Volume **22**

Number **4**

February 16, 1983

Inorganic Chemistry

0 Copyright 1983 by the American Chemical Society

Contribution from the Department of Chemistry, Texas Christian University, Fort Worth, Texas **76129**

Synthesis and Carbon Tetrachloride Reactions of Bis[bis(trimethylsilyl)amino]phosphinesl

BEI-LI LI, JOSEPH **S.** ENGENITO, **JR.,** ROBERT H. NEILSON,* and PATTY WISIAN-NEILSON

Received July 23, 1982

The bis(disilylamino)phosphines $[(Me_3Si)_2N]_2PCH_2R$ (1, $R = H$; 2, $R = Me$; 3, $R = SiMe_3$; 4, $R = Ph$) were prepared from the reactions of the appropriate Grignard reagents with $[(Me_3Si)_2N]_2PCl$. Compound 5, $[(Me_3Si)_2N]_2PCH(Ph)SiMe_3$ was prepared from [(Me₃Si)₂N]₂PCl and the TMEDA complex of Me₃SiCH(Li)Ph. Compound 1 reacted with Me₃SiN₃ to give $[(Me₃Si)₂N]₂PMe₂ + NSiMe₃$ (6) and with MeI to give $[(Me₃Si)₂N]₂PMe₂+I^-$ (7). Treatment of 7 with alkyllithium reagents afforded (Me₃Si)₂NPMe₂=NSiMe₃ (8) and (Me₃Si)₂NPMe(CH₂SiMe₃)=NSiMe₃ (9). The reactions of 1-4 with CCl₄ gave mixtures of $(Me_3Si)_2NPC1(Me_3SiCHR)$ =NSiMe₃ (10) and $(Me_3Si)_2NPC1(CH_2R)$ =NSiMe₃ (11). When the CC14 reactions were done neat, **10** was the major product, while **11** predominated when the reactions were carried out in CH₂Cl₂ solution. Compound 5 reacted with CCl₄ to give only $Me₃Si₂NPCl(Me₃SiCHPh)=NSiMe₃$ (10d).

Introduction

The chemistry of (disilylamino)phosphines, e.g. $(Me₃Si)₂NPMe₂$, has proven to be quite diverse as a result of the reactivity of the silicon-nitrogen bond combined with the nucleophilicity of phosphorus.² Much less is known, however, about the chemistry of phosphines bearing two disilylamino substituents. The thermally unstable chloro-substituted phosphine $[(Me₃Si)₂N]$ ₂PCl is an important precursor to novel two-coordinate phosphorus species including the iminophosphine $(Me_3Si)_2NP=NSiMe_3$,³ the phosphenium ion $[(Me₃Si)₂N]₂P⁺,⁴$ and the free radical $[(Me₃Si)₂N]₂P⁵$ We were interested in preparing alkyl-substituted phosphines with two disilylamino groups, $[(Me₃Si)₂N]₂PR$, in order to assess their stability as well as their reactivity compared to those of related mono(disily1amino)phosphines.

The reaction of these bis(disilylamino)phosphines with CCI_4 was of particular interest since two reaction pathways and, hence, two different types of products seemed possible. It is well established that an ion-pair intermediate $R_3PCl^+, CCl_3^$ is formed on initial interaction of $CCl₄$ with tertiary phosphines.⁶ In systems containing a proton α to phosphorus, the CCl₃⁻ anion can abstract the proton to form phosphorus ylides *(eq* **l).7** When silylamino groups are present, however, proton abstraction might compete with silicon-nitrogen bond cleavage. Precedent for such cleavage has been observed for several related disilylamino-substituted phosphonium salts (eq 2).⁸

