Volume 21

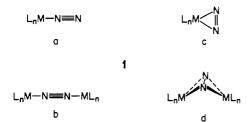
Number 11

November 1982

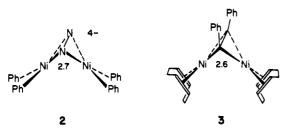
Inorganic Chemistry

© Copyright 1982 by the American Chemical Society

Contribution from the Department of Chemistry, Cornell University, Ithaca, New York 14853


On the Existence of Binuclear π -Bonded Dinitrogen Complexes

KAREN I. GOLDBERG, DAVID M. HOFFMAN, and ROALD HOFFMANN*


Received December 28, 1981

Comparative calculations on $Co_2(CO)_6(\mu-X_2)$, $X_2 = N_2$, P_2 , P_2 , P_2 , and especially C_2H_2 , and also on the $Ni_2Ph_2(\mu-N_2)^{4-1}$ core in the known lithiated side-on bonded complex indicate that there is nothing wrong with a side-on or π -bonded dinitrogen ligand in the $M_2L_6(\mu-N_2)$ system.

In nearly all known dinitrogen, N₂, transition-metal complexes, the diatomic fragment is coordinated in a σ or end-on manner, 1a or 1b. One or both N_2 lone pairs are thus used to form σ bonds to the metal.¹

Side-on coordination, 1c or 1d, necessarily involving π bonding, is uncommon. Evidence has been presented for type 1c bonding in $(\eta - C_5H_4R')_2Zr(N_2)R$, R' = H or Me and R =(Me₃Si)₂CH. ^{1b} A recent crystal structure of a Ti₄ dinitrogen complex has N₂ in a complicated end-on and side-on bonded coordination. 1c The binuclear bonding mode, 1d, is found to date only in the two Jonas complexes 2 [(PhLi)₆NiN₂(Et₂O)₂]₂ and [Ph(Na·OEt₂)₂(Ph₂Ni)₂N₂NaLi₆(Et₂O)₄·Et₂O]₂. These are not simple molecules. As in other Li compounds, there is substantial phenyl-Li interaction in these. But if we extract the metal-N₂ core from the lithium ionic environment, we come to the basic Ni₂Ph₄N₂⁴⁻ unit, 2, a d¹⁰-d¹⁰ complex. No

(1) (a) See: Chatt, J.; Dilworth, J. R.; Richards, R. L. Chem. Rev. 1978, 78, 589-625 and references therein. (b) Gynane, M. J. S.; Jeffery, J.; Lappert, M. F. J. Chem. Soc., Chem. Commun. 1978, 34-36. Jeffery, J.; Lappert, M. F.; Riley, P. I. J. Organomet. Chem. 1979, 181, 25-36. Lappert, M. F.; Pickett, C. J.; Riley, P. I.; Yarrow, P. I. W. J. Chem. Soc., Dalton Trans. 1981, 805-813. (c) Pez, G. P.; Apgar, P.; Crissey, R. K. J. Am. Chem. Soc. 1982, 104, 482-490.

(a) Jonas, K. Angew. Chem. 1973, 85, 1050. Angew. Chem., Int. Ed. Engl. 1973, 12, 997-998. Krüger, C.; Tsay, Y.-H. Angew. Chem. 1973, 85, 1051-1052. Angew. Chem., Int. Ed. Engl. 1973, 12, 998-999. (b) Jonas, K.; Brauer, D. J.; Krüger, C.; Roberts, P. J.; Tsay, Y.-H. J. Am. Chem. Soc. 1976, 98, 74-81

doubt the Li atoms do contribute to the stability of the actual molecule. However, we think that a formal separation of them as Li⁺ ions, made for purposes of comparison with other known complexes, is tenable.

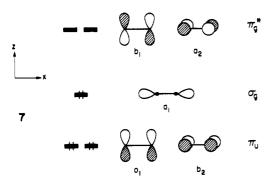
What is interesting about this formulation is there exist d10-d10 binuclear complexes of the isoelectronic acetylene, e.g., $Ni_2(COD)_2(\mu-C_2Ph_2)$ (3)^{3a} and related compounds, ^{3b} and these have structures that can be geometrically related to 2.

