Schilling, F. C.; Falconer, W. E. J. Fluorine Chem. 1978, 11, 629.

Pausewang, G. Z. Naturforsch. B: Anorg. Chem., Org. Chem. 1974,

⁽²³⁾ Mattes, R.; Müller, G.; Becher, H. J. Z. Anorg. Chem. 1972, 389, 177.
(24) Beuter, A.; Sawodny, W. A. Z. Anorg. Alig. Chem. 1971, 381, 1.
(25) Hargreaves, G. B.; Peacock, R. D. J. Chem. Soc. 1957, 4212.
(26) Bond, A. M.; Irvine, I.; O'Donnel, T. A. Inorg. Chem. 1975, 14, 2408.

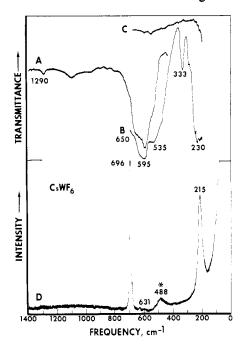


Figure 1. Vibrational spectra of solid CsWF₆: trace A, infrared spectrum of the dry powder pressed between AgCl disks; trace B, Nujol mull between CsI windows; trace C, Nujol alone between CsI windows; trace D, Raman spectrum of the solid. The Raman band at 488 cm⁻¹, marked by an asterisk, is probably due to the Pyrex capillary.

significant amounts of CsWOF₅, and sometimes CsW₂O₂F₉, as byproducts. The replacement of SO₂ as a solvent by HF eliminated this problem and offered the additional advantage of easy separation of the HF-insoluble I2 from HF-soluble CsWF₆. This preparation of the CsWF₆ is similar to that²⁶ previously published for NaWF6 with HF as a solvent, NaF, and cadmium in place of iodide as a reducing agent. Other solvents that have successfully been used for the syntheses of WF₆⁻ salts include CH₃CN, ^{16,17} CH₃NO₂, ¹⁷ and SF₄. ²⁷ Since only incomplete spectroscopic data had previously

been reported for CsWF₆, its vibrational and ¹⁹F NMR spectra were recorded. The vibrational spectra and observed frequencies are given in Figure 1. The observed spectra, particularly the infrared spectra, are too complicated for an ideal octahedral anion. It must be kept in mind, however, that CsWF₆ samples usually are poor Raman scatterers and also hydrolyze very easily to CsWOF₅. The ¹⁹F NMR spectrum of CsWF₆ in HF solution at -80 °C consisted of a singlet at ϕ 159 with J_{183}_{WF} of about 53 Hz.

The compatibility of SO₂ with CsI and WF₆ was briefly studied in an effort to explain the above described side reaction resulting in CsWOF₅ formation. In agreement with a previous report, 28 CsI was found to form with SO₂ an orange-red 1:4 adduct according to eq 8. This adduct was unstable at room

$$CsI + 4SO_2 \xrightarrow{SO_2} CsI(SO_2)_4$$
 (8)

temperature, possessing a dissociation pressure of about 450 torr at 25.5 °C. Its decomposition resulted in SO₂ and CsI as the only products. For the WF₆-SO₂ system, little interaction was noted. Even after an equimolar mixture of WF₆ and SO₂ was kept at 25 °C for 5 days, less than 0.2% of the starting material had reacted to form WOF₄ and SOF₂ according to eq 9. It therefore appears that the interaction of

$$WF_6 + SO_2 \rightarrow SOF_2 + WOF_4$$
 (9)

Burow, D. F. In "The Chemistry of Nonaqueous Solvents"; Lagowski, J. J., Ed.; Academic Press: New York, 1970; Vol. 3, p 164 and references cited therein.

WF₆ with SO₂ is either catalyzed by CsI or one of its reaction products or that the desired CsWF₆ product is more reactive than WF₆ toward SO₂. Such behavior is in accord with a previous report²⁹ on the enhanced reactivity of SO₂ toward WF₆ in the presence of bases capable of forming adducts with WF_6 .

