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A modification to the Mulliken electronic population analysis designed primarily for use on transition-metal systems is 
presented. All terms arising from the metal basis functions including diagonal terms are repartitioned between the metal 
and the ligands. This reapportionment is an attempt to reflect more accurately the actual electron density in well-defined 
areas of space, which characterize the metal and the ligand. This modified analysis appears to yield more reasonable charge 
assignments than a conventional Mulliken analysis. The cost of the analysis is negligible in comparison with that of calculating 
the wave function. 

I. Introduction 
From the advent of LCAO-MO calculations, efforts have 

been made toward facile intuitive analysis of electronic pop- 
ulations. The most commonly deployed technique is that due 
to Mulliken.' The concepts of net, gross, and bond overlap 
populations have proven to be most useful parameters in 
discussing the qualitative characteristics of a wave function. 
Within the Mulliken analysis the charge assigned to an atom 
may be written as 

occ 
QA = ZA C C C,iCuiS,u (1) 

whereh is the occupation number of orbital i, 1.1 and v are 
indices of the atomic basis functions, the first sum ranging only 
over those centered on atom A, CPi is the coefficient of basis 
function 1.1 in orbital i, and S,, is the overlap integral between 
the two basis functions. The one facet of a Mulliken analysis 
that has, over the years, attracted the most attention is the 
equal partitioning of the bond overlap populations; Le., the 
assignment to each of the basic functions 1.1 and v a population 
of C,~C,,,,SPv regardless of what the relative magnitude of the 
coefficients might be. This dilemma has led to numerous 
redefinitions of atomic populations.2-s The most straight- 
forward solution is, of course, to work in an orthogonal basis. 
The transformation defined by Lowdin is the most useful in 
this regard.2 Other workers have devised weighting schemes 
for partitioning of the overlap population while still working 
in a nonorthogonal bask4 The salient feature of all analyses 
whose spirit is that of Mulliken is that the net populations, 
Le., those arising from C,,i2, are always ascribed to the atom 
about which that basis function is centered. This is a very 
reasonable assumption so long as basis functions on one center 
are not sufficiently diffuse that appreciable density arising from 
these functions ought more appropriately to be assigned to 
another atom. For atoms of the first two rows this has not 
been a severe problem. 

With the advent of calculations on transition-metal systems, 
it has become evident that such a problem is indeed encoun- 
tered. A proper description of the valence s and p shells of 
a transition-metal atom requires very diffuse basis func t ion~.~J~  
As is evident from the plot of the radial density for the valence 
orbitals of atomic Pt (Figure l ) ,  these functions extend far 
beyond the covalent radius of the metal. In view of this spatial 
extent, it is not surprising that their partial occupation in 
molecular systems yields wave functions not easily interpretable 
with use of a conventional Mulliken analysis; the metal atom 
typically appropriates more electrons than intuition can abide. 
This often leads to a net negative charge on the metal, and 
the literature is replete with examples of such analyses." 
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One tactic, which avoids these difficulties, is simply not to 
include functions appropriate for the diffuse atomic s and p 
functions in molecular calculations, assuming that they are 
not formally occupied in most oxidation states of the molecule 
and that a tighter, more localized basis will more adequately 
treat rehybridization effects.10J2 This does result in intuitively 
reasonable population analyses but only at the expense of 
virtually precluding valence s and p participation in the wave 
function.I2 This does not seem to be the appropriate solution 
since the diffuse functions have made significant contributions 
in calculations in which they have been included." 

The strategy of the present report is to devise a relatively 
simple modification of the Mulliken population analysis that 
yields more useful interpretations of wave functions for tran- 
sition-metal systems while still maintaining the computational 
ease of the conventional analysis. This latter criterion pre- 
cludes the use of very time-consuming techniques for popu- 
lation analyses such as three-dimensional quadratures. The 
analysis formulated in the next section satisfies these criteria 
and shows promise of being very generally useful for transi- 
tion-metal systems. In its present formulation, the analysis 
is applicable only to systems with a single transition-metal 
atom. Extension to polynuclear transition-metal species should 
be possible. 

