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The electronic structures of Fe(C0).,H2 ( l ) ,  M n ( C 0 ) 5 H  (2), and Mn(CO)&H3 (3) in the ground state as well as in the 
cationic hole states are reinvestigated by means of many-body perturbation theory based on the Green’s function formalism 
in the computational framework of a semiempirical INDO Hamiltonian. In the Green’s function approach relaxation and 
correlation effects beyond the Hartree-Fock (HF)  picture are taken into account. Various approximations for the self-energy 
operator are discussed; the validity and the limitations of these models are analyzed. A renormalized model potential for 
the self-energy part has been employed that allows a straightforward separation into electronic relaxation, the loss of ground-state 
pair correlation, and the variation of the pair correlation in the cationic hole state. In the numerical calculations for ionization 
energies in the outer valence region a remarkably good agreement between theory and experiment is encountered. The 
dependence of the calculated Koopmans defects upon the localization properties of the orbital wave function is rationalized. 
The INDO calculations on the ground state in the series 1-3 shows that all complexes can be classified as d6 systems (Fe(2+), 
Mn( l+ ) ) .  

1. Introduction transition-metal communds in combination with an immoved 

The low-energy photoelectron (PE) spectra of substituted 
metal pentacarbonyl derviatives M(CO)5X and of metal tet- 
racarbonyl compounds M(C0)4X2 have been the subject of 
various investigations.14 Most of the PE spectra were as- 
signed on the basis of experimental correlation techniques or 
on the basis of the band intensities as a function of the ra- 
diation source (He I/He II).4 On the other side, there are 
controversial conclusions derived from purely theoretical ap- 
proaches. Early semiempirical calculations by Fenske et alS5 
on Mn(C0)5X derivatives showed a satisfactory agreement 
between measured and calculated ionization energies if the 
validity of Koopmans’ theorem6 (IuJ = - e j )  is assumed. In 
contrast to these findings, ASCF ab initio calculations have 
shown the importance of electronic relaxation, leading to a 
breakdown of Koopmans’ t h e ~ r e m . ~ J  Unfortunately, the 
ASCF calculations in a near double-l basis were insufficient 
to reproduce the experimental sequence of the ionization ev- 
ents. 

Significant differences between measured vertical ionization 
potentials and theoretical values based on the ASCF approx- 
imation have been encountered in various iron’ and nickel8 
complexes. Therefore it seems to be of general interest to 
reinvestigate the PE spectra of the aforementioned transi- 
tion-metal polycarbonyls by means of theoretical approaches 
that are beyond the one-particle picture of the Hartree-Fock 
(HF) model. 

Relaxation and correlation effects accompanying the ioni- 
zation processes can be considered in the framework of 
many-body perturbation theory based on the Green’s function 
f o r m a l i ~ m . ~ J ~  We have applied this method in various 
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INDO Hamiltoniani’ for the assignment of PE data’in the 
outer valence region.12-14 

In this contribution we have used the Green’s function ap- 
proach for the reinvestigation of the PE spectra of iron tet- 
racarbonyl dihydride (Fe(C0)4H2 (1)) and of the two man- 
ganese pentacarbonyl complexes 2 and 3. 
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The nonvalidity of Koopmans’ theorem in transition-metal 

compounds has been demonstrated predominantly on the basis 
of ASCF calculations where only relaxation effects are taken 
into a c c o ~ n t . ’ ~  Calculations beyond the H F  picture are 
sparse.16J7 Therefore, the theoretical background of the 
Green’s function method, the necessary limitations, and the 
relation to the convenient ASCF approach are discussed in 
some detail. 
2. Basic Theory 

The one-particle Green’s function is defined in eq l.9318 

( Qo(N)I is the exact ground state of the N-electron system, 
T is the Wick time-ordering operator, and ai(?), aj+(t? the 
destruction/creation operator in the Heisenberg representation 
(eq 2 and 3). H i s  the Hamiltonian of the N electron system. 
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aJ+( t )  = elHlaJ+e-lHt (2) 

a,(t) = elH1a,e--IH1 (3) 

~ , ( o )  = G,(t,t? e’u‘ dt (4) 

The Fourier-transformed Green’s function (4) gives rise to the 
+ m  

G,(w) = 

c (*o(N)la,l*k(N 4- l))(*k(N + l)laJ+l*0(N)) + 
W + Ak + iq k 

( *O(N)la/+l*k(N - 1 ) )  (*k(N - )lail*O(N) ) 
(5) 

(6) 
(7) 

w + I k  - iq 
c 
k 

Ak = Eo(N) - Ek(N + 1) 
= Eo(N) - Ek(N - 1) 

spectral representation ( 5 ) ,  where Ak and Ik are defined in eq 
6 and 7. q is a small positive n ~ m b e r . ~ , ’ ~  The Green’s function 
G is completely determined by means of the Dyson (8) or the 
inverse Dyson equation (9).20 Go is the free Green’s function 

(8) 

(9) 

G(w) = G0(w) + C0(o)  Z(w)  G(w) 

G = Go + GOZG 
G-1 = (Go)-’ - 2 = 0 

associated with the HF-SCF ansatz as a zeroth-order ap- 
proximation, and Z(W) (=E) is the self-energy part. The 
vertical ionization energies are related to those w values for 
which the matrix of the inverse Dyson equation (9) has ei- 
genvalues equal to zero. In the framework of diagrammatic 
perturbation theory (8) and (9) can be symbolized by means 
of (10) and (11).21 The symbols in eq 10 and 11 can be 

Bohm 

(11) 

extracted from eq 8 and 9. The left sides of the diagrammatic 
expressions symbolize the Green’s functions G and G-’, re- 
spectively. The single lines stand for the free Green’s function, 
and Z is the self-energy operator. 

In the case of canonical H F  orbitals as a starting point (@)-I 
is simplified to (12), where t is the diagonal matrix of the 

(12) 
canonical H F  orbitals and I the unit matrix. The inverse 
Dyson equation therefore is given by means of eq 13. Z(o) 

(Go)-’ = W I  - t 

G-1 = WI - t - Z(w)  = 0 (13) 
can be determined alternatively by a finite approximation to 
the infinite perturbational series (14) (Z(W)(*) vanishes in the 

Z(W) = Z(w)(’) + Z(W)(~)  + ... + Z(W)@‘) (14) 
case of canonical HF orbitals {qi(1)+bj(2) ...I) or via the defi- 
nition of a two-particle-hole (two-hole-particle) response 
function R (eq 15) represented by means of the many-body 
diagram t e c h n i q ~ e . ~ ~ . ~ ~  R is defined in the form of a Dy- 
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son-like equation as a function of the irreducible interaction 
part X .  The lines going down in eq 15 and 16 symbolize hole 

lines; they are associated to the N -  1 electron system (cation). 
The lines going up are called particle lines. The combination 
of two hole lines and one particle function thus is a model for 
a cationic state; the wave function is given by determinants 
of the N - 1 system in the manifold of particle-hole excitations 
(single, double, ... excitations). The broken lines in eq 15 are 
interaction lines that are associated to the two-electron part 
( l/r12) of the molecular Hamiltonian. The crossing of particle 
and hole lines in eq 16 (exchange interaction) is due to the 
determinantal nature of the wave function in the H F  ap- 
proximation. The physical meaning of R and X will be 
clarified in the following equations. 