- **(2)** Morton, **D. W.;** Neilson, R. H. *Organometallics* **1982,** *1,* **289** and **references** cited therein.
- **(3)** Scherer, 0. J.; Kuhn, N. *Angew. Chem., Int. Ed. Engl.* **1974,** *13,* **811. (4)** Cowley, A. H.; Lattman, M.; Wilburn, J. C. *Inorg. Chem.* **1981,** *20,*
- **2916.**
- **(5)** Gynane, M. J. **S.;** Hudson, A,; Lappert, M. F.; Power, P. P.; Goldwhite, H. J. *J. Chem. SOC., Chem. Commun.* **1976, 623.**
-
- (6) Appel, R. *Angew Chem., Int. Ed. Engl.* 1975, 14, 801.
(7) (a) Appel, R.; Peters, J.; Schmitz, R. Z. *Anorg. Allg. Chem.* 1981, 18, 475. (b) Kolodiazhnyi, O. I. Tetrahedron Lett. 1980, 21, 3983.

We have, therefore, prepared a series of stable bis(disily1 amino)phosphines $[(Me₃Si)₂N]$, PR and have investigated the reaction of these new phosphines with CCl₄. Depending on the reaction conditions employed, both pathways discussed above were found to be operative. we nave, therefore, prepared a series of stable bis(disily-
amino)phosphines $[(Me_3Si)_2N]_2PR$ and have investigated the
reaction of these new phosphines with CCl₄. Depending on
the reaction conditions employed, both path

Results and Discussion

Phosphine Synthesis. The new bis(disilylamino)phosphines $[(Me₃Si)₂N]₂PCH₂R$, where R = H, Me, SiMe₃, and Ph, were prepared by treating $[(Me₃Si)₂N]₂PCl³$ with the appropriate Grignard reagent (eq 3). Due to its thermal instability

$$
2\text{LIN}(\text{SiMe}_{3})_{2} + \text{PCI}_{3} \rightarrow [(\text{Me}_{3}\text{Si})_{2}\text{N}]_{2}\text{PCI} \xrightarrow{\text{RCH}_{2}\text{H}_{2}\text{R}}
$$

\n
$$
[(\text{Me}_{3}\text{Si})_{2}\text{N}]_{2}\text{PCI}_{2}\text{R}
$$

\n1, R = H
\n2, R = Me
\n3, R = SiMe₃
\n4, R = Ph

 $[(Me₃Si)₂N]₂PCl$ was purified only by filtration to remove LiCl; the Grignard reagents were then added to the filtrate. The phosphine products **1-4** were purified by vacuum distil-

0020-1669/83/1322-0575\$01.50/0 *0* 1983 American Chemical Society

⁽¹⁾ Wisian-Neilson, P.; Ford, R. R.; Li, **B.-L.;** Neilson, R. H. "Abstracts of Papers", **183rd** National Meeting of the **American** Chemical Society, Las Vegas, NV, March **1982;** American Chemical Society: Washing- ton, DC, **1982;** INORG **147.**

^{(8) (}a) Morton, D. W.; Neilson, R. **H.** *Organometallics* **1982,** *l,* **623.** (b) Wilburn, **J.** C. Ph.D. Dissertation, Duke University, Durham, NC, **1978.**

Table I. Preparative and Analytical Data

	preparative		analytical ^a	
compd	% yield	bp, $^{\circ}$ C (<i>P</i> , mm)	%C	% H
1	64	97-100 (0.05)	42.30 (42.57)	10.70 (10.72)
2	64	98-99 (0.05)	43.91 (44.16)	10.73 (10.85)
3	50	$135 - 140(0.2)$	44.08 (43.74)	10.93 (10.70)
4	39	158(0.2)	51.27 $(51.48)^e$	9.72(9.71)
5	35	mp 175-180	48.76 (51.26)	9.54(9.90)
6	71	105(0.03)	42.38 (42.30)	10.35 (10.65)
9	21	$72 - 73(0.02)$	44.34 (44.16)	10.80 (10.85)
10a	87 ^b	90-100 (0.03)	see 11c	
10 _b	47 ^b	$115 - 123(0.07)$	40.20 (40.50)	9.73(9.64)
10c	63 ^b	$120 - 123(0.1)$	40.28 (40.56)	9.56 (9.74)
10d	40 ^b	124 (0.02)	47.86 (47.76)	9.01(8.80)
	$(95)^d$			
1 1 a	72^c	$77 - 78(0.1)$	36.25 (36.46)	9.02(9.11)
11b	86c	61(0.02)	38.49 (38.51)	9.60(9.40)
11c	77c	$100 - 108(0.29)$	38.90 (38.88)	9.47 (9.47)
11d	71c	$94 - 97(0.02)$	47.48 (47.39)	8.26 (8.39)