Syntheses of NF₄⁺ Fluorotungstate Salts. The possibility was explored to synthesize stable NF₄⁺ salts derived from one of the following complex fluorotungstate anions: WF₆, $WO_2F_4^{2-}$, WOF_5^- , and $W_2O_2F_9^-$.

For the synthesis of NF₄WF₆ the metathetical reaction eq 10 proved unsatisfactory because of product separation

$$NF_4SbF_6 + CsWF_6 \xrightarrow{HF} CsSbF_6 \downarrow + NF_4WF_6$$
 (10)

problems due to the limited solubility of the WF₆ salts in HF especially at low temperature and because of the competing redox reaction (eq 11) during removal. Although the solubility

$$NF_4^+ + 2WF_6^- + HF \xrightarrow{HF} NF_3 + 2WF_6 + HF_2^-$$
 (11)

problem was successfully circumvented by separately generating HF solutions of NF₄HF₂ and WF₅ (eq 12 and 13) and

$$NF_4BiF_6 + CsHF_2 \xrightarrow{HF} CsBiF_6 \downarrow + NF_4HF_2$$
 (12)

$$CsWF_6 + BiF_5 \xrightarrow{HF} CsBiF_6 \downarrow + WF_5$$
 (13)

combining them, the redox reaction (12) remained a major obstacle, particularly when an excess of NF₄HF₂ was employed in the reaction.

The synthesis of $(NF_4)_2WO_2F_4$ was attempted with use of the metathetical reaction given by eq 14. Although WO₂F₄²

$$2NF_4SbF_6 + Cs_2WO_2F_4 \xrightarrow{HF} (NF_4)_2WO_2F_4 + 2CsSbF_6\downarrow$$
(14)

appeared to be compatible with NF₄⁺, the desired (NF₄)₂W-O₂F₄ could not be isolated due to WO₂F₄²⁻ interacting with anhydrous HF according to reactions 6 and 1. Consequently, the filter cake contained a significant amount of W₂O₂F₉⁻ salts, whereas the filtrate residue contained a significant amount of WOF₅⁻ salts. The volatile reaction products contained some NF₃ and OF₂. Nitrogen trifluoride is the product expected for either thermal decomposition of NF₄HF₂⁷ or redox reactions involving NF4+. Oxygen difluoride could have been formed by fluorination of H₂O generated from WO₂F₄²⁻ and HF according to reaction 6.

Since the products from the NF₄SbF₆ + Cs₂WO₂F₄ metathetical reactions had indicated that NF4WOF5 and NF4-W₂O₂F₉ might be stable but are difficult to separate from the CsSbF₆ precipitate, this separation problem was overcome by first preparing an NF₄HF₂ solution according to eq 15, then

$$NF_4SbF_6 + CsHF_2 \xrightarrow{HF} CsSbF_6 \downarrow + NF_4HF_2$$
 (15)

separating the CsSbF₆ precipitate from the highly soluble NF₄HF₂ by filtration, and reacting a twofold excess of this NF₄HF₂ solution with WOF₄ according to eq 16. The excess

$$NF_4HF_2 + WOF_4 \xrightarrow{HF} NF_4WOF_5 + HF$$
 (16)

of unreacted NF₄HF₂ was decomposed at room temperature to NF₃, F₂, and HF, leaving behind the thermally more stable NF4WOF5 salt.

The NF₄W₂O₂F₉ salt was obtained by controlled vacuum pyrolysis of NF₄WOF₅ at 180 °C in a sapphire reactor. The vibrational spectra of the solid residue showed only the bands characteristic for $NF_4^{+1,7,9}$ and $W_2O_2F_9^{-12}$ The volatile

Kemmit, R. D. W.; Sharp, D. W. A. J. Chem. Soc. 1963, 2496.