In any case the selected Z(w) model should show the same 
analytical behavior as the exact self-energy operator, which 
is given as a sum of a constant w-independent part, Z(m), and 
an o-dependent part, M(w) ,  with simple first-order poles:zz 

To compare the results of a Green’s function approach with 
calculated relaxation energies of a ASCF ansatz and to allow 
a rationalization of the quantum-chemical origin of the non- 
validity of Koopmans’ theorem in transition-metal compounds, 
it is necessary to solve the inverse Dyson equation with an 
approximation where relaxation and correlation effects can 
be separated. The ionization process therefore must be de- 
scribed in terms of a simple one-electron wave function picture 
leading to a decoupling into hole and particle states in eq 12. 

In the following, various possibilities for the determination 
of Z(o) according to eq 14 and 15 are discussed. One 
straightforward way to solve eq 15 is to take into account 
particle-hole excitations that accompany electron removal 
(attachment). These processes are called 2hlp (2plh) exci- 
tations (h = hole, p = particle). Within this approximation 
R (eq 16) is reduced to the recursion (18), where the G lines 

are given by Go lines and the irreducible interaction part X 
is expressed by its first-order approximation. The broken 
horizontal lines in eq 18 symbolize the two-electron coupling 
(1 /r12) between one-electron wave functions (orbitals) that 
have been calculated for the electronic ground state (N-electron 
system). The crossing of the particle and hole lines once again 
must be traced back to the antisymmetry of the determinantal 
wave function. 

Conveniently R is related to the so-called kernel r (= 
I’lmn,l”1n1),9~23 which is defined in eq 19 (associated to the 

(22) J. Schirmer and L. S. Cederbaum, J .  Phys. E ,  11, 1889 (1978); L. S. 
Cederbaum, J .  Chem. Phys., 62, 2160 (1975). 
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r = (01 - K - C)-’yo (19) 
approximation (1 8)). In the case of the 2pl h set K, C, and 
yo are given by the equations (20), (21), and (22); the cor- 

Klmn,rmlnI = (-e/ + em+ 4 6 t d m m J n n I  

yo/mn,/‘mjn’ = 6 / A 6 m m J n t t  - 6mfn6nml) 

(20) 

(21 1 
(22) 

(23) 

Clmn,l’m’n’ = -%6/1’J‘mn[m’d] + 6 m m ~ V / n ~ [ 1 ~ n ]  + 6nttV1m/[l’m] 

C/mn,Pm‘n‘ = Y26/ / (Vmn[m‘dl  - 6 m m ’ V / d [ ~ n l  - 6ndI/lm’[l’ml 

responding 2hlp expressions are determined by a modified C 
term (eq 23) while the K and yo equations are equivalent. ei 
in eq 20 is the canonical MO energy of the j th  MO, 611t sym- 
bolizes the convenient Kronecker 6 and the four-index integral 

with exchange is defined in eq 24. The one-particle 
V j [ k l ]  = V j k /  - V j l k  (24) 

V j k l  = ( d l )  ~j(2)Il /r12l~k(l)  d 2 ) )  (25) 
indices are restricted to the conditions given in eq 26 and 27. 

nlfimfin = npfim,f in,  = 1 (26) 
fi/nmnn = f i l tnm,nn,  = 1 (27) 

Green’s function calculations with the kernel (19) are called 
2ph-TDA solutions ( Tamm-Dancoff Approximation). The 
matrix dimensions of the original 2ph-TDA ansatz unfortu- 
nately are very large, and therefore the solution of the inverse 
Dyson equation is extremely time consuming even in the case 
of small- and medium-sized molecules. 

In recent semiempirical studies based on the ZDO ap- 
p r ~ x i m a t i o n ” ~ ~ ~ - ~ ~  additional simplifications have been intro- 
duced into (1 8) and (1 9). Neglecting the exchange scattering 
in the irreducible interaction part, one arrives at eq 28 for R 
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in the Dyson equation. Thus eq 3 1 prevents the description 
of ionization processes within a simple one-electron wave 
function picture and is therefore no suitable tool to link the 
Green’s function method to relaxational approaches (e.g., the 
ASCF formalism). Additionally, important contributions of 
ground-state correlation energy are neglected in the 2pl h 
TDA.22 Nevertheless, (31) is an improvement in comparison 
to Z(W)(~); ionization energies derived with (31) are renor- 
malized with respect to the second-order ansatz leading to the 
inequivalence relation (33). In the ZDO-adapted simplifi- 

(33) 

cation, however, eq 34 is fulfilled. The origin of this behavior 

I 2plhTDA > I ,Z(w)(’) 
U J  U J  

(34) I ZplhTDA,ZDO < I ,Z(O)(~)  
U J  U J  

is recognized in eq 35, where an average Coulomb integral Tav 

(28) 

and eq 29 and 30 for C. In the case of the wiggled interaction 
2 ~ 1  h: C/mn,/lm‘n‘ = -j/Z6//!Vmdm‘n + 6mmlV/d/’n + 6nn‘Vlm‘/‘m 

(29) 

(30) 
2h 1 P: CImn,/’m’n’ = -1/261/rVmn’m’n - 6mmJV/dIfn - 6 n n ~ V / m ~ \ ~ m  

lines (l/r12) the antisymmetry of the wave function is ne- 
glected. This approximation is similar to the neglect of dif- 
ferential overlap in semiempirical models of the ZDO hier- 
archy (e.g., CNDO, INDO). Thus the infinite summation in 
the ZDO-adapted response function is performed by means 
of so-called Feynman graphs characterized by wiggled in- 
teraction lines.25 

Within the more elaborate expansion based on (18) a shifted 
Born collision or diagonal 2plh TDA for E(w) is given by 
(31).9*26 Inspection of eq 31 clearly reveals (energy denom- 

zii2p1hTDA (0) = 

A l m n  = %Vmn[mn] - Vm1LmU - Vn/[nU (32) 
inator) that there is no decoupling into hole or particle states 

(24) S. BiscupiE, L. Valko, and V. Kvasnicka, Theor. Chim. Acta, 38, 149 
(1975). 

(25) R. P. Feynman, “Quantum Electrodynamics”, W. A. Benjamin, New 
York, 1962. 

