(Scheme II). Oxidation of A^{2-} involves the A^{-1}/A^{2-} couple for which $E^{\circ} = +0.03 \pm 0.02$ V while oxidation of A⁻ involves the A/A⁻ couple for which $E^{\circ} = -0.14 \pm 0.02$ V. Thus the rate constant for the oxidation of the radical is smaller despite the fact that the driving force for this reaction is greater than for the oxidation of A^{2-} . As above, the self-exchange rate *(eq* 10) is estimated from the A^{-} ./Fe^{III}(cyt c) reaction rate con-For the oxidation of A^2 . As above, the self-exchange rate (eq. 10) is estimated from the A^{-} , A^{-} is thus obtained. Thus obt we arrive at the conclusion that the A^{-1}/A couple has a rather high intrinsic electron-transfer barrier. While the evidence is limited, sluggish redox properties for this couple might have been predicted on the basis of the structures IV and VI shown in Figure 1. The water-equilibrated form of dehydroascorbic acid (whose properties Ball's thermodynamic measurements should reflect) has a bicyclic monoketo structure. It seems likely that oxidation of A^- , a monocyclic species with extensive radical delocalization over three **>C=O** groups, yields initially the monocyclic triketo form of dehydroascorbic acid V. Rearrangement of V to the stable form VI would then ensue. Alternatively, rearrangement of the radical to a species more strongly resembling VI could precede the electron-transfer step. These alternative mechanisms are summarized in Schemes I11 and IV where A(V) and A(V1) depict dehydroascorbic acid in forms V and VI, respectively, and A^{-1} depicts a form of ascorbate radical that is structurally similar to VI rather than to V. Neither thermodynamic nor kinetic data bearing on the equilibrium between structures V and VI are available; nor is there any indication that A^{-1} exists. Thus the mechanism of ascorbate radical oxidation cannot be clarified to any greater extent at this time. It is worth noting, however, that, on the basis of Scheme I11 or IV, neither the self-exchange estimate obtained above nor the overall *Eo* given in Table 11 is for the simple process implied by *eq* 10 and that far from simple kinetic behavior may be anticipated for reactions involving the A^{-1}/A couple.

Scheme III

$$
A^{\overline{}}\rightarrow A(V) + e^{\overline{}}
$$

$$
A(V) \rightleftharpoons A(VI)
$$

Scheme IV

$$
A^{-} \rightleftharpoons A^{-}{}'
$$

$$
A^{-}{}' + e^{-} \rightarrow A(VI)
$$

We mention one other complicating feature in passing. While in most reactions involving ascorbate as a reductant *eq* 11 is likely to represent the initial step, it is worth reiterating

$$
HA^- + OX \rightarrow HA \cdot + RED
$$
 (11)

that at pH 0-13 the stable form of the ascorbate radical is the anionic species A^{-1} . Thus above pH ~ 0 eq 11 is expected

to be followed by very rapid deprotonation of HA-, eq 4. With
HA-
$$
\frac{k_3}{k_3} H^+ + A^-.
$$
 (4)

the assumption that k_{-5} is nearly diffusion controlled $(k_{-5} =$ 10^9 M⁻¹ s⁻¹), proton dissociation could proceed with $k_5 = 3.5$ \times 10⁸ s⁻¹; thus the lifetime of HA· may in some instances be less than 10 ns. The rapid deprotonation of $HA₁$ introduces an additional subtlety into the behavior of ascorbate systems: while the rate of production of ascorbate radicals is related to the properties (E°, k_{11}) of the HA \cdot /HA⁻ couple, subsequent reactions are determined by the properties of the A^{-1}/A^{2-} and A/A couples discussed above. The rapid deprotonation of HA. (as well as the sluggishness of the A^{-1}/A couple) may be of particular importance in the photochemical systems⁴ where it may provide a "switching" mechanism, effectively slowing down some of the reactions that destroy reactive intermediates. In the thermal reactions reviewed in this paper these interesting complications may also play an important, if infrequently recognized, role. We hope that further detailed studies of ascorbate reactions will lead to a fuller understanding of these questions.