In this paper we present only sufficient results to illustrate 
key points regarding the technique. In the work that fol10ws'~ 
on oxidative additions to Pt(O), additional calculations are 
presented illustrating the interpretive advantages to the 
modifications presented. 

11. Formulation of the Method 

The key to the method is the conceptual division of space 
into the units illustrated in Figure 2 for a square-planar system. 
A central sphere with radius equal to the covalent radius of 
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R(bohr1 
Figure 1. Radial density of the valence s, p, and d orbitals of the Pt 
atom. The s and d densities are for the 3D (d9s) state of the atom; 
the p orbital is from the 5G (dssp) atomic state. R, denotes the covalent 
radius of the metal (2.46 bohr). The demarcations respectively labeled 
as H, C1, and P characterize the approximate metal-ligand bond 
length. 

/---. 

Figure 2. Partitioning of space for a four-coordinate, square-planar 
system. The central sphere is of radius R,; density inside this sphere 
is apportioned to the metal. For each ligand a cone (30’ angles of 
revolution shown here) is defined within which the density is ascribed 
to that ligand. All electrons in the interstitial region are defined as 
belonging to the metal. 

the metal defines the space in which is assigned density to the 
metal atom. The fraction of space whose density will be 
assigned to a given ligand is defined as the cone of revolution 
(excluding the region of overlap with the metal’s sphere), 
whose axis is defined by the metal-ligand bond. It is not 
critical that the cones be tangent to one another, but they must 
not overlap. It ought to be noted that even with six octahe- 
drally displaced tangent cones, the entire space is not occupied. 
Any density in a space not defined by one of the ligand cones 
is assigned to the metal. 

There are to ambiguities in this partitioning of space, which 
must be addressed. One must define both the radius for the 
metal sphere and the angles defining the cones of revolution 
in which the density is to be ascribed to a ligand. For neither 
parameter do we propose a rigorous, theoretically defined 
value. Rather, for the metal sphere we have taken the covalent 
radius of the metal, while for the ligands we have allowed them 
to be as large as possible with the restriction that they not 
overlap one another. While admittedly capricious, these as- 
sumptions are not so bad as one might initially suppose. 
Though covalent radii are empirical parameters, there is little 
difference between the radii of the second- and third-row 
transition metals.13 Since the intent of the method is to allow 
reliable interpretive comparisons, so long as one employs a 
consistent metal size, qualitative conclusions should not be 
markedly affected. Regarding definition of the ligand cone 
size, similar arguments are appropriate. The results should 
not vary drastically among reasonable choices in any case since 

one would expect the centroid of charge to lie along the axis 
of the metal-ligand bond. 

We now turn to a more detailed discussion of the exact 
nature of the modifications made to the Mulliken analysis. 
The total integrated density in a given orbital i may be written 
as 

The first term constitutes density arising solely from metal- 
centered basis functions. The middle term involves one basis 
function from the metal and another from one of the ligands. 
The last term involves density arising entirely from ligand 
functions and is treated here in exactly the same manner as 
a conventional Mulliken analysis. The metal orbitals are 
however partitioned differently. The appropriation is based 
on a one-dimensional numerical quadrature for each basis 
function. This integration determines the percentage of a 
diagonal density term (e.g., CJ), which is inside the metal 
radius; the remainder is divided among the ligands, the relative 
magnitudes determined by analytic, angular integrations. 
Off-diagonal metal terms are appropriated on the basis of a 
square-root interpolation preserving the functional form of the 
diagonal terms. The density terms involving one metal and 
one ligand basis function are treated similarly. As in a 
Mulliken analysis, half the density is said to belong to the 
ligand and is so appropriated. The other half, nominally the 
metal’s density, is divided between the metal and ligands on 
the basis of the same criterion as the terms arising solely from 
metal orbitals. 