(26) G .  Born and Y .  Ohm, Chem. Phys. Lett., 61, 307 (1979). 

has been used in the energy denominator. Due to the sign of 
eq 35 does not lead to a renormalization of the Z(W)(~)  

results, and the calculated ionization energies are lowered once 
again. Thus neither (18) nor (28) are a suitable framework 
for a self-energy model with the already discussed properties. 
In (18) renormalization is taken into account but there is no 
decoupling into particle and hole states. The opposite is true 
in the case of (28). 

In the case of larger organometallics it is therefore necessary 
to find an approximation to the infinite perturbational sum- 
mation (14). The contributions to this expansion can be 
displayed by means of well-known many-body diagrams;2i in 
Figure 1 second-order and third-order contributions to Z(w) 
are shown via a Goldstone repre~entation.~’ The nomenclature 
corresponds to ref 28. The diagrams in Figure 1 symbolize 
contributions to the perturbational self-energy expansion. The 
numerators are given by the multiplication of the various 
interactions vjLkll (e.g., for a second-order diagram, vj[kl12, 
for third-order elements, three components). The particle and 
hole lines in a diagram contribute with tj to the denominators 
of the perturbational increments. The hole lines (going down) 
are associated to the occupied HF orbitals in the N-electron 
system and the particle lines (going up) to the virtual MO set; 
the external lines symbolize the spin orbital that has lost the 
electron in the ionization process. The horizontal interaction 
lines represent an interaction between four MO’s ( i ,  j ,  k ,  I )  
of the H F  determinant. The perturbational expressions for 
the two second-order diagrams therefore simply read (j is the 
external index rr ionization from the j th  MO) 

The signs in the denominators follow from the convenient 
perturbational rules.21 

In many-body perturbation theory there exists a hierarchy 
of tools to derive self-energy models by means of finite con- 
tributions to Z(w) that are close to the exact self-energy op- 
erator. These tools are Kelly’s geometric approximation for 

(27) J.  Goldstone, Proc. R. SOC. London, Ser. A, 239, 267 (1957). 
(28) L. S. Cederbaum, Theor. Chim. Acta, 31,239 (1973); L. S. Cederbaum, 

J .  Phys. B, 11, 1889 (1975). 
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Figure 1. Second- and third-order Goldstone diagrams for the 
self-energy part. 

elements of different order in the Z(w) expansion,29 dressed 
(renormalized) interactions for interaction, particle, and hole 
lines, and the dressing of v e r t i ~ e s . ~ ~ , ~ ~  Cederbaum has derived 
a renormalized self-energy approximation by means of these 
many-body techniques;28 the effective self-energy operator in 
a diagonal approximation is given in eq 36. The associated 

(36) 

diagrams are displayed in Figure 1. This model potential is 
simple enough to be applicable in medium-sized and larger 
organometallic compounds. Additionally eq 36 can be de- 
composed into physically significant relaxation and correlation 
increments (in contrast to the 2plh TDA approach), and it 
has the same analytic structure as eq 17. Therefore we have 
used (36) as a framework for the calculation of the ionization 
energies of 1, 2, and 3. It must be mentioned however that 
the geometric approximation used for the evaluation of (36) 
is a function of the employed Hamiltonian. This has been 
verified in a series of calculations where the parameters of a 
variable semiempirical Hamiltonian have been modified be- 
tween the model space of an independent electron approxi- 
mation and a highly correlated valence bond VB ~ p e r a t o r . ~ '  
Therefore, generally the following inequality between an ab  
initio ansatz (left-hand side) and a semiempirical MO calcu- 
lation (right-hand side) with an effective Hamiltonian exists: 

= Z(W)~~(') + y2(2 X D4),j 

z ( w )  j i (n)  z (w) j j ( " )  

I E(w),ln+l) lab initio z(w).ln+l) JJ lsemiempirical 
JJ 

For this difference to be taken into account, a generalized 
effective renormalized self-energy operator may be defined (eq 
37), where k depends on the specific nature of the employed 

Z(w)jjeff = Z ( W ) ~ ~ ( ' )  + k(2  X D4)j, (37) 

(29) H. P. Kelly, Phys. Rev., 131, 684 (1963). 
(30) A. L. Fetter and D. L. Walecka, "Quantum Theory of Many-Particle 

Systems", McGraw-Hill, New York, 1971. 
(31) M. C. Bdhm, Ber. Bumenges. Phys. Chem., 86.56 (1982); M .  C. Bohm, 

Chem. Phys., 67,255 (1982); M. C. BBhm, Int. J .  Quantum Chem., in 
press. 

;J::;O = +x:::(-j 
.... .... 

++-J;::o +I.:::() f aJ:::o + .... 
.... 

Figure 2. Renormalization of the Vijlkll points due to the effective 
interaction Veff verified for the second-order 2pl  h diagram. 

Hamiltonian. In the present investigation however the original 
model potential of eq 36 has been used (k = I/'). The self- 
energy operator in (36) and (37) is already given in a diagonal 
approximation (eq 38), which is a sufficient model in the outer 

Z(w), = 6ij2(o)u (38) 

valence region; this has been verified both by ab initio32 and 
by s e m i e m p i r i ~ a l ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~  Green's function calculations. 
Further simplifications used for the determination of the poles 
in the inverse Dyson equation are described in ref 12. To give 
some insight into the theoretical formalism leading to eq 36 
or 37, we try to rationalize some important key steps of this 
procedure. Due to its simplicity the dressing (renormalization) 
of the interaction lines is demonstrated within the self-energy 
part of the random-phase approximation (RPA). In the 
electron-gas theory 2 ( w )  is given by the sum of the ring dia- 
grams (39).21 The symbols employed in the following 

6 RPA 1,+/-TJ+p+jai.j+ 
(39 )  

equations are similar to the diagrammatic expressions used 
in the foregoing discussion; e.g., the horizontal wiggled lines 
represent 1 /rI2 interactions between one-particle states of the 
model Hamiltonian, and the vertical lines stand for the free 
Green's function Go. If a Go line is factored out, the dia- 
grammatic expansion (40) is observed. Therefore the RPA 

self-energy operator can be represented by means of (41) and 
(42), where (42) is the effective interaction potential within 
the RPA. This concept of an effective interaction Pff of course 
can be extended beyond the RPA to any expansion for Z(w) .  
The defining relations are expressed in eq 43 and 44 in dia- 
grammatic form. Pff is then used to substitute the interaction 
lines of the V,j[k,i[klJ points in the diagrams of Figure 1 with the 
effective potential (P"). This is shown in Figure 2. By means 
of this procedure Cederbaum derived the geometric approx- 
imation (36).28 

In the numerical calculations in section 4 we also used an 
approximation that has been derived from a self-consistent 
formalism in the Dyson e q ~ a t i o n . ~ ' ~ ~ ~  In (10) the @ lines are 
substituted by G lines, which of course are not known; the 
procedure must be performed up to convergency. This dressing 

(32) L. S. Cederbaum, G. Hohlneicher, and W. von Niessen, Chem. Phys. 
Lett., 18, 503 (1973); L. S. Cederbaum, G. Hohlneicher, and W. von 
Niessen, Mol. Phys., 26, 1405 (1973). 