^{*a*} Calculated values in parentheses. ^{*b*} From neat CCI₄ reaction. ^{*c*} From CCI₄ reaction in CH₂CI₂. *^d* From the reaction of **5** with CC1,. *e* Analytically pure sample obtained after five distillations.

lation and were characterized by ${}^{1}H$, ${}^{13}C$, and ${}^{31}P$ NMR spectroscopy and elemental analysis (Tables I and 11). As expected, the alkyl-substituted phosphines are much more thermally stable than the P -Cl precursor³ as evidenced by the fact that they could be distilled without decomposition.

Another phosphine with an even bulkier alkyl substituent was obtained by a slightly different procedure (eq **4).** In this

$$
\begin{array}{ccc}\n\text{[(Me}_{3} \text{Si})_{2} \text{N1}_{2} \text{PCI} & \frac{\text{Me}_{3} \text{SiCH(Li)Ph}}{\text{TMEDA}} & \text{[(Me}_{3} \text{Si})_{2} \text{N1}_{2} \text{P} - \text{C}_{3} \text{N1}_{2} \text{N1
$$

case the chloro-substituted compound was treated with the lithium derivative of $Me₃SiCH₂Ph$ in the presence of TMEDA rather than with a Grignard reagent. Purification of the crystalline solid product was accomplished by recrystallization from pentane, and NMR spectroscopic data were used to characterize *5* (Tables **I** and 11). Interestingly, we observed five $Me₃Si$ signals in the room-temperature ¹H and ¹³C NMR spectra of *5,* indicating a substantial degree of hindered P-N bond rotation.

Reactivity of $[(Me₃Si)₂N]₂PMe.$ For comparison of the reactivity of bis(disilylamino)phosphines with mono(disilylamino)phosphines, some derivative chemistry of compound **1** was studied. Both similarities and differences were observed. Bromine and iodine, for example, reacted in the same manner as with the mono(disilylamino)phosphine $(Me_3Si)_2NPMe_2^9$ forming P-halophosphoranimines and Me₃SiBr or Me₃SiI (eq 5). The details of these reactions are described elsewhere.¹⁰

$$
I(Me3Si)2N12PMe \xrightarrow{\chi_2} Me3SiN \xrightarrow{\chi} N(SiMe3)2 + Me3SiX
$$
 (5)

The reaction of **1** with trimethylsilyl azide (eq **6)** produced

$$
I(Me_3Si)_2N1_2PMe \xrightarrow{X_2} Me_3SiN = \frac{1}{P} - N(SiMe_3)_2 + Me_3Six
$$
 (5)
\n
\nThe reaction of 1 with trimethylsilyl azide (eq 6) produced
\n
$$
I(Me_3Si)_2N1_2PMe + Me_3SiN_3 \xrightarrow{100 °C} I(Me_3Si)_2N1_2P = NSiMe_3
$$
 (6)
\n1

the expected N-silylphosphoranimine *(6).* The broad singlet in the Me₃Si region of the room-temperature ¹H NMR spectrum of *6* indicates that rapid exchange of the imino and amino silyl groups occurs. At low temperatures, however, the spectrum consisted of two sharp singlets of 4:l intensity ratio $(\Delta \nu = 31.2$ Hz at -87 °C), which coalesced at -25 °C. The exchange barrier is, therefore, estimated to be 12.3 kcal/mol.¹¹ This is slightly lower than the exchange barrier of 13.5 kcal/mol¹⁰ obtained for $(Me₃Si)₂NP(Me)₂=NSiMe₃,¹²$ the azide product of the **mono(disily1amino)phosphine** $(Me₃Si)$ ₂NPMe₂.