Table I. Vibrational Spectra of Solid NF₄W₂O₂F₉, CsW₂O₂F₉, and NF₄WOF₅

obsd freq, cm ⁻¹ , and rel intens ^a						assignment (point group) ^b		
NF ₄ W ₂ O ₂ F ₉		CsW₂O₂F,		NF ₄ WOF ₅		NF ₄ ⁺	(point group)	WOF,
IR	Raman	IR	Raman	IR	Raman	(T_d)	$W_2O_2F_9^-$	(C_{4v})
2320 vw				2315 vw		$2 \nu_3 (A_1 + E + F_2)$		
2060 vw		2060 vw					(2×1035)	
2015 w				1996 w		$\nu_1 + \nu_3 (F_2)$		
1768 vw				1760 wv		$\nu_3 + \nu_4 (A_1 + E + F_2)$		
1461 w				1453 w		$\nu_1 + \nu_4 (F_2)$		
1343 w		1338 w					(709 + 640)	
1240 sh		12 4 0 w					(640 + 610)	
1224 mw				1221 mw		$2\nu_4(A_1 + E + F_2)$		
1165 vs	1165 (0.2)			1160 vs	1165 (0.7)	ν_3 (F ₂)		
1035 vs	1034 (10)	1048 vs 1035 vs	1036 (10)	991 vs	996 (10)		ν W=O out of phase ν W=O in phase	$\nu_1(A_1)$
900 vw	850 (1.5)				852 (8.4)	ν_1 (A ₁)	-	
		822 vw				• • •		
		790 vw						
709 s	698 (5.4)	704 s	700 (6.3)	688 vs	690 (5.4)		ν _s WF ₄ in phase	$\nu_2(A_1)$
640 vs, br		628 vs, br		620 vs, br			ν_{as} WF ₄	ν_{s} (E)
610 s	610 (0.9)		610 (0.6)		613 (4.9)	$\nu_4 (F_2)$	$\nu_{\rm s}$ WF ₄ out of phase	$\nu_{5} (B_{1})$
				515 vs				$\nu_3(A_1)$
462 s} 440 s}	440 (0.4)	440 vs			446 (1.6)	ν_2 (E)	$ u_{\mathbf{as}}\mathrm{WFW}$	
400 vw		400 vw						
	335 sh		340 (0.6)	1				
	316 (6.2)		320 (5.3)	l	329 (6.8)			ν_{9} (E)
	305 sh		309 sh					, , ,
	283 (0.5)		284 (0.2))	285 (0.5)		def vibrations	ν_4 (A ₁)
	211 (0.6)		217 (0.5)					
	194 (0.2)		200 (0.2)	1				
	120 sh		122 (0.3)	1	1 4 0 sh			

^a Uncorrected Raman intensities. ^b The actual site symmetry of NF_4^+ and WOF_5^- might be lower than T_d and C_{4v} , respectively. ^c Assignments from ref 10 and 12.

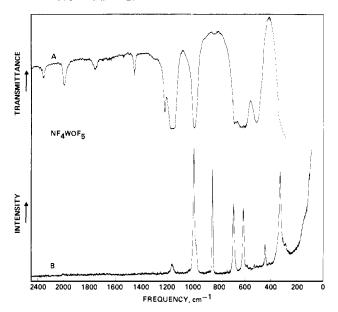


Figure 2. Infrared and Raman spectra of solid NF_4WOF_5 . The broken line indicates absorption due to the AgCl window material.

products consisted of NF₃, OF₂, and WF₆ in a mole ratio of about 2:1:1, indicating the reaction shown in eq 17.

$$3NF_4WOF_5 \rightarrow 2NF_3 + OF_2 + WF_6 + NF_4W_2O_2F_9$$
 (17)

Properties of NF₄WOF₅ and NF₄W₂O₂F₉. Both salts are white crystallinic solids stable at room temperature. The thermal stability of the salts was studied in a static vacuum with a sapphire reactor equipped with a pressure transducer. The NF₄WOF₅ salt was found to be stable at 55 °C but at 85 °C started to undergo slow decomposition according to reaction 17 at an approximate rate of 0.03% h⁻¹. At 155 °C the pyrolysis proceeded at a much faster rate, and after 6.5