(33) P. Lazeratti and R. Zanasi, Chem. Phys. Lett., 42, 411 (1976); B. 
Kellerer, L. S. Cederbaum, and G .  Hohlneicher, J .  Efectron Specrrosc., 
3, 107 (1974). 

(34) S. BiskupiE, L. Valko, and V. Kvasnicka, Mol. Phys., 36, 1709 (1978). 
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> c = > f + ) @ <  (44) 

is shown in eq 45. In a simplified partial self-consistent (PSC) 

4 -  i+Qsc 0 = x (45) 
sc 

approach only the one-electron energies in the energy de- 
nominators of X ( w )  are iterated up to convergence. This 
algorithm is simple enough to be employed in the case of 
many-body calculations on larger transition-metal compounds. 
3. Separation into Relaxation and Correlation 

In this section the self-energy operator is separated into 
relaxation and correlation increments leading to the net 
Koopmans defects. Pickup and Goscinski have used the su- 
peroperator formalism to develop the Green's function up to 
second order, leading to a fragmentation into the aforemen- 
tioned reorganization energies;35 ref 35 is not based on dia- 
grammatic techniques. With neglect of the w dependence of 
the jth ionization potential (wj - t j ) ,  eq 46 is valid for Zj (eq 

46 is equivalent to a second-order Rayleigh-Schrodinger an- 
satz). The first sum corresponds to the second-order hole 
diagram in Figure 1, and the latter sum is associated to the 
corresponding particle diagram. Equation 46 can be rear- 
ranged into (47), where the first two summations have their 

~ , m # i  ' 

origin in the hole diagram. The first (double) sum in (47) 
together with ti corresponds to the result of a ASCF calculation 
within the H F  framework (expanded up to second order):36 

2 h l p  - 

C6 - 

04 - 

D5 - 

D6 - 70 
Figure 3. Graphic representation of the projection of the relaxation 
increments out of the full many-body hole diagrams. 

The graphic projection of this relaxation increment out of the 
second-order hole diagram is37 

FULL DIAGRAM RE L A XAT 10 N 
INCREMENT 

In the framework of Sinanoglu's first-order pair-correlation 
theory3* also the correlation terms in eq 47 can be traced back 
to simple physical pictures. The exact energy of the N-electron 
ground state is defined in eq 50 by means of the H F  energy 

and the additive pairs til. The comparison of eq 5 1 with the 
third sum of eq 47 clearly shows that this summation corre- 
sponds to the loss of ground-state correlation energy due to 
the ejection of the j th  electron. This pair-removal energy 
(second order) is completely determined by the corresponding 
particle diagram (see Figure 1). The last correlation element 
in eq 47 takes into account the variation of the correlation 
energy in the radical cation as many-body response to the 
electronic relaxation (pair relaxation). This is seen if elm for 
the N - 1 system is analyzed (eq 52). The last term in eq 

V ~ m y n ] ~  
n €1 + t, - € j  - t, C nln,AjAn (52) 

52 takes into account that j is not occupied in the jth hole state; 

(35) B. T. Pickup and 0. Goscinski, Mol. Phys., 26, 1013 (1973). 
(36) P. S. Bagus, Phys. Rev. A,  139,619 (1965); C. M. Moser, R. K. Nesbet, 

and G. Verhaegen, Chem. Phys. Lett., 12, 230 (1971). 
(37) G. Born, H. A. Kurtz, and Y. o h m ,  J .  Chem. Phys., 68, 74 (1978). 
(38) 0. Sinanoklu, Adu. Chem. Phys., 14, 237 (1969). 
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the second summation in eq 47 then is the counterpart to this 
expression. 

The second-order particle diagram symbolizes the loss of 
ground-state pair correlation as a result of the ionization 
process. In the radical cation the remaining N - 1 electrons 
are reorganized. This reorganization can be divided into a 
relaxation and a pair-relaxation contribution; both defect in- 
crements are part of the second-order hole diagram. 

Also in a higher order of perturbation the decomposition 
into relaxation is possible as there exists a 1:l correspondence 
between the B(t,),,c") elements of the self-energy part and the 
correction terms A E , ( E , ) ~ ~ ( " )  of Rayleigh-Schrodinger per- 
turbation theory (n I 3)39 (eq 53-55). Rf") symbolizes a 

~ i E , ( t , ) ~ ~ ( ~ )  = -Z(C,),,(~) (53) 

AE,(E,)Rs(~) = -2(€,),,(3) (54) 

A E , ( E , ) ~ ~ ( " )  = R(") + C2(") + Cl(") (55) 
relaxation increment and C2(") is a pair-relaxation parameter 
while Cl(") describes a pair-removal correction. CI(") is always 
limited to particle diagrams; R(") and C2(") are given by hole 
diagrams. The graphic separation into R(") and C2(") for the 
diagrams in Figure 1 is displayed in Figure 3. Only the set 
of hole diagrams contains relaxation contributions. The re- 
laxation graph is constructed due to the separation of one or 
two hole lines, which leads to diagrams where the v,(k,, points 
have either none or two external lines (all external lines in 
Figure 3 correspond to the j th  hole state). The sign of the 
relaxation increments is given by a phase factor that has been 
derived in ref 37. One relaxation increment is derived from 
C6,D4, and D5, and two R(3) increments can be projected out 
of 0 6 .  The hole diagrams C4 and C.5 do not contribute to R(3) 
as no graph with one incoming and one outgoing external line 
per interaction can be constructed on the basis of the full 
many-body  diagram^.^' The self-energy model in eq 36 
therefore can be symbolized by means of the relaxation and 
correlation parameters 

-qw),;ff = ~ ( 2 )  + ~ ( 3 )  + CP) + c2(2) + c2(3) (56)  

The explicit formulas for the various elements of this decom- 
position can be found in the l i t e r a t~ re .~ .~ '  

At the end of this section it should be mentioned that the 
calculated defect components are a function of the employed 
Hamiltonian. This dependence has been studied in various 
model calculations with variable electron4ectron interaction 
integrals and one-electron resonance  integral^.^^ The calcu- 
lated deviations from Koopmans' theorem are large in the case 
of two-electron integrals used in ab initio approaches. If 
"experimental" quantities are employed, reduced defect in- 
crements are predicted. Additionally convergence problems 
of perturbational expansions are reduced. If the model 
Hamiltonian simulates a one-electron potential (e.g., the ex- 
tended Hiickel Hamiltonian40 and Fenske-Hall operator41), 
negligibly small reorganization energies are ca lc~la ted .~ '  A 
strong coupling between the magnitude and the gradients of 
the two-electron potential and calculated relaxation and cor- 
relation corrections has been found in various mononuclear 
and binuclear 3d complexes. ASCF calculations on ferrocene 
by means of a recently developed INDO model of Bacon and 
Zerner with experimental y integrals42 lead to Koopmans 
defects that are much smaller43 than the relaxation energies 

Bohm 

(39) A. J. Hernandez and P. W. Langhoff, Chem. Phys. Left., 49, 127 
(1977). 