Methyl iodide also reacted with **1** in the usual manner to

produce the phosphonium salt 7 (eq 7), which was identified
\n
$$
[(Me3Si)2N]2PMe + MeI \rightarrow [(Me3Si)2N]2PMe2+I- (7)
$$

by NMR spectroscopic analysis. The reaction of the phosphonium salt with n-BuLi or MeLi, however, was less straightforward (eq 8). The major product, compound **8,l2**

 $R = Me, n-Bu$

results from the elimination of Me₃SiR. The expected dehydrohalogenation product, **9,** was isolated in lower yield. Compound 9 presumably forms from a [1,3] shift of a Me₃Si group from nitrogen to carbon. Similar reactions involving ylide intermediates are known to occur in systems containing only one $(Me_3Si)_2N$ group.¹³

Attempts to oxidize 1 with *t*-BuOOSiMe₃ to form either a silylaminophosphine oxide or a rearranged P-siloxyphosphoranimine were unsuccessful. After the mixture was stirred for 15 days at room temperature in $CH₂Cl₂$, no appreciable sign of reaction was observed. This is not unexpected in view of the steric bulk of the phosphorus substituents. In earlier work is was found that bulkier substituents markedly decrease the rate of reaction with the peroxide.¹⁴ Other potential oxidizing agents were not investigated.

Reactions with Carbon Tetrachloride. The reactions of the bis(disily1amino)phosphines **1-5** with CCI, were studied in order to compare the products with those from phosphines with only one or no $(Me_3Si)_2N$ substituents. Unlike the phosphine/CCl₄ systems studied earlier⁷ where only CHCl₃ elimination was observed (eq 1), the possibility of $CHCl₃$ and/or $Me₃SiCl₃$ elimination exists with phosphines containing a $(Me_3Si)_2N$ substituent on phosphorus. In fact, both were eliminated in the reactions of compounds $1-4$ with CCI_4 , resulting in two new phosphorus products in each case (eq 9).

When the reactions were done without a solvent, $CHCl₃$ elimination was predominant with isolated yields of **10** ranging from 40 to 88%. Lesser amounts of **11** were observed in each reaction. The CHCl₃ elimination pathway corresponds to that reported earlier for phosphines without the $(Me_3Si)_2N$ group⁷ where ylide products were isolated. In this case, however, the analogous ylides are presumably intermediates that readily

-
-

⁽⁹⁾ Wisian-Neilson, P.; Neilson, R. H. *Inorg. Chem.* **1980,** *19,* **1875. (10)** Neilson, R. H.: Engenito: J. S., Jr. *Organometallics* **1982,** *I,* 1270.

⁽¹¹⁾ The equation $\Delta G_c^* = T_c[45.67 + 4.58 \log (T_c/\Delta \nu)]$ gives ΔG_c^* in cal/mol with T_c in K. See: Neilson, R. H.; Wells, R. L. *Inorg. Chem.* **1977,** *16,* **7.**

⁽¹²⁾ Wilburn, J. C.; Neilson, R. H. *Inorg. Chem.* 1977, 16, 2519.
(13) Wilburn, J. C.; Neilson, R. H. *Inorg. Chem.* 1979, 18, 347.
(14) (a) Neilson, R. H.; Wisian-Neilson, P.; Wilburn, J. C. *Inorg. Chem.* **1980,** *19,* 413. (b) Wisian-Neilson, P.; Neilson, R. H., unpublished results.

undergo a [1,3] silyl shift from nitrogen to carbon to form compounds **10a-d** (eq 10). A similar silyl-group migration

accounts for the formation of **9** (eq 8) as well as a number of related compounds.¹³