Acknowledgment. Helpful discussions with Drs. **N.** Sutin and B. H. J. Bielski are gratefully acknowledged. This work was performed under contract with the **U.S.** Department of Energy and supported by its Office of Basic Energy Sciences.

Registry No. H2A, 50-81-7; **A,** 490-83-5.

Department of Chemistry Brookhaven National Laboratory Upton, New York 11973

Carol Creutz

Received December 31, 1980

Electron Correlation Effects in B₄H₁₀ Structures

Sir:

The experimental geometry of B_4H_{10} is well established¹ as a molecule of C_{2v} symmetry of *styx* topology 4012 in which each of the two $BH₂$ groups is joined by bridged hydrogens to a singly bonded pair of BH units. An early proposal,² also of topology 4012, is the bis(diborane) structure, in which two B_2H_5 units are joined by a single bond. Here, we address the question, "What level of theoretical accuracy yields the observed structure in preference to the bis(diborane) structure?"

In two previous calculations the observed structure is not preferred. A 4-31 G^* study showed that bis(diborane) is more stable than the observed structure by 16.5 kcal/mol. Neither the addition of configuration interaction nor modification of this basis set altered this conclusion.³ A study by Kleier,⁴ who used the PRDDO method,⁵ yielded the gauche form of bis-(diborane) as more stable than the trans form by about 1 kcal/mol, and more stable than the cis form by about 3 kcal/mol. The observed structure of $C_{2\nu}$ symmetry was about 5 kcal/mol less stable than the gauche form of bis(diborane).⁴

In the present study geometries were optimized⁶ with use of a double- ζ basis set (3-21G),⁷ assuming symmetry C_{2v} for the observed structure, C_{2h} for *trans*-bis(diborane), C_{2v} for cis -bis(diborane), and C_1 for *gauche*-bis(diborane). The gauche form optimized to C_2 symmetry. These optimized geometries (Table I) yielded the energies listed in Table I1 at the levels 6-31G and 6-31G* (polarization added) and Møller-Plesset (MP) corrections⁸ to third order⁹ for the 6-31G basis (configuration interaction). In Table I1 we add the

- (2) Pitzer, K. **S.** *J. Am. Chem. Soc.* **1945,** *67,* 1126.
- **(3)** Yaniger, **S.** I.; Shepard, R.; Simons, J.; Liebman, J. F., private com- munication from J. Simons, Feb 1, 1980.
- (4) Private communication.
(5) Halgren, T. A.; Kleier, D. A.; Hall, J. H., Jr.; Brown, L. D.; Lipscomb, (5) Halgren, T. A.; Kleier, D. **A.;** Hall, J. H., Jr.; Brown, L. D.; Lipscomb, W. N. *J. Am. Chem. SOC.* **1978,** *100,* 6595.
- (6) Binkley, J. **S.;** Whiteside, R. **A.;** Krishnan, R.; Seeger, R.; DcFrccs, D. J.; Schlegel, H. B.; Topiol, **S.;** Kahn, L. R.; Pople, J. **A.** "Gaussian **80".** Quantum Chemistry Program Exchange, Indiana University; Program 406.
- (7) Binkley, J. **S.;** Pople, J. **A.;** Hehre, W. J. J. Am. Chem. *Soc.,* **1980,** *102,*
-
- 939. (8) Molller, C.; Plesset, M. **S.** *Phys. Rev.* **1934,** *46,* 618. (9) Pople, J. A.; Binkley, J. S.; Seeger, R. *Int.* J. *Quantum Chem., Symp.* **1976,** *10,* 1.

⁽¹⁾ Lipscomb, W. N. "Boron Hydrides"; W. **A.** Benjamin: New York, 1963; and references therein.

^a Experimental values in parentheses are from: Simmons, **N.** P. C.; Burg, **A.** B.; Beaudet, R. **A.** Inorg. Chem 1981, 20, 533.

polarization and configuration interaction corrections in order to obtain the last column. In a previous study of eight molecules¹⁰ (H₂O, NH₃, N₂, F₂, B₂H₄, BH₃···H₂, BH₅, and B₂H₆) we have shown that addition of these two corrections gives very nearly the same result as a full calculation in which both polarization and MP3 correlation corrections are included. The cost of doing both in B_4H_{10} is prohibitive at the present time.