(40) R. Hoffmann, J .  Chem. Phys., 39, 1397 (1963); R. Hoffmann and W. 
N. Lipscomb, J .  Chem. Phys., 36, 2179, 3489 (1962). 

(41) M. B. Hall and R. F. Fenske, Inorg. Chem., 11, 768 (1972). 
(42) A. D. Bacon and M. C. Zerner, Theor. Chim. Acta, 53, 589 (1979). 
(43) M. C. Zerner, G. H. Loew, R. F. Kirchner, and U. T. Mueller-West- 

erhoff, J .  Am. Chem. SOC., 102, 589 (1980). 

Table I. Orbital Energies, q, MO Types, and Composition of the 
MO's for the Valence Orbitals of 1, 2, and 3 According to  the 
INDO Hamiltonian 

% %  
compd MO J?? MO type ~ i , e V  3d H(CH,) 

Fe(CO),H, 25 loa,  
24 6b, 
23 3a, 
22 9a, 
21 6b ,  

Mn(CO),H 29 2b, 
21/28 l e  
26 8a, 

Mn(CO),CH, 32 9a, 
31 2b, 
29/30 8e 

FeH u 
Fe 3d,, 
Fe 3dy, 
Fe 3d,2-y? 
FeH u 
Mn 3d,, 

MnH (I 

Mn 3dXy 
Mn 3d,,/3dYz 

Mn 3dxzI3dyz 

MnCCH, 

-11.54 25 38 
-11.59 74 
-12.13 90 
-12.20 90  
-12.51 23 43 
-11.29 80 
-11.31 81 
-11.94 20 43 
-11.08 20 51  
-11.27 79 
-11.33 83 

' The numbering scheme of the irreducible representations 
corresponds to the configuration of the valence electrons. 

in ab initio studies44 and that are smaller than the corrections 
predicted with the present INDO model.45 Furthermore, this 
problem is closely related to observed instabilities of the HF 
solution in ab initio calculations (symmetry violations) that 
are not found in approximate studies.46 The quantum- 
chemical origin for all these phenomena is the screening of 
the two-electron potential in model Hamiltonians that are not 
based on HF ab initio integrals. In a recent study this mutual 
dependence (the validity of the H F  picture and the analytic 
form of the two-electron potential) has been studied in great 
detail in the case of binuclear Ni c~mplexes.~'  
4. Ground-State Properties 

To simplify the interpretation of the Green's function cal- 
culations on the cationic hole states, it is necessary to analyze 
the ground-state properties as derived with the semiempirical 
INDO Hamiltonian." 

Fe(CO),H2 belongs to the point group C2, with the H lig- 
ands on the equatorial positions.4s The C,,FeC,, angle 
amounts to 148.5' with a bent deformation into the direction 
of the H atoms. The electronic structure of 1 therefore must 
correspond to a distorted octahedron with three occupied MOs  
of predominant Fe 3d character that are related to the triply 
degenerate tzg set under 0, symmetry. 

The two manganese pentacarbonyl complexes 2 and 3 are 
representatives of a series of M(CO),X compounds that have 
been of great interest to e ~ p e r i m e n t a l ' ~ ~ ~ ~ ~  and 
workers. In both Mn complexes the central atom shows a 
distorted-octahedral coordination as the equatorial CO ligands 
are displaced into the direction of the axial ligand X (X = H, 
CH3). In 2 a C,,MnC angle a of 97' has been deter- 
mined;47,50 in 3 a is 95':? 

M.-M. CoutiBre, J. Demuynck, and A. Veillard, Theor. Chim. Acta, 27, 
281 (1972); P. S. Bagus, U. I. Wahlgren, and J. Almlof, J.  Chem. Phys., 
64, 2324 (1976). 
M. C. Bohm, R. Gleiter, and F. Delgado-Pena, Inor,q. Chem., 19, 1081 
(1980). 
B. E. Bursten, J. R. Jensen, D. J. Gordon, P. M. Treichel, and R. F. 
Fenske, J .  Am. Chem. SOC., 103, 5226 (1981). 
M. C. Bbhm, submitted for publication in Int. J .  Quantum Chem. 
E. A. McNeill and F. R. Scholer, J. Am. Chem. SOC., 99, 6243 (1977). 
(a) F. A. Cotton and R. M. Wing, J .  Organomet. Chem., 9, 51 I (1 967); 
(b) H. B. Gray, E. Billig, A. Wojcicki, and M. Farona, Can. J .  Chem., 
41, 1281 (1963); (c) S. Cradock, E. A. V. Ebsworth, and A. Robertson, 
J. Chem. SOC., Dalton Trans. 22 (1973). 
S. J. LaPlaca, W. C. Hamilton, J. A. Ibers, and A. Davison, Inorg. 
Chem., 8 ,  1928 (1969). 
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Table 11. Net Charges in the Series 1-3 According to the Present INDO Model 

3d center C, 0.X Ce.2 Oeu CCH, Hcx$3) compd 

Fe(CO),H, 0.228+ 0.217+ 0.194- 0.191+ 0.177- 0.148- 
Mn(CO).H 0.141- 0.211+ 0.183- 0.265+ 0.202- 0.148- 

0.280+ 0.218- 0.48& 0.117+ Mn(CO);CH, 0.165- 0.214+ 0.184- 

6bz 3a2 9 %  

Figure 4. Qualitative representation of the outer valence orbitals of 
1. 

2b2 e a ,  

Elgun 5. Qualitative representation of the outer valence orbitals of 
2 and 3. 