If the CCl₄ reactions of $1-4$ were carried out with CH_2Cl_2 as a solvent, $Me₃SiCCl₃$ elimination was favored and compounds **lla-d** were isolated in 70-90% yields. Only small amounts of **10a-d** were detected in these cases. It should be noted that, although numbered differently for tabulation purposes, compounds **10a** and **llc** are identical. This compound has also been prepared by the reaction of $(Me₃Si)₂NP(CH₂SiMe₃)N₃$ and Me₃SiCl.¹⁵ In both the solution and neat reactions, separation and purification were accomplished by careful vacuum distillation and/or sublimation of the viscous liquid and solid products. Difficulties in these separations often resulted in the isolation of reduced yields of the pure products.

The differences in the predominant products of the neat vs. $CH₂Cl₂$ solution reactions appears to be dependent on solvent polarity. This is supported by the fact that the reaction of **1** with CCl₄ in a nonpolar solvent such as pentane also gave 10a, as the major product, although a somewhat lower yield was obtained than in the neat reaction. Solvent polarity should affect the nature of an ion pair of the type postulated by Appel,⁶ which results from the interaction of a tertiary phosphine with CCl₄ (eq 11). The ion pair should be "tighter"
 $R_3P + CCl_4 \rightarrow R_3P$ ^{...}Cl...CCl₃ \rightarrow [R₃PCl⁺][CCl₃⁻] (11)

$$
R_3P + CCl_4 \rightarrow R_3P \cdots Cl \cdots CCl_3 \rightarrow [R_3PCl^+][CCl_3^-] \quad (11)
$$

in a nonpolar solvent relative to that in a polar solvent. In the polar situation the relatively free CCl_3^- anion should preferentially attack the peripheral Me₃Si groups, resulting in elimination of $Me₃SiCCl₃$. In a nonpolar solvent, where a "tighter" ion pair exists, attack at the hydrogen on the α -carbon to eliminate CHCl, is more likely due to the close proximity of the CCI₃⁻ anion.

In contrast to compounds $1-4$ both the neat and CH_2Cl_2 solution reactions of 5 with CCl_4 gave only the Me₃SiCCl₃

(15) Neilson, R. H. Inorg. *Chem.* **1981, 20,** 1679.

of the large $\text{CC}l_3^-$ anion abstracting the hydrogen on the α -carbon is minimal due to the bulk of the surrounding Ph and Me₃Si groups. The Me₃SiCCl₃ elimination is thus preferred since the Me₃Si groups are more open to attack.

Further studies of these new N-silylphosphoranimines are currently in progress in order to assess their usefulness as precursors to low-coordinate phosphorus compounds and, ultimately, to new phosphorus-nitrogen polymer systems.

Experimental Section

General Procedures. The following reagents were purchased from commercial sources and used without further purification: PCl₃, (Me₃Si)₂NH, Me₃SiN₃, PhCH₂SiMe₃, CCl₄ (spectroscopic grade), $n-BuLi$ (hexane solution), $Et₂O$ solutions of MeLi, MeMgBr, and EtMgBr, and PhCH₂MgCl (THF solution). The Grignard reagent $Me₃SiCH₂MgCl$ was prepared in Et₂O by the published procedure.¹⁶ Pentane, THF, $Et₂O$, and TMEDA were distilled from $CaH₂$ prior to use. Distillation from P_4O_{10} and storage over molecular sieves were used to dry CH₂Cl₂. Proton NMR spectra were recorded on a Varian EM-390 spectrometer, and ¹³C ${^{1}}H$ and ³¹P ${^{1}}H$ } NMR spectra were recorded on a JEOL FX-60 spectrometer. Variable-temperature spectra for **6** were recorded on the EM-390 instrument equipped with a standard Varian temperature controller, which was calibrated with a methanol reference sample. The exchange barrier was estimated by the coalescence-temperature method.¹¹ Elemental analyses were performed by Schwarzkopf Microanalytical Laboratory, Woodside, NY. Physical, spectroscopic, and analytical data are summarized in Tables I and **11.**

All reactions and other manipulations were carried out under an atmosphere of dry nitrogen or under vacuum. The procedures described below are typical of those used for the preparation of the new compounds in this study.