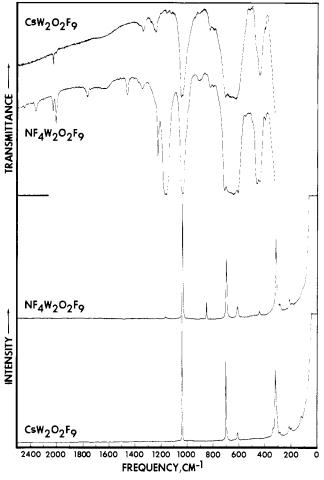


Figure 3. Infrared and Raman spectra of solid $NF_4W_2O_2F_9$ compared to those of solid $CsW_2O_2F_9$.

h about 90% of the starting material was converted to NF₄-W₂O₂F₉ and to the other products shown in reaction 17. Complete conversion to NF₄W₂O₂F₉ was achieved by heating to 180 °C for an additional 4 h.

The ionic structure of NF₄WOF₅ and NF₄W₂O₂F₉ in both the solid state and HF solution was demonstrated by vibrational and ¹⁹F NMR spectroscopy. The infrared and Raman spectra of solid NF₄WOF₅ and NF₄W₂O₂F₉ are shown in Figures 2 and 3, respectively. For comparison, the vibrational spectra of CsW₂O₂F₉ are also shown in Figure 3. The observed frequencies, together with their assignments to the NF₄⁺, ^{1,7,9} $WOF_5^{-,10,11}$ and $W_2O_2F_9^{-12}$ ions, are summarized in Table I and clearly establish the nature of these salts in the solid state. In HF solution, however, a significant change was observed. First of all, both NF₄WOF₅ and NF₄W₂O₂F₉ were only partially soluble in anhydrous HF. In both cases the insoluble phases were shown by Raman spectroscopy to consist of NF₄W₂O₂F₉, and the HF solution showed only NF₄⁺ and W₂O₂F₉ ions. In the HF solution obtained from dissolving $NF_4\tilde{W}OF_5$, the ratio of $NF_4^+:W_2O_2F_9^-$ was, as expected from eq 18, considerably higher than that found for the NF₄W₂O₂F₉

$$2NF_4WO_5 + HF \stackrel{HF}{\longleftrightarrow} NF_4HF_2 + NF_4W_2O_2F_9$$
 (18)

solution. The presence of these ions and the lack of WOF₅⁻ in these solutions were confirmed by ¹⁹F NMR spectroscopy. These spectra showed a triplet of equal intensity at ϕ 215.5 with $J_{\rm NF}$ = 239.5 Hz, characteristic for NF₄⁺,^{1,7} and a singlet at ϕ 54 with two ¹⁸³W satellites with $J_{\rm ^{183}WF}$ = 84 Hz, characteristic for W₂O₂F₉⁻ in HF solution. ¹² The latter signal has

been attributed to the eight equivalent fluorines of W₂O₂F₉ with the bridging ninth fluorine undergoing rapid exchange with the HF solvent.¹² This exchange was still rapid at -60 °C, and no evidence for F-F coupling was observed. These Raman and NMR data suggest that NF4WOF5 undergoes the solvolysis in anhydrous HF given by eq 18. This solvolysis is analogous to that observed for CsWOF5 in reaction 1 and explains why NF₄WOF₅ could not be prepared by a direct metathesis. Due to their limited solubility in anhydrous HF, some of the W₂O₂F₉ salt is precipitated out. This was confirmed by ¹⁹F NMR peak area measurements on the HF solution of the original NF₄WOF₅ sample; it was shown that the ratio of the fluorines on nitrogen to the equivalent fluorines on tungsten was 1.5:1, indicating that on the basis of (18) about half of the NF₄W₂O₂F₉ had precipitated out under the given conditions.

Conclusion. The perfluoroammonium cation is capable of forming stable salts derived from the WOF_5^- and the $W_2O_2F_9^-$ anion but rapidly oxidizes the WF_6^- anion to WF_6 . The new NF_4WOF_5 and $NF_4W_2O_2F_9$ salts were characterized, and the syntheses and reaction chemistry of tungsten fluoride and oxyfluoride anions were studied in more detail.