Our results show that the observed structure is more stable than the gauche-bis(diborane) structure by only 2.7 kcal/mol (Table 11, last column). It is likely that further corrections for electron correlation will increase the relative stability of the observed structure as predicted by theory. Further study is required to determine whether the bis(diborane) structures lie in local minima relative to the observed structure and whether they are involved in chemical properties of B_4H_{10} .

Correlation corrections account for about 40-45% of the dissociation energy of B_2H_6 to 2 BH₃ molecules. The Hartree-Fock limit is about 20 kcal/mol,^{11,12} and the theoretical

61, 5460.

" **A** negative number in parentheses means stability with respect to the observed structure of B,H,,. **All** energies are in kcal/mol. Values not in parentheses are energy lowerings relative to the 6-31G basis as zero for each separate geometry. The last column is obtained by addition of corrections of the second and third columns. Values in parentheses are referred to the zeros of energy for the observed geometry at each level of approximation. The total energy of the observed (C_{2v}) structure for B_4H_{10} is 104.390 070 hartrees.

value¹² including correlation is 36.6 kcal/mol in agreement with the experimental value¹³ of 35.5 kcal/mol. Correlation corrections favor more highly bridged structures of B_3H_7 and B_4H_8 ,¹⁴ are required in the isomerization of hypothetical $B_4H_4^{15}$ and in distinguishing relative stabilities of classical and nonclassical isomers,¹⁶ and may yet favor the C_1 ¹⁷ vs. the C_s ¹⁸ structure of B_5H_{11} . Also correlation will be required for a theoretical understanding of the pyrolysis reaction, which yields higher hydrides from diborane.

Finally, we have yet to find the limitation to the additivity of polarization and configuration interaction corrections. We anticipate that difficulties will occur when heavier elements and metastable states are studied.

Acknowledgment. We thank the National Science Foundation (Grant No. CHE77 19899) for support of this research and acknowledge NSF Grant PCM 77-11398 for the computational laboratory. We are grateful to J. **A.** Pople for his generosity in making the **GAUSSIAN** 80 program available as well as to D. **A.** Kleier for the PRDDO results and to **J.** Simons for communicating a study of B_4H_{10} to us.

Registry No. B₄H₁₀, 18283-93-7.

- (13) Mappes, G. **W.;** Friedman, **S. A.;** Fehlner, T. P. *J. Phys. Chem.* **1970,** *74,* 3307.
- (14) Pepperberg, I. M.; Halgren, T. **A.;** Lipcomb, **W.** N. *Inorg. Chem.* **1977,** *16,* 363.
- **(15)** Kleier, D. A.; Bicerano, J.; Lipscomb, **W. N.** *Inorg. Chem.* **1980,** *19,* **216.**
- (16) Camp, R. M.; Marynick, D. **S.;** Graham, G. D.; Lipscomb, **W. N.** *J. Am. Chem. SOC.* **1978,** 100, 6871.
- **(17)** Huffman, J. C. Ph.D. Thesis, University **of** Indiana, 1974. (18) Pepperberg, I. M.; Dixon, D. **A.;** Lipscomb, **W.** N.; Halgren, T. A.
- *Inorg. Chem.* **1978,** *17,* 587.

Gibbs Chemical Laboratories **Michael L. McKee** Harvard University **William N. Lipscomb*** Cambridge, Massachusetts 02138

Received March 9, 1981

Correct Assignment of Stretching Frequencies of Tetraoxometalates in Unusual Oxidation States

```
Sir:
```
Recently, an interesting paper was published on the CaO- $Cr_2O_3-O_2$ system¹ in which an incorrect assignment for the

0020-1669/81/1320-4453\$01.25/0 © 1981 American Chemical Society

⁽¹⁰⁾ Lipscomb, **W. N.;** McKee, M. L. *J. Am. Chem. SOC.* **1981,** 103,4673. **(1** 1) Marynick, D. **S.;** Hall, J. H., Jr.; Lipscomb, **W.** N. *J. Chem. Phys.* **1974,**

⁽¹²⁾ Ahlrichs, R. Theor. *Chim.* **Acta 1974,** 35, 59.