Preparation of the Bis[bis(trimethylsilyl)amino]alkylphosphines, 1-4. Generally, the phosphines were prepared by the Wilburn method as described elsewhere^{17} with the only modification being in the reaction stoichiometry. Typically, 1 mol of (Me_3Si) ₂NH was treated with 1 mol of *n*-BuLi. The resulting $LiN(SiMe₃)₂$ was allowed to react with 0.5 mol of PCl_3 and subsequently with 0.5 mol of the appropriate Grignard reagent. Yields and characterization data are listed in Tables I and **11.**

Preparation of Bis[bis(trimethylsilyl)amino][pbenyl(trimetbyl- $\textbf{silyl})$ methyl]phosphine (5). TMEDA (15.1 mL, 0.10 mol) and Et_2O (120 mL) were placed in a round-bottom flask equipped with a stir bar, rubber septum, and a nitrogen inlet. The solution was cooled to 0 °C, and n-BuLi (60.6 mL, 1.65 M) was added via syringe. The mixture was stirred at 0 $^{\circ}$ C for 30 min. Another similarly equipped flask was charged with $Me₃SiCH₂Ph$ (16.4 g, 0.10 mol) and $Et₂O$ (40 mL), and this solution was cooled to 0° C. Then the TME-DA-n-BuLi complex solution was transferred into the second flask via flex-needles. The mixture was stirred at 0 $^{\circ}$ C for 3 h and at room temperature for 2 h to form the TMEDA complex of $[Me₃SiC (Ph)H^-$] Li⁺.

As described previously, $[(Me₃Si)₂N]₂PC1$ was prepared from $(Me_3Si)_2NH$ (41.7 mL, 0.20 mol), n-BuLi (121.2 mL, 1.65 M), and PCl₃ (8.7 mL, 0.10 mol) in Et₂O (200 mL). This mixture was cooled

⁽¹⁶⁾ Andersen, R. A,; Wilkinson, G. Inorg. *Synrh.* **1979,** *19,* 262.

⁽¹⁷⁾ Neilson, R. H.; Wisian-Neilson, P. Inorg. *Chem.* **1982,** *21,* 3568.

^a Chemical shifts downfield from Me₄Si for ¹H and ¹³C spectra and from H₃PO₄ for ³¹P spectra; coupling constants in Hz. Solvents: ¹H, CH₂Cl₂; ¹³C and ³¹P, CDCl₃. ^b Multiplet. ^c Two signals we

to 0 °C, and the TMEDA complex of [Me₃SiC(Ph)H⁻]Li⁺ was added via flex-needle transfer. After being stirred at 0 °C for 2 h and at room temperature for 28 h, the mixture was filtered and the solvent was removed under vacuum. Within 10 min the residue solidified. A spectroscopically pure sample of 5 was obtained by recrystallization from pentane (Tables I and II).

Preparation of P,P-Bis[bis(trimethylsilyl)amino]-P-methyl-N-(trimethylsilyl)phosphoranimine (6). Compound 1 (6.0 g, 16.3 mmol) and $Me₃ SiN₃$ (6.2 mL, 47 mmol) were combined in a one-necked round-bottom flask equipped with a magnetic stir bar, nitrogen inlet, and reflux condenser. The solution was heated at 95-105 °C for 40 h. Vacuum distillation gave 5.3 g $(72\% \text{ yield})$ of 6, which solidified on standing.