These ideas are cast in terms of equations below. In analogy 
to eq 1, the total population of the metal atom is given by eq 
3, where F, is a parameter specifying what percentage of the 

density is to be assigned to the metal. For ligand-centered basis 
functions, Fu = 1; for metal-centered functions it is given by 
(the first term is the density inside the metal’s covalent radius; 
the second term is the interstitial density): 

F,, = I,, + (1 - G,)( 1 - Z,) (4) 

Z, is the radial integral: 

Z, = JRc(x:(r))r2 dr 

x ,  is the normalized radial component of basis function p while 
R, is the covalent radius of the metal. The parameter C, 
defines what fraction of the diagonal density arises from 
function p at distances greater than R,, which is in one of the 
ligand sections: 

where the integration limits 4L and OL define the cone of 
revolution for ligand L; Y,,(O,4) is the angular component of 
basis function p. 

The radial integrals of eq 5 were numerically evaluated (a 
contracted Gaussian basis set was used) with employment of 
Simpson’s rule with 1000 intervals. When this technique is 
applied to the normalization integral (R,  = a), the resulting 
errors were less than 1 part per thousand. The angular in- 
tegrals of eq 7 are easily evaluated analytically. 
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Once again, in analogy to eq 1, the expression for the charge 
assigned to a ligand, L, is given by eq 8, where PvL is the factor 

that partitions the ligand density arising from metal basis 
functions among the various sections (see eq 9). The first 

(9) 

term in eq 8 is the normal Mulliken component to the popu- 
lation (i.e., eq 1). The second and third terms represent density 
that normally would have been assigned to the metal. The 
second term involves cross terms involving basis functions on 
both the metal and the ligand while the last term represents 
density arising solely from the metal basis functions. Con- 
sequently, these latter terms cannot be assigned to any basis 
function in particular but rather to only a ligand as a whole. 
As a result, terms requiring specific basis function assignment 
of charge density, for example, bond overlap populations, are 
not well-defined. This limitation is simply a manifestation of 
the fact that if basis functions centered on one atom yield 
densities, which in significant part are best appropriated to 
another atom (or ligand), constructs such as bond overlap may 
not prove to be particularly useful. 

At this point, several comments regarding details implicitly 
but not necessarily apparently contained in the above equations 
seem necessary. First, for the maintenance of rotational in- 
variance in the method, the orbital coefficient and overlap 
matrices must be expressed in a basis in which functions 
centered on the metal having different 1 quantum numbers are 
orthogonal. As an example simple Cartesian d functions 
cannot be used due to the nonzero overlap between the x2, y2, 
and z2 functions with the s orbitals. Because of this overlap, 
individual ligands would receive populations from, for example, 
an (x2  - y2,s) cross term even though the sum over all ligands 
would, of course be zero. As a result an x1 - y2 orbital in one 
orientation would not be equivalent to an xy orbital in an 
orientation rotated by 45’ about the z axis. This problem is 
a trivial restriction: it does not require that the SCF be 
performed in an appropriate basis, only that a transformation 
to such a basis be performed prior to the population analysis. 

A more serious consideration regarding the analysis is that 
the charge assigned to a particular ligand is not independent 
of the number of sections that are defined. As an example 
consider a linear ML2 system. The most apparent choice 
would be to define two sections for the ligands. On the other 
hand, e.g., for comparison to a ML4 system, one might wish 
to still define four sections, realizing that the density assigned 
to the extra two sections really belonged to the metal. The 
present analysis would not appropriate the same number of 
electrons to the ligands (or the metal) in the two cases even 
when the same orbitals are used. This inconsistency arises 
from the second term in eq 8. As an example, consider the 
component involving an s basis function on the metal ( p )  and 
a ligand function (Y). With two sections (45’ angles of rev- 
olution), the charge assigned to the ligand would be 

X( 1 - (1 - 2A - 2AI,)1/2C,iC,,iSpv 

with A = 0.146 447. This expression may be verified by 
working through eq 8 and 9. If four sections were defined, 
the charge assigned to the ligand would be 

Yd(1 - (1 - 4~ + 4~~,)”*)C~iCviSfiv 

These two expressions are obviously not identical. However, 
this inconsistency is empirically found to be rather small; the 
total charge assigned to a ligand typically differs by only a 