This makes one think that one should seek other, as yet unknown, side-on bonded dinitrogen complexes, in structures similar to known dinuclear acetylene complexes. The L₃M-(μ -acetylene)ML₃ class is particularly common, ⁴ e.g., Co₂-(CO)₆(μ -C₂-t-Bu₂) (4). ^{4a} On looking into the literature, one

- (a) Muetterties, E. L.; Pretzer, W. R.; Thomas, M. G.; Beier, B. F.; Thorn, D. L.; Day, V. W.; Anderson, A. B. J. Am. Chem. Soc. 1978, 100, 2090-2096. (b) Boag, N. M.; Green, M.; Howard, J. A. K.; Stone, F. G. A.; Wadepohl, H. J. Chem. Soc., Dalton Trans. 1981, 862-872.
- (a) Cotton, F. A.; Jamerson, J. D.; Stults, B. R. J. Am. Chem. Soc. 1976, 98, 1774-1779. (b) Sly, W. G. Ibid. 1959, 81, 18-20. (c) Bonnett, J.-J.; Mathieu, R. *Inorg. Chem.* 1978, 17, 1973–1976. (d) Bianchini, C.; Dapporto, P.; Meli, A. *J. Organomet. Chem.* 1979, 174, 205–212. (e) Bird, P. H.; Fraser, A. R.; Hall, D. N. *Inorg. Chem.* 1977, 16, 1923–1931. (f) Bailey, N. A.; Churchill, M. R.; Hunt, R.; Mason, R.; Wilkinson, G. Proc. Chem. Soc., London 1964, 401. Bailey, N. A.; Mason, R. J. Chem. Soc. A 1968, 1293-1299. (g) Bennett, M. A.; Johnson, R. N.; Robertson, G. B.; Turney, T. W.; Whimp, P. O. J. Am. Chem. Soc. 1972, 97, 6540-6541; Inorg. Chem. 1976, 15, 97-107. (h) Angoletta, M.; Bellon, P. L.; Demartin, F.; Sansoni, M. J. Organomet. Chem. 1981, 208, C12-C14. (i) Freeland, B. H.; Hux, J. E.; Payne, Chem. 1981, 208, C12-C14. (i) Freeland, B. H.; Hux, J. E.; Payne, N. C.; Tyers, K. G. Inorg. Chem. 1980, 19, 693-696. (j) Wang, Y.; Coppens, P. Ibid. 1976, 15, 1122-1127. (k) Mills, O. S.; Shaw, B. W. J. Organomet. Chem. 1968, 11, 595-699. (l) Restiva, R. J.; Ferguson, G.; Ng, T. W.; Carty, A. J. Inorg. Chem. 1977, 16, 172-176. (m) Ban, E.; Cheng, P.-T.; Jack, T.; Nyberg, S. C.; Powell, J. J. Chem. Soc., Chem. Commun. 1973, 368-369. Jack, T. R.; May, C. J.; Powell, J. J. Am. Chem. Soc. 1977, 99, 4707-4716. (a) Wei, C. H.; Dahl, L. F. Inorg. Chem. 1965, 4, 1-11. (b) Campana, C. F.; Lo, F. Y.-K.; Dahl, L. F. Ibid. 1979, 18, 3060-3064.
- See for instance: (a) Little, R. G.; Doedens, R. J. *Inorg. Chem.* 1972, 11, 1392–1397. (b) Doedens, R. J. *Ibid.* 1970, 9, 429–436. (c) Doedens, R. J.; Ibers, J. A. Ibid. 1969, 8, 2709-2714.

quickly finds that 4 is but one compound in an isoelectronic and isostructural series, 5. With the P and As compounds in this series, one is very close to a corresponding N₂ complex.⁸

The purpose of this paper is to examine what, if anything, is wrong with N_2 complexes analogous to 4 and 5. We draw heavily on our recent work on the bonding of acetylenes in binuclear complexes. Calculations were also performed on several members of the series 5 for comparison 10 and on complexes of type 2 and 3 as well. The calculations are of the extended Hückel type, with details given in the Appendix.


Orbitals of the Two Fragments

Fundamental to our analysis is a fragment approach, in which the complexes are built up as a composite of an L_nM-ML_n and X_2 piece, 6. In this way, the differences in the

interactions of the N_2 orbitals and those of the various other X_2 fragments can be explored.

The orbitals of a homonuclear diatomic are well-known. 7

illustrates the frontier orbitals of N_2 , occupied $2\sigma_g$ and π_u and empty π_g^* . The orbitals are labeled in C_{2v} , in anticipation of complexation.