Formation of Bis[bis(trimethylsilyl)amino]dimethylphosphonium Iodide (7) and Reaction with Methyllithium. Compound 1 (5.91 g, 16.1 mmol) and CH₂Cl₂ (50 mL) were combined and cooled to 0 $^{\circ}$ C. Then MeI (1.1 mL, 17.6 mmol) was added via syringe. After ca. 4 h NMR spectra of the solution confirmed the formation of 7: ¹H NMR (CH₂Cl₂) δ 2.18 (d, J_{PH} = 12.0 Hz, Me), 0.47 (s, Me₃Si); ¹³C NMR (CDCl₃) δ 23.67 (d, $J_{PC} = 76.9$ Hz, Me), 4.32 (d, $J_{PC} = 1.83$
Hz, Me₃Si); ³¹P NMR (CDCl₃) δ 57.85.

The solution of 7 was cooled to 0 °C, and MeLi (18.5 mL, 1.55 M) was added. After the mixture was stirred overnight, the solvent was removed under vacuum and the residue was distilled. Two fractions were collected. Fraction 1 (bp 55-56 $^{\circ}$ C (0.03 torr); yield 1.33 g, 27%) was identified as 8 by its ¹H NMR spectrum.¹² Fraction 2 (bp 72-73 OC (0.02 torr); yield 1.19 **g,** 21%) was identified as *9* (Tables **I** and **11).**

Reactions of Bis(bis(trimethylsilyl)amino]alkylphosphines 1-5 with CCl,. In a typical reaction in the absence of solvent **1** (5.15 **g,** 14.0 mmol) was placed in a 50-mL round-bottom flask equipped with a nitrogen inlet, septum, and magnetic stir bar. After the flask was cooled to 0 °C, an excess of CCl₄ (ca. 6.5 mL) was added via syringe. After being stirred at room temperature for ca. 18 h, the mixture was distilled (Tables **I** and **11).** The major product was **10a** along with minor amounts of **lla.**

The reactions in the presence of CH_2Cl_2 were carried out in a similar fashion at 0 °C with the addition of ca. 40 mL of CH_2Cl_2 to the phosphine (ca. 14.0 mmol) before 1 molar equiv of $CCl₄$ was added. After the mixture was stirred at room temperature for ca. 18 h, the solvent was removed and the residue was distilled, giving **11** as the major product and smaller amounts of **10** (Tables **I** and **11).** More dilute solutions favored the formation of the Me,SiCCl, elimination product **11.**

Compound 1 in pentane was also treated with CCl₄ at 0 °C. After

ca. 18 h of stirring, workup and distillation afforded a 27% yield of **loa.**

Under the conditions described above, **5** reacted with either CCI4 or $\text{CCl}_4/\text{CH}_2\text{Cl}_2$ to give 10d.

Acknowledgment. The authors thank the U.S. Office of Naval Research, the **US.** Army Research Office, and the Robert A. Welch Foundation for generous financial support of this research.

Registry **No. 1,** 82581-87-1; **2,** 84050-72-6; 3, 84050-73-7; **4,** 21385-93-3; **9,** 84056-89-3; **loa,** 76946-98-0; **lob,** 84050-78-2; **lOc,** 84050-79-3; **lod,** 84050-80-6; **lla,** 84050-81-7; **llb,** 84050-82-8; **llc,** 76946-98-0; **11d**, 84050-83-9; LiN(SiMe₃)₂, 4039-32-1; PCl₃, 7719-12-2; [(Me3Si)2N]2PCl, 53327-45-0; Me,SiCH(Li)Ph, 37820-39-6; Me₃SiN₃, 4648-54-8; MeI, 74-88-4; MeLi, 917-54-4; n-BuLi, 109-72-8; CCl₄, 56-23-5; $(Me₃Si)₂NH$, 999-97-3. 84050-74-8; **5,** 84050-75-9; **6,** 84050-76-0; **7,** 84050-77-1; 8,