Table I. Detailed Analyses for ?runs-Pt(PH,),H, 
modified Mulliken modified Mulliken 

Pt 8.9868 10.4556 Ha 1.4978 1.0826 
S 0.4482 0.6096 s 1.0826 1.0826 
X 0.3590 0.6815 from Pt 0.4152 

0.0949 0.1386 P 5.0440 4.7248 Y 
Z 0.0157 0.0180 s 1.5387 1.5387 
XY 1.6863 1.9578 x 0.8732 0.8732 

1.8544 1.9979 y 1.4353 1.4353 
1.8075 1.9534 z 0.8776 0.8776 J’Z 

3,0989 from Pt 0.3192 
Oeg418 t Hb 0.9866 0.9866 2z2 -x ’  - y 7  1.7862 

Ha 1.4950 1.0798 HC 0.9898 0.9898 

from Pt 0.4152 

due to asymmetry introduced by phosphine hydrogens. 
phine hydrogen; in the metal-ligand plane. 
gens; outside the metal-ligand plane. 

xz 

x z  -yz 

S 1.0798 1.0798 

These hydrogens are the hydride ligands: they are different 

Phosphine hydro- 
Phos- 

few hundredths of an electron. 
111. Exemplary Calculations 

For the most part, discussion of the results obtained with 
use of the modified analysis will be deferred to the following 
paper, in which the chemistry of several square-planar systems 
will be discussed. Here we will present only rather cursory 
data chosen to demonstrate where differences arise between 
the present analysis and a conventional Mulliken analysis. 

In Table I, a detailed comparison is made between analysis 
for an ab initio wave function describing trans-Pt(PH3)2H2 
(the reader is referred to the following paper regarding the 
basis set, effective core potential, and other details of the 
calculation). The covalent radius employedI4 was 1.30 A, and 
45’ angles of revolution were used to generate the ligand cones. 
The primary interest here is in determining which of the metal 
electrons are now being appropriated to ligands. As would 
be expected from the radial extent of the orbitals in Figure 
1, an appreciable fraction of the density nominally arising from 
Pt s and p basis functions is so assigned within the modified 
analysis. Only 63% of the 1.45 e in such orbitals is assigned 
to the platinum atom. That it keeps even this percentage is 
surprising in view of the radial extent of the orbitals in Figure 
1 and is evidence that the valence s and p orbitals are some- 
what more contracted in the molecule than in the atom. It 
is important that there are a significant number of electrons 
occupying the s and p orbitals in what is nominally a d8 state 
of the metal. This number is not atypical among the complexes 
that we have studied and is indicative that inclusion of diffuse 
functions in the basis set is necessary. As is also evident from 
Figure 1, the d density also extends beyond the covalent radius 
of the metal with a significant fraction more properly being 
appropriated to the ligands. In this present case, only 8.01 
e of the 9.01 d electrons implied by a conventional Mulliken 
analysis are assigned to the platinum atom. As expected, the 
xy orbital (the ligands are situated along the x and y axes) 
donates the most significant portion of its charge to the ligands 
within this partitioning. Although it is tempting to ascribe 
this to metal-ligand A back-bonding, this does not principally 
represent a dynamic charge-transfer effect. Rather, it is a 
measure of the extent of the metal d orbitals. 

Until now we have cited only the differences between our 
proposed modified analysis and a Mulliken assignment without 
actually considering whether we are indeed obtaining a better 
interpretation of the molecular wave function. Although we 
will defer most of our comments to the accompanying reports, 

(14) F. R. Hartley, “The Chemistry of Palladium and Platinum”, Wiley, 
New York, 1979, p 8. 
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several points can be made here. First the results of 1.02+ 
charge on the metal and 0.50- on the hydrogens are more in 
accord with the qualitative notion of the molecule as an ox- 
idized metal atom with hydride ligands. Obviously one would 
not expect to see quite the demarcation of charge given by the 
formal description of +2 metal ion and 1- ligands. However, 
when compared with the description as virtually neutral hy- 
drogens and a negatively charged metal in the standard 
analysis, the above picture appears more consistent with the 
chemical properties of the complex. 