In the only two known structures where N_2 is found to bond side-on, the N-N bond length is stretched from its 1.10-Å length in free N_2 to 1.35 and 1.36 Å.² One would anticipate a similar elongation in any binuclear complex of N_2 . Stretching the N-N bond would destabilize π_u , stabilize π_g^* , and, according to the calculations, stabilize $2\sigma_g$. But the general shape of the levels remains as in 7.

The dimetal fragment orbitals are constructed as they were for $Fe_2(CO)_6$ by Thorn and Hoffmann, and the reader is referred to this article for a detailed development.¹¹ Two $Co(CO)_3$ fragments are brought together in D_{3h} symmetry to

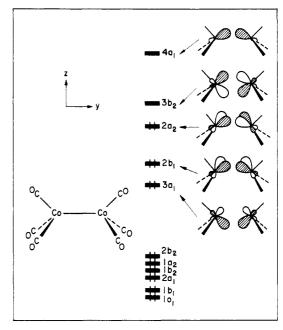
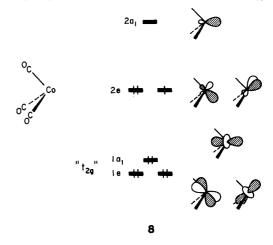



Figure 1. Molecular orbitals of the C_{2v} (CO)₃Co-Co(CO)₃ fragment.

a Co-Co distance of 2.46 Å. The frontier orbitals of the Co(CO)₃ fragment^{11,12} are shown in 8. At low energy is the

remnant of the octahedral t_{2g} set $(1a_1 + 1e)$; at higher energy are the delocalized equivalents $(2a_1 + 2e)$ of three hybrids pointing toward the vacant coordination sites.

The orbitals of D_{3h} (CO)₃Co-Co(CO)₃ are essentially the in- and out-of-phase combinations of the orbitals shown in 8. Next, the cobalt tricarbonyl groups were bent back, maintaining local C_3 axes, 9, to ready the (CO)₃Co-Co(CO)₃ for

interaction with X_2 . This bending reduces the symmetry of the entire fragment to $C_{2\nu}$. θ was taken to be 28°, as the geometry for this $Co_2(CO)_6$ fragment was idealized from that of the dimetal piece of $Co_2(CO)_6(\mu-C_2-t-Bu_2)$. The important resulting orbitals are shown in Figure 1 with their $C_{2\nu}$ symmetry.

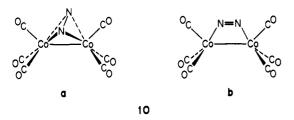
 ^{(7) (}a) Campana, C. F.; Vizi-Orosz, A.; Palyi, G.; Marko, L.; Dahl, L. F. Inorg. Chem. 1979, 18, 3054-3059.
 (b) Foust, A. L.; Campana, C. F.; Sinclair, J. D.; Dahl, L. F. Ibid. 1979, 18, 3047-3054.
 Foust, A. S.; Foster, M. S.; Dahl, L. F. J. Am. Chem. Soc. 1969, 91, 5633-5635.

⁽⁸⁾ Using the isoelectronic μ-acetylene and μ-P₂ or μ-As₂ complexes as models for π-bonded dinitrogen adducts is not a novel idea. See for instance: Reference 7b. Jonas, K.; Krüger, C. Angew. Chem., Int. Ed. Engl. 1980, 19, 520-537; Angew. Chem. 1980, 92, 513-531. (b) For a fascinating alternative coordination mode of As₂ see: Sigwarth, B.; Zsolnai, L.; Berke, H.; Huttner, G. J. Organomet. Chem. 1982, 226,

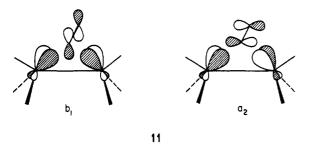
⁽⁹⁾ Hoffman, D. M.; Hoffmann, R.; Fisel, C. R. J. Am. Chem. Soc. 1982, 104, 3858.

⁽¹⁰⁾ A theoretical study of some members of this series has been published: Teo, B. K.; Hall, M. B.; Fenske, R. F.; Dahl, L. F. Inorg. Chem. 1975, 14, 3103-3117. See also: Van Dam, H.; Lowen, J. N.; Oskam, A.; Doran, M.; Hillier, I. H. J. Electron Spectrosc. Relat. Phenom. 1980, 21, 57-69.

⁽¹¹⁾ Thorn, D. L.; Hoffmann, R. Inorg. Chem. 1978, 17, 126-140.