Qualitative explanations for these preferences have been 
worked out in detail by Elian and Hoffmann.s2 In Table I 
the INDO MO energies for the outer valence orbitals of 1, 
2, and 3 are summarized. Schematic representations of the 
corresponding orbitals are given in Figures 4 and 5. In 1 five 
complex MO’s are separated by about 3 eV from the CO r 
and u linear combinations. Table I shows that the two FeH 
u MO’s a t  -11.54 and -12.51 eV are separated by three or- 
bitals predominantly localized at the 3d center. The two FeH 
u linear combinations have Fe 3d amplitudes of 25% (MO 25) 
and 23% (MO 21). respectively. In the case of the “Fe 3d” 
orbitals (6b,, 3a2, and 9a,) 3a2 and 9a, show the most pro- 
nounced localization at the transition-metal center (90%). A 
significant metal-ligand coupling is encountered in 6b2, where 
the axial u CO functions are able to mix with 3d,, due to the 
bending motion of the two CO ligands. The Fe 3d amplitude 
in this MO therefore is reduced to 74%. The valence orbitals 
of the metal tetracarbonyl fragment have been analyzed in 
more detail by Burdetts3 and by Elian and Hoffmann.’2 

In the two manganese complexes 2 and 3 the Mn 3d orbitals 
split into a1(3d2), bl(3d+,4, and b2(3d,) and a degenerate 
e(3d, 3dyJ combination; in both pentacarbonyls the point 
group C, IS used to label the MO’s. In a d6 complex (Mn- 
(1+)) b2 and e are occupied while a,  and bl belong to the 
virtual Fermi sea. Thus b,/e combinations are related to tZ8 
of an unperturbed octahedron while al/bl combinations cor- 
relate with the doubly degenerate es combination in the case 
of Oh symmetry. 

In the hydride complex 2 INDO predicts the following 
ground-state sequence for the outer valence orbitals: 
(7e)‘(2b,)2. The Mn 3d combinations are on top of the MnH 
u bond. The gap between 2 q  and 7e is only 0.02 eV; the MnH 

~~ 

(51) H. M. Seip and R. Sip, A m  Chem. S“d. 24. 3431 (1970). 
(52) M. Elian and R .  Haffmann. Imt. Chem.. 14, 1058 (1975). 
(53) J. K. Burden, J .  Chrm. Sae.. Faraday Tronr. 2,  70. 1599 (1974). 

.“ 
assignment I,jexDt’, eV ab initio CNDO 

2.4, ... 7.0 
2B, } 9.65 9.2 7.0 
2A, 9 4 7.1 

7.3 
19.1 11.3 

2% 10.95 
2% 11.30 

u linear combination is stabilized by about 0.62 eV from the 
Mn 3d functions. The CO valence orbitals are separated by 
more than 2.5 eV from these MO’s. 2b2 and 7e show com- 
parable Mn 3d amplitudes (about 80%). In analogy to the 
case for 1 significant CO contributions are predicted for the 
Sa, MnH u combination. The Is contribution of H amounts 
to 43%, and the Mn 3d(:3dz2) admixture is 20%. 

In the case of the methyl complex 3 INDO predicts for the 
ground state a switch of the MO sequence Mn 3d/MnX u. 
Here 9a, (MnCH, u) is predicted on top of the Mn 3d linear 
combinations 2b2/8e. 9a,, 2b,, and 8e are found in an energy 
interval of only 0.25 eV (-11.08, -11.27, -11.33 eV). The 
compositions of the orbital wave functions are similar to those 
of 2. The present INDO calculations on 2 and 3 differ from 
ab initio results of Guest et al? insofar as in the ah inito 
framework a, is always predicted on top of b,/e. 

In Table I1 we have summarized the net charges of 1-3.5‘ 
The heteroligands show in any case a charge excess. In 1 a 
H net charge of -0.148 e is predicted, the same value is derived 
in 2. This occupation pattern is in line with experimentally 
determined proton shifts that are comparable with a net charge 
between 0.1- and 0.4-.55 
5. Calculation of the Ionization Energies 

In the following we want to restrict our discussion to ion- 
ization events in the lower energy region as the CO hands 
belong to a broad band system without distinct maxima. 
Fe(CO)‘H2 shows two bands in the outer valence region below 
14 eV.‘ The first peak has its maximum at 9.65 eV, and the 
second band is highly unsymmetric with a maximum at 10.95 
eV and a high-energy shoulder a t  11.30 eV. These IP’s are 
separated by more than 3 eV from the CO ionization events. 
On the basis of the comparison with PE spectra of related iron 
carbonyl complexes (Fe(CO)5/Fe(C0)4CzH4?6 halogenated 
Fe(CO), ethylene derivatives?’ iron tetracarbonyl carbene 
complexes?* and iron tricarbonyl species7) it is clear that the 
first hand of 1 has to be assigned to the three Fe 3d linear 
combinations 6b2(3d,), 3a2(3d,), and 9 a 1 ( 3 d 4  while the 
second band must correspond to the FeH u linear combina- 
tions. This assignment is supported due to the ionization 
sequence in the series Fe(CO),H,,’ CO(CO)~H,’~ and Mn- 
(CO),H.1-3 

The ionization sequence of 1 could be reproduced satis- 
factorically neither by B C F  ab initio calculations of near 
double<quality3 nor by ASCF CNDO calculations based on 
a recent ZDO extension to the 3d series” (Chart I). We have 

(54) R. S. Mulliken, J. Chem. Phvs.. 23. 1833.2343 (1955). 
(55) L. L. Lohr and W. 21. Lipwimb. Inorg. Chem., 3, 2 2  (1964). 
( 5 6 )  H. van Dam and A. Oskam. 1. E/eclronSprc~mc., 16.307 (1979); H. 

van Dam and A. OIkam. ibid. 17. 357 119791. 

(58) M. C. BBm, 1. Daub. R. Gleiter, P. Hafmann. M. F. Lappert, and K. 
Ofcle, Chem. Be,.. 113, 3629 (1980). 
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Chart I1 Table 111. Comparison between the Measured Vertical Ionization 
Potentials ( I v , j e x p t l )  of Fe(CO),H, and Those Calculated' 

1 9% 12.20 8.31 9.36 
6b 3 11.59 8.58 9.36 9.65 
3a2 12.13 8.54 9.48 

2 loa,  11.54 10.50 10.73 10.95 
6b I 12.5 1 11.50 11.71 11.30 sh 

I v , j K  is based on the validity of Koopmans' theorem. f v , j K  + 
E(') has been derived by means of the inverse Dyson equation 
with the second-order self-energy approximation; Iv , jK + Zeff  
corresponds to the renormalized ansatz. All values are in eV; sh = 
shoulder. 

3 a 1  

Figure 6. Comparison between the measured vertical ionization 
potentials (EXP) of Fe(C0)4H2 and those calculated with the as- 
sumption of the validity of Koopmans' theorem (KT) and with the 
inverse Dyson equation. KT + corresponds to a second-order 
approximation for the self-energy part; KT + zeff symbolizes the 
renormalized ansatz. 

compared the ASCF results (ab initio and semiempirical 
CNDO approach) with measured ionization energies although 
it is difficult to relate molecular properties or the MO picture 
with these calculations. Nevertheless we felt that this oppo- 
sition shows impressively the shortcomings of the ASCF model 
independent of the nature of the model Hamiltonian. 

