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either the five-coordinate Fe(II1) in C1Fe(Etzdtc)z16 (0.50 
mm/s, 100 K vs. Fe) or the five-coordinate Fe(I1) in the 
[Fe(Et2dtc)JZ dime;16 (0.90 mm/s, 100 K vs Fe). 

The voltammetry of’I in B M F ”  shows both a reduction 
wave at -1.2 V and an oxidation wave at -0.07 V. Quanti- 
tative studies of these waves by chronoamperometry show both 
the oxidation and the reduction to be diffusion controlled over 
the range of 20 ms-1 s. The current functions i , t ’ /2 /C and 
i ,t‘lz/C for the reduction and oxidation, respectively, corre- 
spond to one-electron processes. The reduction wave shows 
no associated anodic wave, and the reduction product appears 
completely unstable. The oxidation wave is accompanied by 
a small cathodic wave. The ic/ ia ratio in double potential step 
chronoamperometry shows the oxidation product to be stable 
for about 100 ms. A significant decline in this ratio is observed 
at longer potential steps ( i J i ,  = 0.16, t = 1 s). 

The [ Fe4S4L4] 2- clusters generally undergo reversible one- 
electron reductions. The apparently different redox properties 
of I must be attributed mainly to the Etzdtc- ligand. The latter 
is known to stabilize highly oxidized states in simple M- 
(Etzdtc), c0mp1exes.l~ The effects of terminal ligand coor- 
dination characteristics in the redox properties of the [Fe4- 
S4L4In- clusters at present are not well understood. A sys- 
tematic study of the molecular and electronic structures and 
redox properties of various “mixed” terminal ligand clusters 
is under way in our laboratory. 

Acknowledgment. This research was supported by a grant 
from the National Institutes of Health (No. GM-26671-03). 
X-ray equipment used in this research was obtained in part 
by Grant CHE-8 109065 from the National Science Founda- 
tion. 

Registry No. I, 83692-59-5; (Ph4P)2[Fe4S4(SPh)2Clz], 80939-30-6; 
(Ph4P)J Fe4S4(SPh),], 80765- 13-5. 

Supplementary Material Available: Tables of structure factors and 
positional and thermal parameters (26 pages). Ordering information 
is given on any current masthead page. 

(16) De Vries, J. L. K. F.; Keijzers, C. P.; De Boer, E. Znorg. Chem. 1972, 
11, 1343. 

(17) The electrochemical studies were conducted in DMF solution (0.1 M) 
in n-Bu4NC104 on a Pt electrode vs. a saturated calomel reference 
electrode. 

(18) Johnson, C. K. Report ORNL-3794; Oak Ridge National Laboratory: 
Oak Ridge, TN, 1965. 

Department of Chemistry 
University of Iowa 
Iowa City, Iowa 52242 

M. G. Kanatzidis 
M. Ryan 

D. Coucouvanis* 

Nuclear Research Center “Demokritos” 
Aghia Paraskevi, Attiki, Greece 

A. Simopoulos 
A. Kostikas 

Received August 2, 1982 

Spontaneous Carbon-Carbon Bond Cleavage of Some 
Ruthenium(I1)-Bound a-Substituted Ketoximes 

Sir: 
We report the first example of C-C bond cleavage in a 

ligand attached to ruthenium(I1) that is not accompanied by 
an oxidation-reduction reaction.’ 

The reaction, which occurs when (H3N)5R~OH2z+ is gen- 
eratedZ in the presence of a ketoxime containing an a-keto or 

(1) Ru(NH3j5N03+ + a-methylene ketones: K. Schug and C. P. 
Guengerich, J .  Am. Chem. Soc., 101, 235-6 (1979). Other types of 
enhanced ligand reactivity also are accompanied by net redox changes. 

a-hydroxy group, has the overall stoichiometry 

( H ~ N ) ~ R ~ ( O H J +  t HON =C 
,CH3 

‘R 

( H ~ N ) ~ R u - N G C - C H ~  7.t t R-OH (1) 

where R is -C(O)CH3, -C(O)C6Hs, or -CH(OH)C&,. 
The ruthenium(I1)-nitrile products were isolated as the 

perchlorate salts and identified by comparison of their UV-vis 
and IR spectra with those of authentic samples3 Benzoic acid 
was recovered and identified (proton NMR and IR spectra 
and melting point) in the R = C(0)C6HS case, and benz- 
aldehyde was identified (proton NMR) in the R = CH- 

Since these oximes do not normally decompose in aqueous 
solutions and ligand substitution for HzO in (H3N)5R~-OH22+ 
is rapid,4 the reaction must involve the two steps shown in eq 
2. 

(OH)C6H5 case. 

L 

I R-OH (2b) 

Attempts to isolate or detect the presence of the proposed 
ruthenium(I1)-oxime intermediate, I, were unsuccessful, 
suggesting that the rate of disappearance of I is fast compared 
to its rate of formation. This remarkable increase in the 
reactivity of the oxime ligand in the absence of a concurrent 
redox change provides unambiguous evidence for the ability 
of Ru(I1) to promote increased unsaturation on bonded ni- 
trogen atoms, a phenomenon generally attributed to strong 
back-bonding from the filled 4d orbitals on Ru(I1) to the 
empty a* orbitals on sp2- or sp-hybridized nitrogen5 

Reactions were carried out at about 25 ‘C in dilute solution 
(-0.01 M in Ru and -0.02 M in oxime). 

A lower limit of 0.020 s-l can be estimated for kb if it is 
assumed (a) that [I] < [RutOtal]/lO, (b) that k,  is similar to 
that for other sp2-hybridized ligands4 (average of seven neutral 
unhindered ligands 0.10 M-’ s-l, range 0.05-0.20 M-’ s-l), and 
(c) that reaction 2b is first order. 

Related studies on aldoximes and unsubstituted oximes will 
be reported elsewhere. 
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(H3N)RuOHz2+(aq) is prepared from [(H3N),RuCI]C12 (A. D. Allen 
and C. V. Senoff, Can. J. Chem., 45, 1337 (1967)) by treatment with 
Ag+(aq) or OH-(aq) followed by amalgamated zinc. 
P. C. Ford and R. E. Clarke, Znorg. Chem., 9, 227-35 (1970). 
R. E. Sheperd and H. Taube, Znorg. Chem., 12, 1392-401 (1973). 
(a) P. C. Ford, Coord. Chem. Rev., 5, 77-99 (1970); (b) H. Taube, 
Sum. Prog. Chem., 6 ,  1-46 (1973). 
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