⁽¹²⁾ Elian, M.; Hoffmann, R. Ibid. 1975, 14, 1058-1076. Elian, M.; Chen, M. M. L.; Mingos, D. M. P.; Hoffmann, R. Ibid. 1976, 15, 1148-1154.

metry labels. The antisymmetric b2 combination corresponding to the in-phase $4a_1$ orbital is too far up in energy to interact strongly with the X_2 fragment and is not shown in Figure 1. Of minor importance in the analysis to come will be the lower six orbitals pictured. These orbitals will contribute very little to the interaction picture of the dimetal fragment and the X₂ group. This is due to the poor overlap of these Co(CO)₆ orbitals with the X₂ orbitals and their involvement in significant back-bonding to the carbonyls.


The orbitals that we will be concerned with in this study are $3a_1$, $2b_1$, $2a_2$, $3b_2$, and $4a_1$ of Figure 1. These five orbitals are those that will interact most with the X₂ fragment.

$Co_2(CO)_6(\mu-N_2)$

We consider two possibilities for the orientation of a bridging N_2 group π bonded to the dimetal fragment, (CO)₃Co-Co-(CO)₃: 10a, "perpendicular"; 10b, "parallel".

Shown in Figure 2 is the interaction diagram for the N₂ fragment and the Co₂(CO)₆ piece of complex 10a at a Co-N distance of 2.0 Å. The N-N distance of 1.35 Å was taken from the known Jonas and Krüger structures.² Of immediate note is the significant degree of back-bonding. The empty b₁ and a₂ orbitals of N₂ overlap well with the filled 2b₁ and 2a₂ dimetal fragment orbitals, as shown schematically in 11, and

the difference in energy between the fragment orbitals is small as well. The extent of back-bonding may be seen from the occupation of the N_2 fragment π^* orbitals in the composite molecule—b₁ is occupied by 1.07 electrons and a₂ by 1.01 electrons.

Of course, simultaneously the π orbitals are participating in forward donation. The ultimate effect of this forward and back donation process is necessarily to weaken the N-N bond. This is seen in the decrease in the overlap population of the N-N bond from free N₂ (of identical N-N distance) to the complexed N₂ of 1.27 to 0.87, respectively. The extent of the weakening may also be seen in the extreme bond lengthening that occurs in the two known side-on bonded N_2 structures.

On the whole, the electronic structure of this complex appears to be quite reasonable. The bonding interactions are strong. There is a large HOMO-LUMO gap, a classical indicator of kinetic and thermodynamic stability. There is a 1.53- charge on the N₂ fragment, but this is just a consequence of the electronegativity difference between Co and N.

The parallel bonded geometry is very different. It has weaker interactions and a tiny 0.02-eV gap between filled and unfilled levels. Its energy is 3 eV above the perpendicular feature. For a detailed analysis of the similar problem in parallel vs. perpendicular acetylene bonding, the reader is

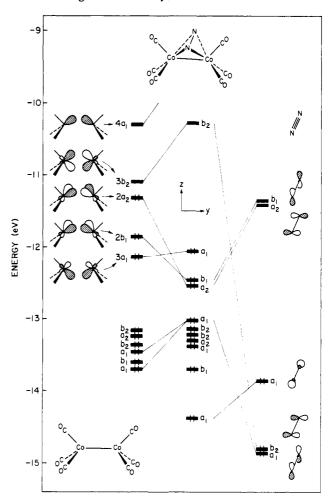
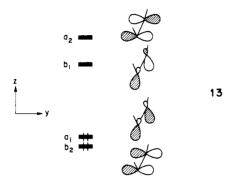
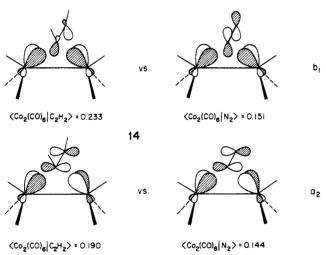


Figure 2. Interaction of (CO)₃Co-Co(CO)₃ with N₂ to form $(CO)_3Co(\mu-N_2)Co(CO)_3$. The bonding combinations of the N_2 π orbitals (a₁ and b₂) with the appropriate dimetal orbitals are low lying and are omitted from the center of the figure.


referred to another study from our group.9

Comparison with Other $Co_2(CO)_6(\mu-X_2)$ Complexes


With the idea in mind that, if $Co_2(CO)_6(\mu-N_2)$ were to exist, its stable form would be that of a perpendicularly bridging (to the Co-Co axis) N₂ group, 10a, let us examine some other complexes that are structurally and electronically similar, 12.