The INDO-based Green's function results are summarized 
in Table I11 and Figure 6. In the determination of the 
self-energy part 12 hole and 10 particle states have been 
considered; PSC effects were negligible (modifications smaller 
than 0.05 eV). It is clearly seen that the measured ionization 
energies are reproduced with high accuracy. For the Fe 3d 
MO's gal, 6b2, and 3a2 IP's of 9.36, 9.36, and 9.48 eV, re- 
spectively, are predicted. The calculated center of gravity 
differs only 0.25 eV from the experimental band maximum. 
Also in the case of the two FeH u orbitals the close corre- 
spondence between theory and experiment is recognized; the 
separation between the loal and the 6b2 ionizations is slightly 
overestimated. The calculated center of gravity (1 1.33 eV) 
differs by only 0.1 1 eV from the experimental center of gravity 
(11.22 eV). 

Table 111 and Figure 6 also display the importance of re- 
normalization in the case of the strongly localized MO's. 
Second-order defects of 3.89 (gal), 3.01 (6b2), and 3.59 eV 
(3a2) are calculated by means of the INDO ansatz. The 
corresponding third-order corrections are -1.05 (gal), -0.78 
(6b2), and -0.94 eV (3a2). The net defects for the Fe 3d 

(59) D. W. Clack, N. S.  Hush, and Y. R. Yandle, J .  Chem. Phys., 57, 3503 
(1972). 

~ , , j * s c ~ ,  eV 
assignment Iv , jexpt l ,  eV ab initio CNDO 

Mn(CO),H ZE 8.85 8.2 4.2 

I A ,  10.55 8.4 8.1 
,B, 9.14 8.6 4.3 

Mn(C0) ,CH, 'E 8.65 8.0 4.4 
,B ,  9.12 8.6 4.5 
'A ,  9.49 7.5 9.0 

Table IV. Comparison between the Measured Vertical Ionization 
Potentials of Mn(CO),H and Those Calculated' 

2 2b, 11.29 8.46 9.35 9.16 9.14 
3 8a, 11.94 10.62 10.96 10.95 10.55 

' See the legend to Table 111. I v , j K  + Z e f f  + PSC corresponds 
to the iteration of the inverse Dyson equation. 

ionization events therefore span a range between 2.23 and 2.84 
eV. For the FeH u linear combinations Koopmans defects 
smaller than 1 eV are predicted. 

The PE data of 1 suggest the following simplified description 
for the electronic structure of the Fe complex: Fe(C0)42+ and 
2H-, which is formally a d6 system. In analogy to the case 
for various Fe tricarbonyl complexes with butadiene, tri- 
methylenemethane, and cyclobutadiene' all Fe 3d ionization 
events occur as a single band, indicating that the corresponding 
electrons in the cationic hole states are similar to those of their 
t2 parent of an unperturbed octahedron. In the ground state 
o f 1  an energy gap of 0.6 eV is predicted for the Fe 3d valence 
orbitals; the calculated ionization energies with the inclusion 
of correlation and relaxation are separated by only 0.12 eV. 

The low-energy PE spectrum of 2 shows two band systems 
on the low-energy side of the carbonyl ionization events starting 
at 13.40 eve4% The first band has two distinct maxima at 8.85 
and 9.14 eV. The first component with the larger cross section 
must be assigned to the degenerate 7e (Mn 3dX,/3d,,) linear 
combination and the second maximum to an ionization out 
of 2b2 (3d,). The MnH u ionization is found at 10.55 eV. 
This assignment has been derived on the basis of experimental 
correlation techniques with related transition-metal carbo- 
n y l ~ . ~ ~ ~  

The Mn 3d, (2b2) and the MnX u ionization potentials of 
3 collapse into a common band system. The 2b2 maximum 
is found at 9.12 eV, and the 9al ionization leads to a high- 
energy shoulder at 9.49 eV. The first IP  of 3 out of 8e is 
encountered at 8.65 eV. Once again ASCF calculations with 
the ab initio basis or in the CNDO framework did not re- 
produce satisfactorily the experimental ionization sequence 
as well as the magnitude of the Ips3  (Chart 11). The Green's 
function results for 2 are summarized in Table IV and Figure 
7. The perturbational summation covers 14 hole and 12 
particle states; additionally the PSC iteration has been em- 
ployed. Inspection of Table IV and Figure 7 demonstrates that 
the Green's function formalism (Zeff + PSC) reproduces the 
Mn 3d ionization potentials with an accuracy that is within 
the experimental error. In the case of the degenerate 7e 
combination 8.87 eV (theory) must be compared with 8.85 
eV (experiment). In the case of 2b2 the corresponding values 
are 9.16 and 9.14 eV. The agreement is less quantitative for 
the MnH u ionization; the measured IP is 0.40 eV smaller than 
the calculated one. 

Remarkable deviations from Koopmans' therorem are 
calculated for the ionization events out of strongly localized 
Mn 3d orbitals. For 7e a second-order defect of 3.59 eV is 
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KT K T . ~  KT. ef  f E X  P 
IP[ e v ]  

t 

-. 

; 
-- 2 b ~  ?e - =b 
-- s a l  2 

-. 

KT K T - p  K T * I e f f  K T * L e r f  EXP 
. P S C  

1 8e 11.33 7.75 8.89 8.65 
2b, 11.27 8.28 9.13 9.12 

2 9a I 11.08 10.40 10.58 9.49 sh 

See the legend to Table 111. 

predicted. In the case of 2b2 only a reorganization increment 
of 2.83 eV is encountered. The third-order renormalization 
for these two M O s  are -1.14 and -0.89 eV, respectively. The 
PSC iteration lowers the IP of 2b2 by 0.19 eV while 7e is nearly 
constant. The net defects within the present INDO Hamil- 
tonian thus amount to 2.44 (7e) and 2.13 eV (2b2). The 
reorganization energies in 8al are less pronounced. The sec- 
ond-order defect of 1.32 eV is reduced by 0.33 eV due to the 
combined effects of Zeff and PSC. 

The Green's function results for 3 are summarized in Table 
V and Figure 8. In the perturbational summation 14 hole- 
states and 12 particle functions have been employed. With 
the exception of gal, once again an almost perfect agreement 
between the experimental values and the calculated IP's is 
encountered. For 8e 8.89 (theory) and 8.65 eV (experiment) 
must be correlated (in the case of the 3d, combination: 9.13 
and 9.12 eV). Only for the MnCH3 u ionization is a difference 
of 1.09 eV between the calculated and the measured IP found. 

The PE spectra of 2 and 3 differ significantly from the PE 
data of the iron complex 1. The Fe 3d ionization events in 
1 (9a,, 3a2, and 6b2) are degenerate and therefore have a close 
correspondence to the t2* set of an octahedron. In 2 and 3 the 
Mn 3d functions of E and B symmetry are also related to tzg 
in the point group Oh. In contrast to the case for 1 separated 
PE bands are found while the energy gap in the electronic 
ground state is negligble. 
6. Fragmentation of the Net Reorganization Energies into 
Correlation and Relaxation Contributions 

In section 3 it has been demonstrated that the net Koopmans 
defects that are calculated in the diagonal approximation for 
the self-energy operator can be fragmented into relaxation and 
correlation increments. In Table VI we have summarized this 
decomposition for the outer valence orbitals of Mn(CO),H; 
the results for 3 are similar, and thus they are not presented 
in detail. The fragmentation in the case of 1 as well an analysis 
of reorganization energies in various other iron complexes is 
given in a separate contribution.60 A graphic display of the 

(60) M. C .  Bohm, Theor. Chim. Acra, 61, 539 (1982). 