Acknowledgment. We thank Drs. C. J. Schack and L. R. Grant and Mr. R. D. Wilson for helpful support and the Office of Naval Research and the Army Research Office for financial support of this work.

Registry No. NF₄WOF₅, 79028-46-9; NF₄W₂O₂F₉, 79056-35-2; CsWOF₅, 58341-09-6; CsW₂O₂F₉, 79056-36-3; cis-Cs₂WO₂F₄, 79005-35-9; CsWF₆, 19175-38-3; WF₆, 7783-82-6; WOF₄, 52049-91-9.

Contribution from the Department of Chemistry, College of Liberal Arts and Sciences, and the Department of Industrial Chemistry, Faculty of Engineering, Kyoto University, Sakyo-ku, Kyoto 606, Japan

Formation Constant of the Tetracyanocuprate(II) Ion and the Mechanism of Its Decomposition

AKIRA KATAGIRI,*1a SEIJI YOSHIMURA,1b and SHIRO YOSHIZAWA1b

Received May 29, 1981

The overall formation constant (β) of tetracyanocuprate(II) ion $(Cu^{II}(CN)_4^{2-})$, which is formed as a reaction intermediate in the anodic oxidation of cyanide ion in the presence of copper ion, has been obtained by measuring the standard electrode potential (E°) of the redox couple $Cu^{II}(CN)_4^{2-}/Cu^I(CN)_4^{3-}$. The results are $E^{\circ}(Cu^{II}(CN)_4^{2-}/Cu^I(CN)_4^{3-}) = 0.66 \text{ V}$ vs. NHE and $\beta(Cu^{II}(CN)_4^{2-}) = 10^{22.0} \text{ M}^{-4}$ at 25 °C. The mechanism of the decomposition of the $Cu^{II}(CN)_4^{2-}$ is discussed by using the $\beta(Cu^{II}(CN)_4^{2-})$ value and the previously obtained kinetic data. It is concluded that a binuclear complex, $Cu^{II}_2(CN)_6^{2-}$, is formed from $Cu^{II}(CN)_4^{2-}$. This complex subsequently decomposes to form $Cu^{II}(CN)_2^{-}$ and $(CN)_2$, this step being rate determining. The kinetic studies of the chemical reaction between Cu^{2+} and CN^- , which have been reported by several groups of workers, are also interpreted by the same mechanism.

Introduction

In previous studies of the anodic oxidation of cyanide ion in the presence of copper ion, we have found that copper ion has a marked catalytic effect on this reaction^{2a} and that the primary reaction product is cyanogen, which gives various secondary products according to the pH of the solution.³

We have proposed the reaction mechanism given by eq 1 and 2 from some electrochemical studies.² We have further

$$Cu^{T}(CN)_{4}^{3} \longrightarrow Cu^{T}(CN)_{4}^{2-} + e^{-}$$

$$Cu^{T}(CN)_{4}^{3-} + CN^{-} \longrightarrow Cu^{T}(CN)_{4}^{3-} + \frac{1}{2}(CN)_{2}$$
(2)

studied the kinetics of reaction 2 by means of ESR spectroscopy^{4,5} and have obtained the rate equation given by eq 3. On the basis of this result, we have proposed two possible

 ^{(1) (}a) Department of Chemistry.
 (b) Department of Industrial Chemistry.
 (c) (a) S. Yoshimura, A. Katagiri, and S. Yoshizawa, Denki Kagaku oyobi Kogyo Butsuri Kagaku, 47, 360 (1979);
 (b) ibid., 47, 488 (1979).

⁽³⁾ S. Yoshimura, A. Katagiri, and S. Yoshizawa, Nippon Kagaku Kaishi, 1327 (1980).

⁽⁴⁾ S. Yoshimura, A. Katagiri, Yasuo Deguchi, and S. Yoshizawa, Bull. Chem. Soc. Jpn., 53, 2434 (1980).

⁽⁵⁾ S. Yoshimura, A. Katagiri, Yasuo Deguchi, and S. Yoshizawa, Bull. Chem. Soc. Jpn., 53, 2437 (1980).