Using the same dicobalt fragment previously developed, 13 we positioned various of the X₂ groups at a reasonable distance from the metals.⁴⁻⁷ The interactions were then explored, with comparisons made to the missing member of the series, $Co_2(CO)_6(\mu-N_2)$.

Let us begin with the well-known acetylene structure. In the model system we choose for the calculation, the R groups are replaced by H atoms, and the geometry is idealized from $Co_2(CO)_6(\mu-C_2-t-Bu_2)$. When acetylene complexes in this way, the R groups bend back, so that the RCC angle is between 130 and 150°. We made HCC 145° in our calculations. The degeneracy of the π and π^* orbitals is broken, 9 so that the resultant π and π^* levels appear as in 13.

As we study the interaction diagrams for both the dinitrogen and acetylene complexes, Figures 2 and 3, we see that they are essentially the same picture. We have in the acetylene complex the same back-bonding previously noted for the N_2 species, where the empty b_1 and a_2 π^* orbitals interact with the filled metal orbitals, 14.

These overlaps are substantially larger than the corresponding N_2 overlaps. Yet the magnitude of back-bonding is substantially higher for $Co_2(CO)_6(\mu-N_2)$. The π^* acetylene orbitals only reach occupations of 0.35 and 0.62 electron for a_2 and b_1 , respectively, as compared to 1.01 and 1.07 electrons for the same orbitals of N_2 . Employing the usual perturbation theoretic criteria, we can rationalize the more significant N_2 interactions by the better energy match between interacting orbitals. The differences in energy matches are great enough to compensate for the lesser overlap in the N_2 interactions.

There is, however, more forward donation in the acetylene complex with occupations of the π orbitals, a_1 and b_2 of 1.77 and 1.45 electrons, respectively. These are compared with the higher occupations of 1.88 and 1.70 electrons for the same orbitals in the N_2 fragment. But as in the N_2 complex, these forward and back donation processes act synergetically to weaken the C-C bond, and this result shows up in the overlap population as it falls from 1.69 in free C_2H_2 to 1.24 in complexed form.

If we look at the interaction diagrams of any of the other complexes in 12, we find basically the same picture. There are, of course, minor differences in the strengths of the interactions due to slightly different energy levels and extensions

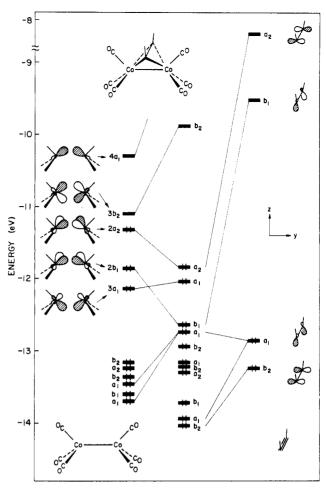


Figure 3. Orbital interaction diagram of acetylene with (CO)₃Co-Co(CO)₃.

Table I. Occupations of X₂ Fragment Orbitals

	orbit	total charge				
complex	π*a2	$\pi*b_1$	a ₁	πa_1	πb ₂	on X ₂
$ Co_2(CO)_6(\mu-N_2) $ $ Co_2(CO)_6(\mu-P_2) $ $ Co_2(CO)_6(\mu-S_2)^{2+} $ $ Co_2(CO)_6(\mu-C_2H_2) $ $ Co_2(CO)_6(\mu-N_2H_2)^{2+} $	1.01 0.94 1.05 0.35 1.03	1.07 1.00 1.09 0.62 1.30	1.97 2.00 2.00	1.88 1.81 1.81 1.77 1.85	1.70 1.65 1.59 1.45 1.63	1.53- 1.28- 0.61+ 0.13- 0.30+

in space of the X_2 frontier orbitals. So while we will refrain from presenting the interaction diagrams for the other complexes, we have compiled in Table I the X_2 fragment orbital occupations upon complexation, for purposes of comparison.

All these complexes, be they bridged by N₂, P₂, S₂, HCCH, or HNNH, possess the same basic features. They have relatively large HOMO-LUMO gaps, substantial forward and back donations, and the inevitable weakening of the X-X bonds. All these complexes are similar in their electronic structure.