> Contribution from Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720

Reaction of Nitrite Ion with Hydroxylamine-N-sulfonate in Aqueous Solution

S. B. OBLATH, **S. S.** MARKOWITZ, T. NOVAKOV, and *S.-G.* CHANG*

Received April 29, 1982

The reaction between nitrite ion and **hydroxylamine-N-sulfonate** (HAMS) has been investigated in aqueous solutions; nitrous oxide and sulfate ions are the major products. The reaction kinetics exhibit first-order dependence on nitrite ion, second-order dependence on hydrogen ion in the pH region of 4-5, and between zero- and first-order dependence on HAMS, depending on the concentration. An activation energy of **30** kJ/mol was determined for the reaction in the temperature range of 10-40 "C. The ionic strength dependence was studied in the range of 0.2-1.5 M. Oxalate, tartrate, and phthalate buffer systems were found to enhance the rate of reaction to varying degrees. An empirical rate law and the determined rate constants are reported. The results are explained in terms of a mechanism that consists of the nitrosation of HAMS, followed by a decomposition into products.

Introduction

The reaction of **hydroxylamine-N-sulfonate** (also referred to as hydroxylaminesulfonate or HAMS) with nitrite ion has been known since Raschig studied the reduction of nitrous acid with sulfur dioxide.¹ Reaction between HAMS and nitrite ion was considered a side reaction in the synthesis of hydroxylamine, yielding nitrous oxide. This particular reaction, however, has become useful for the laboratory preparation of hyponitrite salts in alkaline solutions.^{2,3} In acidic solutions the reaction has been much less thoroughly studied, although nitrous oxide (rather than hyponitrites) is usually formed.⁴

Our primary interest in this reaction grew out of an investigation⁵ of nitrite and sulfite ion interactions in atmospheric aerosols and power-plant flue-gas scrubbers. Under sufficiently acidic conditions, nitrous oxide has been detected as a product. 6 The N₂O can result either from a direct interaction of nitrite and sulfite ions or from an indirect process involving HAMS.

-
- (4) Seel, V. F.; Pauschmann, H. Z. Naturforsch., B: Inorg. Chem., Org.
Chem. **1962**, *17B*, 347-349.
(5) Oblath. S. B.: Markowitz. S. S. Novakov, T.; Chang. S.-G. J. Phys.
- **(5)** Oblath, S. B.; Markowitz, S. S. Novakov, T.; Chang, **S.-G.** *J. Phys. Chem.* **1981,85,** 1017-1021.
- (6) Oblath, S. B. Ph.D. Thesis, University of California at Berkeley, 1981.

For a determination of the source of the gaseous product, a complete kinetic investigation of the $HAMS-NO₂$ reaction was undertaken. Previously, there was only one kinetic investigation of the reaction of NO₂⁻ with HAMS,⁴ although a number of other reactions involving HAMS and reactants in the Raschig synthesis for hydroxylamine have been investigated. $7-9$

The kinetics of the nitrite ion-HAMS reaction were investigated by Seel and Pauschmann at a HAMS concentration greater than 0.1 M.4 The reaction rate was independent of the HAMS concentration and followed a rate law of the form

rate =
$$
(k[H^+] + k[HOAC])[H^+][NO_2^-]
$$

when acetate buffers were used to control the pH at a value near *5.*

The nature of the buffer enhancement and the possible dependence of the reaction on HAMS at lower concentrations were not investigated.

The emphasis of this study is to evaluate the kinetics of the reaction under low-concentration conditions. By determining a rate law that may be extrapolated to concentrations of ionic species in water droplets in a polluted atmosphere, chemists

(9) Seel, V. F.; Knorre, H. *2. Anorg. Allg. Chem.* **1961,** *313,* 70-89.

⁽¹⁾ Raschig, F. *Angew. Chem.* **1904,** *17,* 1398-1420. (2) Ackermann, M. N.; Powell, **R.** E. *Inorg. Chem.* **1966,5,** 1334-1337. (3) Ackermann, M. N. Ph.D. Thesis, University of California at Berkeley, 1966.

⁽⁷⁾ Naiditch, **S.;** Yost, D. *J. Am. Chem. SOC.* **1941,** *63,* 2123-2127.

⁽⁸⁾ Seel, V. F.; Degener, E.; Knorre, H. *Z. Anorg. Allg. Chem.* **1959,** 229, 122-137.