As a further check of the preceding analysis, a three-di- 
mensional quadrature of the charge was performed within the 
sphere defining the metal regi0n.l’ For t r ~ n s - P t ( P H ~ ) ~ H ~  
the value is obtained as 8.96 e compared with the 8.98 e given 
by the modified population analysis and 10.46 e by the 
Mulliken analysis. (The excellent quantitative agreement we 
have is partly fortuitous since in the population analysis we 
are also appropriating density to the metal that is outside its 
sphere but not within one of the ligand cones.) This additional 
evidence still provides a clear indication that the modified 
analysis is giving a more faithful representation of the wave 

(15) The integration scheme is outlined in: S.  B. Woodruff and M. Wolfs- 
I ,  

berg, J. Them. Phys., 65, 3687 (1976); Chem. Phys. Lett., 56, 125 
(1978); H. Conroy, J .  Chem. Phys., 47, 5307 (1967). 
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function than a standard analysis. 
IV. Conclusions 

The proposed modifications to a Mulliken analysis were 
found to resolve satisfactorily the interpretative difficulties 
resultant from the use of diffuse valence s and p basis functions, 
which are required to give reasonable theoretical descriptions 
of transition-metal systems. The method has two parameters 
that must be defined externally, the covalent radius of the 
metal atom and the solid angles defining the ligand space, and 
is currently limited to complexes having a single metal center. 
It requires very little additional computational effort to carry 
out such an analysis compared with that of traditional Mul- 
liken population analysis. The results obtained thus far in- 
dicate the method yields an improved description of molecular 
charge densities, which should prove useful both in analyzing 
the results of theoretical calculations and in correlating with 
experimental probes of electron density in molecules. 
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The structures and relative energies of Pt(PH3)XY isomers are investigated with use of ab  initio molecular orbital theory 
and effective potentials. In particular, the cis and trans isomers of the dihydride, dichloride, and hydrochloride are studied. 
In all cases, the trans isomer is the more stable. Available experimental information is in good agreement with calculated 
bond lengths, bond angles, and vibrational frequencies. 

I. Introduction 
The intent of this work is to demonstrate that ab initio 

molecular orbital theory can provide useful geometric and 
energetic information for complexes involving third-row 
transition metals. The systems considered are the Pt(I1) 
square-planar adducts Pt(PH3)2XY (where X, Y = H, C1) and 
the product of their reductive elimination Pt(PH3)2. Since a 
subset of these have been well characterized both structurally 
and spectroscopically, these data may be used to evaluate the 
success of the technique (if we assume that we are afforded 
the liberty of replacing the substituted phosphine PR3 by its 
parent hydride). 

The question of the structures of platinum-hydride com- 
plexes deserves special consideration. The hydrogen is often 
not easily located through X-ray diffractometry, and as a result 
there is comparatively less data on platinum-hydrogen bond 
lengths. In addition, since very few cis-dihydride complexes 
of any kind have been observed experimentally, any suggestions 
calculations can offer regarding their structure and bonding 
should aid in their experimental characterization. 
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Sandia National Laboratory, Livermore, CA 94550, or to P.J.H. at Los 
Alamos National Laboratory. 
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Finally these studies are to lay the ground work for an 
investigation of a prototype oxidative addition. Indeed the 
results of the present paper suggested the possibility of ex- 
amining the H2 + Pt(PH,), - cis-Pt(PHJ2H, reaction. It 
is in the arena of potential surfaces that ab initio calculations 
should have their greatest impact. This topic will be addressed 
in a later paper.’ 
11. Method of Calculation 

The calculations reported here were of the ab initio restricted 
Hartree-Fock (RHF) form. The [Xe]4f14 core of the platinum 
atom was, in all cases, replaced by a relativistic potential* 
derived according to the scheme of Kahn, Hay, and Cowan3 
The mass velocity and Darwin relativistic effects are included 
implicitly with the potential. As has been documented pre- 
viously, these are critical in order to obtain the proper size and 
energy of the valence orbitals for metal atoms of the third 
transition seriesS4 The [Ne] cores of the phosphorus and 
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