Known Structures

The electronic structure of the hypothetical $M_2L_6(\mu-N_2)$ complex appears reasonable. But how does it compare with the level scheme of the two known π -bonded dinitrogen complexes? If there are similarities in the unknown and established structures, we would gain confidence in our calculations of the hypothetical complex family.

As we mentioned in the introduction, the complicated Jonas structures may be simplified by (conceptual) removal of Na⁺, Li⁺, PhLi, and ether groups to a central and irreducible d^{10} – d^{10} Ni₂Ph₄ $(\mu$ -N₂)⁴ core. We carried out calculations on the phenyl complex and a simpler model with the phenyl groups

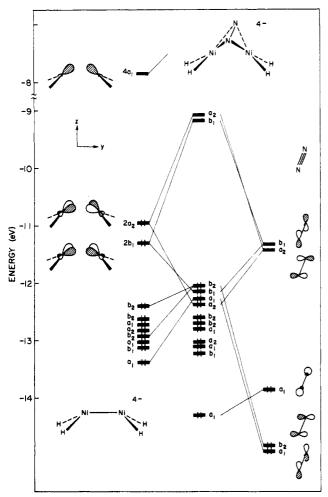
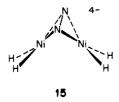
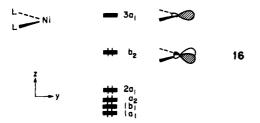
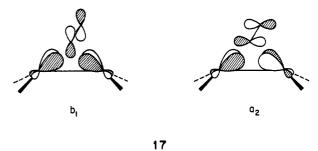




Figure 4. Molecular orbitals of the model system $H_2Ni(\mu-N_2)NiH_2^{4-}$, formed from the fragments $H_2NiNiH_2^{4-}$ and N_2 . The bonding combinations of the N_2 π orbitals (a_1 and b_2) with the appropriate dimetal orbitals are low lying and are omitted from the center of the figure.

replaced by hydrides. This substitution has little effect on the interactions we will be concerned with, so in the subsequent discussion we will discuss only the $Ni_2H_4N_2^{4-}$ model, 15.

Each ML₂ fragment contributes the orbtials shown in 16.14

The L₂MML₂ orbitals are essentially the symmetric and an-


Table II. Parameters Used in Extended Hückel Calculations

orbital	H _{ii} , eV	ئ 1	\$2	C_1^a	C_2^a
Co 3d	-13.18	5.55	2.10	0.5680	0.6060
4s	-9.21	2.0			
4p	-5.29	2.0			
Ni 3d	-12.99	5.79	2.0	0.5683	0.6292
4s	-8.86	2.10			
4p	-4.90	2.10			
P 3 s	-18.6	1.60			
3p	-14.0	1.60			
S 3s	-20.0	1.817			
3p	-13.3	1.817			

a Coefficients in double-5 expansion.

tisymmetric combinations of these ML_2 fragment levels and are shown at the left in Figure 4. The lower eight orbitals do not interact strongly with the μ - N_2 fragment, which is at the right.

Of major concern to us will be the $2a_2$ and $2b_1$ orbitals, which look very similar to the two we have been concentrating on in the $Co_2(CO)_6$ study. Their interaction is also very familiar. The same back-bonding is recognized here, 17. By

the π^* occupations of 1.24 and 1.12 electrons, one can see that the back donation is even greater in this known N_2 structure. This is due to the better overlap of the M_2L_4 fragment orbitals with respect to that of the M_2L_6 orbitals and is also noted for interactions in analogous acetylene complexes. The forward donation is slightly less than that in the $\text{Co}_2(\text{CO})_6(\mu\text{-}N_2)$ case, with π occupations falling to 1.89 and 1.81 electrons in the complex. The N-N bond is obviously weakened in this process, and the decrease in the overlap population (from 1.27 in free N_2 of the same bond distance to 0.84 in its complexed form) is only about 2% greater than the decrease noted for the Co_2 complex. There is a large gap between filled and unfilled orbitals.

On the whole, it seems that the interaction pictures for these two N_2 complexes, one hypothetical and the other tangible, are essentially superimposable, making exceptions, of course, for the obvious constraints of the different metal coordinations.