I 

I 
Figure 8. Comparison between measured vertical ionization potentials 
of Mn(C0)&H3 and those calculated (see the legend for Figure 6) .  

7e 2b2 

Figure 9. Decomposition of the net Koopmans defects of Mn(CO)SH 
into relaxation (R), pair-removal (Cl), and pair-relaxation (C2) 
increments according to the present INDO model. 

theoretical findings for 2 is shown in Figure 9. 
The net defects AIj are separated into second- (R(z)) and 

third-(Rc3)) order relaxation components and into a second- 
order (C1(2)) pair-removal increment as well as into second- 
and third-order contributions for the pair-relaxation energy 
(C2(2), C2(3)). The physical meaning of these contributions 
has been discussed in section 3. 

It is seen that the relaxation increments are the predominant 
contributions to Nj for the two strongly localized Mn 3d linear 
combinations. The net lowering of IulK due to Rnet amounts 
to 6.07 (7e) and 5.36 eV (2b2), respectively. In both one- 
electron functions there are pronounced renormalization 
corrections (-1.15, -0.95 eV). The magnitude of the pair- 
relaxation energies however demonstrates that it cannot be 
expected to reproduce PE spectra of transition-metal com- 
pounds by means of purely relaxational procedures. The 
modification of the pair-correlation energy in the cationic hole 
state is too large to be neglected. 

In 2 net pair-relaxation contributions of -3.32 (7e) and -2.74 
eV (2b2) are calculated that act into the opposite direction from 
that of the electronic relaxation. While Rnc' has a pronounced 
lowering effect for the calculated ionization energies, CZnet 
partially compensates the magnitude of the net defects. In 
any case Rnet dominates C2net. In the 8al MnH c combination 
both contributions are significantly reduced; here a total re- 
laxation energy of 1.92 eV is calculated while C2"" amounts 
to -0.57 eV. In comparison to the case for 7e and 2b2 pair- 
correlation modifications in the N - 1 system are less im- 
portant. 
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Table VI. Decomposition of the Calculated Koopmans Defects AIj in Mn(CO), H into Relaxation, Pair-Removal, and Pair-Relaxation 
Contributions (All Values in eV) 

T i  ui R ( 2 )  R ( 3 )  Rnet C I ( ~ )  = CInet ~ $ 2 )  c2net 

l e  2.45 7.22 -1.15 6.07 
2b 1 2.13 6.31 -0.95 5.36 
8% 0.99 2.19 -0.27 1.92 

The loss of ground-state pair correlation ( = C l ( 2 )  = Clnet 
in the framework of the renormalized self-energy part) is 
nearly independent of the nature of the orbital wave function 
and is small in comparison to Rna and C2"&. Cl net has a raising 
effect, which lies between -0.3 and -0.5 eV. 

The fragmentation scheme employed in Table VI clearly 
demonstrates that calculated IP's in the ASCF approximation 
are too small if a Hamiltonian has been employed with a basis 
set near the H F  limit. This failure of purely relaxational 
methods has been demonstrated in a series of ASCF ab initio 
calculations with large basis sets.8 The agreement between 
measured IP's and ASCF ab initio calculations far from the 
H F  limit is therefore a rather fortuitous one as deviations from 
the HF limit and the neglected Clna/CPet contributions nearly 
compensate each other. In any case it has been demonstrated 
that theoretical methods beyond the HF picture are necessary 
to reproduce PE spectra of transition-metal compounds if 
model Hamiltonians with a two-electron part are used in the 
calculations (ab initio or semiempirical models). Of course 
the whole argumentation is invalid in the case of one-electron 
operators (e.g., the extended Hiickel, Fenske-Hall Hamilto- 
nian), where the 1 / r I2  term is included in an effective operator 
that is independent of the coordinates of two electrons. 

The absolute numbers of the relaxation and correlation 
increments determined in the present study are a function of 
the analytic form of the employed Hamiltonian. The general 
findings (e.g., the imbalance of relaxation and pair relaxation 
and reduced Clnet corrections in comparison to those for 
Rlnet /CPet) ,  however, are independent of the actual param- 
eterization and are encountered in all approaches with l / r 1 2  
elements in the molecular Hamiltonian. This aspect has been 
discussed in greater detail in ref 3 1 .  
7. Conclusion 

The low-energy PE spectra of the carbonyl complexes 1-3 
have been investigated by means of many-body perturbation 
theory based on the Green's function formalism. The com- 
putational framework was an improved INDO model. In 
contrast to the case for published ASCF calculations (ab initio 
and semiempirical CNDO procedures) ionization energies close 
to the measured data have been derived. We have used a 
perturbational expansion where the net reorganization energies 
can be decomposed into relaxation and correlation increments 

-0.30 -3.34 0.02 -3.32 
-0.49 -2.99 0.25 -2.74 
-0.36 -0.52 -0.05 - 0.5 7 

with definite physical information. This fragmentation has 
clearly demonstrated that relaxation and correlation effects 
must be taken into account if Hamiltonians with the l / r 1 2  
potential are employed in model calculations. The cancellation 
of relaxation and correlation that is found in strongly delo- 
calized MO's is not observed in 3d complexes with localized 
molecular orbitals. The success of one-electron calculations 
of the Fenske-Hall type must be traced back to the fact that 
this imbalance is removed if the l / r 1 2  part has been removed 
from the molecular Hamiltonian (one-electron operator). The 
theoretical shortcoming of the latter method, on the other 
hand, is the necessity of using scaling constants for some bands 
in the PE spectrum.41 

The present Green's function calculations need about 30 min 
of CPU time on an IBM 370/168 computer; the time-con- 
suming step in a semiempirical calculation of course is the 
calculation of the four-index integrals Kjkl .  The large ad- 
vantage of approaches based on ground-state wave functions 
lies in the fact that SCF difficulties in the iterations on the 
deeper cationic states or variational collapses encountered in 
ASCF calculations61 are avoided. 

The numerical results derived for 1, 2, and 3 have demon- 
strated that relaxation and pair relaxation in the cationic hole 
state depend critically on the localization properties of the 
orbital wave function. Rnet and CZnee' are the two most im- 
portant increments leading to the breakdown of Koopmans' 
theorem in transition-metal compounds. The loss of ground- 
state pair correlation due to the removal of one electron is small 
in comparison to Rnet and C2"". 
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