Existence of π -Bonded $L_nM(\mu-N_2)ML_n$ Structures

We are forced to conclude that there is nothing wrong with these bridging dinitrogen dinuclear transition-metal complexes. These compounds are predicted to be stable species. The calculations on the so far unobserved $\text{Co}_2(\text{CO})_6(\mu\text{-N}_2)$ complex show it to resemble in every possible way known N_2 π -bonded complexes and the members of the isoelectronic series of $\text{M}_2\text{L}_6(\mu\text{-X}_2)$ presented earlier. Thus, the absence of this structure is most conspicuous. We eagerly await its synthesis.

Acknowledgment. We are grateful to the National Science Foundation for its support of the Undergraduate Research Program at Cornell University, which made K.I.G.'s stay at Cornell possible. We also thank J. Jorgensen for the drawings and E. Stolz for the typing.

Appendix

All calculations were performed by using the extended Hückel method, 15 with weighted H_{ij} 's. 16 The following bond

⁽¹⁴⁾ For the orbitals of ML₂ see: Albright, T. A.; Hoffmann, R.; Thibeault, J. C.; Thorn, D. L. J. Am. Chem. Soc. 1979, 101, 3801-3812. Burdett, J. K. J. Chem. Soc., Faraday Trans. 2 1974, 70, 1599-1613. Mingos, D. M. P. J. Chem. Soc., Dalton Trans. 1977, 602-610. Hoffmann, P. Angew. Chem. 1977, 89, 551-553.

distances and angles were used in our calculations: N-N- $(Co_2(CO)_6(\mu-N_2))$ and Ni₂Ph₄ $(\mu-N_2)^4$ -), 1.35 Å; Co-C, 1.8 Å; C-O, 1.16 Å; Co-Co, 2.46 Å; Co-N, 2.0 Å; P-P, 2.019 Å; Co-P, 2.264 Å; S-S, 2.007 Å; Co-S, 2.228 Å; C-C, 1.335 Å; Co-C, 1.996 Å; N-N $(Co_2(CO)_6(\mu-N_2H_2)^2$ +), 1.37 Å; Co-N,

1.878 Å; CO-Co-CO, 90°; Co-C-O, 180°; C-C-H, 145°; N-N-H, 123°.

Parameters for H, C, N, and O are the standard ones.¹⁵ The parameters for P, S, Co, and Ni are from our previous work^{11,14} and are compiled in Table II.

Registry No. $Co_2(CO)_6(\mu-N_2)$, 82838-96-8; $Co_2(CO)_6(\mu-P_2)$, 51244-37-2; $Co_2(CO)_6(\mu-S_2)^{2+}$, 82838-97-9; $Co_2(CO)_6(\mu-C_2H_2)$, 12264-05-0; $Co_2(CO)_6(\mu-N_2H_2)^{2+}$, 82838-98-0; $Ni_2Ph_2(\mu-N_2)^{4-}$, 82838-99-1.

Contribution from the Istituto Chimica Generale, Facoltà di Farmacia, University of Florence, and ISSECC, CNR, Florence, Italy

Exchange Interactions in Heterodinuclear Complexes with One Ion Possessing an Orbitally Degenerate Ground State. Nickel(II)-Cobalt(II) Pairs in Diaquo(1,4-dihydrazinophthalazine)nickel(II) Chloride Hydrate

LUCIA BANCI, ALESSANDRO BENCINI, CRISTIANO BENELLI, and DANTE GATTESCHI*

Received January 12, 1982

The EPR spectra of copper(II)- and cobalt(II)-doped diaquo(1,4-dihydrazinophthalazine)nickel(II) chloride hydrate, $Ni_2(dhph)_2(H_2O)_4Cl_4\cdot 2H_2O$, have been recorded at liquid-helium temperature. Signals attributable to Ni-Co and Ni-Cu pairs were found and assigned on the basis of the hyperfine splitting patterns. In both cases the spectra could be interpreted within a $S = \frac{1}{2}$ spin Hamiltonian yielding the following: Ni-Cu, $g_1 = 2.07$, $g_2 = 2.21$, $g_3 = 2.25$; Ni-Co, $g_1 = 0.60$, $g_2 = 0.93$, $g_3 = 2.09$. The temperature dependence of the signal intensity of the Ni-Cu pairs shows that the coupling between the two metal ions is antiferromagnetic, as expected for two octahedra sharing an edge. For the Ni-Co pairs, in which the cobalt ion has an orbitally degenerate ground level, a simple model was used to calculate the exchange coupling constants of the nickel $^3A_{2g}$ ground level with the three orbital components of cobalt $^4T_{1g}$. The calculated parameters correspond in any case to antiferromagnetic interactions, the three exchange pathways being esstentially identical with each other.

Introduction

Exchange interactions in homo- and heterodinuclear transition-metal complexes are currently much studied, 1-5 and several theoretical models have been used with some success to correlate the observed coupling constants with the electronic structure of the individual ions. 6-8 The main limitation in the theoretical background is that only orbitally nondegenerate ground states can be easily handled. Introducing ground-state orbital degeneracy complicates enormously the patterns of interactions between the two metal ions, and the energy levels of the pairs can be expressed only by using a large number of parameters. 9 Some cases exist where the treatment has been performed by using models of different sophistication, 10-13 but as yet no definite trend starts to be apparent for the ex-

change interaction between orbitally degenerate ground states.

A simpler case, which in principle can be handled in a more tractable manner, is that relative to the interaction of an orbitally nondegenerate ion with an orbitally degenerate one. 14,15 In this case some simple models have been suggested, which have been applied to few experimental cases. In order to check their validity, however, it is necessary to study many more experimental data, trying to correlate the values of the parameters to the electronic structures of the complexes.

Cobalt(II) in an octahedral ligand field has a ground ${}^4T_{1g}$ level. Several dinuclear complexes have been reported in which octahedral cobalt(II) ions are present. An interesting series, for which crystal structure determinations are available, is that of diaquo(1,4-dihydrazinophthalazine)metal(II) chloride hydrate, $M_2(dhph)_2(H_2O)_4Cl_4\cdot 2H_2O$, where metal can be either cobalt or nickel. ${}^{16-18}$ Structure I shows the complex with

(1) Casellato, U.; Vigato, P. A.; Fenton, D. E.; Vidali, M. Chem. Soc. Rev.

O'Connor, C. J.; Freyberg, D. P.; Sinn, E. Inorg. Chem. 1979, 18, 1077. Kokoszka, G. F.; Duerst, R. W. Coord. Chem. Rev. 1970, 5, 209.

1979, 8, 199.

Hoffmann, R. J. Chem. Phys. 1963, 39, 1397-1412. Hoffmann, R.; Lipscomb, W. N. Ibid. 1962, 36, 2179-2195; 1962, 37, 2872-2883.
 Ammeter, J. H.; Bürgi, H.-B.; Thibeault, J. C.; Hoffmann, R. J. Am.

Chem. Soc. 1978, 100, 3686-3692.

 ⁽⁴⁾ Kahn, O.; Tola, P.; Galy, J.; Coudanne, H. J. Am. Chem. Soc. 1978, 100, 391.
 (5) Banci, L.; Bencini, A.; Gatteschi, D. Inorg. Chem. 1981, 20, 2734.
 (6) Bencini, A.; Gatteschi, D. Inorg. Chim. Acta 1978, 31, 11.

⁽⁶⁾ Bencini, A.; Gatteschi, D. Inorg. Chim. Acta 1978, 31, 11.
(7) Hay, P. J.; Thibeault, J. C.; Hoffmann, R. J. Am. Chem. Soc. 1975, 97, 4884.

⁽⁸⁾ Kahn, O.; Briat, B. J. Chem. Soc., Faraday Trans. 2 1976, 72, 441.
(9) Lines, M. E. J. Chem. Phys. 1971, 55, 2977.

⁽¹⁰⁾ Barraclough, C. G.; Gregson, A. K. J. Chem. Soc., Faraday Trans. 2 1972, 177.

⁽¹¹⁾ Kahn, O. Mol. Phys. 1975, 29, 1039.

⁽¹²⁾ Boyd, P. D. W.; Gerloch, M.; Harding, J. H.; Woolley, R. G. Proc. R. Soc. London, Ser. A 1978, 360, 161.

⁽¹³⁾ Drillon, M.; Georges, R. Phys. Rev. B: Condens. Matter 1981, 24, 1278.

⁽¹⁴⁾ Banci, L.; Bencini, A.; Benelli, C.; Dei, A.; Gatteschi, D. Inorg. Chem. 1981, 20, 1399.

⁽¹⁵⁾ Kahn, O.; Tola, P.; Coudanne, H. Chem. Phys. 1979, 42, 355.
(16) Andrew, J. E.; Ball, P. W.; Blake, A. B. J. Chem. Soc. D 1969, 143.

⁽¹⁷⁾ Andrew, J. E.; Blake, A. B. J. Chem. Soc. A 1969, 1408.