Resonance Raman and Electronic Spectral Study of the Octafluoro-, Octachloro-, Octabromo-, and Octaiododirhenate(II1) Ions. Resonance Raman Spectra and Excitation Profiles at Resonance with the $\delta^* \leftarrow \delta$ **,** $\delta^* \leftarrow (X)\pi$ **, and Putative** $\pi^* \leftarrow \pi$ **Bands**

ROBIN J. H. CLARK* and MARTIN J. STEAD

Received July 23, 1982

The effects on the resonance Raman spectra of excitation within the contours of the accessible $\delta^* \leftarrow \delta$, $\delta^* \leftarrow (X)\pi$, and The effects on the resonance Raman spectra of excitation within the contours of the accessible $\delta^* \leftarrow \delta$, $\delta^* \leftarrow (X)\pi$, and putative $\pi^* \leftarrow \pi$ electronic transitions of the $[Re_2X_8]^2$ ⁻ species (where X = F, Cl, Br *ulteration* the resonance Raman spectra of excitation within the contours of the accessible $\delta^* \leftarrow \delta$, $\delta^* \leftarrow (X)\pi$, and putative $\pi^* \leftarrow \pi$ electronic transitions of the $[Re_2X_8]^2$ species (where $X = F$, Cl, Br, I) ν_1 , the Re-Re stretching mode, dominates the resonance Raman spectrum of each ion at resonance with the $\delta^* \leftarrow \delta$ transition; a progression in ν_2 , the Re-X symmetric stretching mode, dominates at resonance with progressions in both ν_1 and ν_2 are clearly evident at resonance with the putative $\pi^* \leftarrow \pi$ transition. These results, together with Raman-band depolarization ratio measurements, confirm the conclusions of recent Xa-SCF scattered-wave calculations as to the assignments of the electronic bands of the $[Re_2Cl_8]^2$ ion and lead to consistent band assignments for the $[Re_2F_8]^2$, $[Re_2Br_8]^2$, and $[Re_2I_8]^2$ ions. The unusually large intensity of a band assigned to a non totally symmetric bending mode observed in the Raman spectra of the $[Re_2Cl_8]^2$ ⁻ and $[Re_2Br_8]^2$ - ions at resonance with the δ^* \leftarrow $(X)\pi$ transition in each case is interpreted in terms of Jahn-Teller coupling between the components of the ${}^{1}E_{\mu}$ excited state.

Over the past 20 years a wide variety of homo- and heteronuclear metal-metal bonded complexes has been synthesized.' Much of the interest has focused on multiple bonds in simple molecules and ions, the $[Re_2Cl_8]^{2-}$ ion being a typical example. The structural features of this and related species have been investigated by using X-ray crystallography² and infrared,^{3,5} Raman,^{4,5} resonance Raman,⁶ and single-crystal low-temperature electronic spectroscopy.⁷ Theoretical approaches to the bonding in $[Re_2Cl_8]^2$ came first from extended Hückel⁸ and later from X_{α} -SCF scattered-wave calculations.⁹ Early disagreements as to the assignments of the absorption bands in the electronic spectrum of $[Re_2Cl_8]^{2-7,10}$ have now been resolved,^{6,11} and work on the weaker bands in the electronic spectrum¹¹ has led to a fairly complete description of the electronic transitions in this complex ion. The SCF-X α -**SW** relativistic work on the $[Re_2Cl_8]^2$ - ion gives greatly improved agreement between the observed and calculated electronic spectra of the ion,¹² as does the relativistic generalized valence-bond calculation using pseudopotentials for core orbitals.¹³ Since the original Raman studies on the $[Re_2Cl_8]^{2-}$ and $[Re₂Br₈]²⁻ ions, an increase in the range of exciting ra$ diation available and high-yielding and convenient syntheses of the analogous fluoride and iodide^{14,15} have made it possible to extend considerably the vibrational spectroscopic data on these ions. The aim of the work is to obtain resonance Raman

- **(1)** Cotton, F. **A.** *Chem.* **SOC.** *Reu.* **1975,** *4,* **27.**
- **(2)** Cotton, F. **A.;** Harris, C. B. *Inorg. Chem.* **1965,** *4,* **330.**
- **(3)** Oldham, C.; Ketteringham, **A.** P. *J. Chem. SOC., Dalton Trans.* **1973, 2304.**
- **(4)** San Filliuo. **J.:** Sniadoch. **H. J.** *Inow. Chem.* **1973.** *12.* **2326.**
- *(5)* Bratton, 'W. K.; Cotton, F. **A,;** Debeiu, **M.;** Walton, R. **A.** *J. Coord. Chem.* **1971,** *1,* **121.**
- **(6)** Clark, R. **J.** H.; Franks, **M.** L. *J. Am. Chem.* **SOC. 1976,** *98,* **2763.**
- **(7)** Cowman, C. D.; Gray, H. B. *J. Am. Chem. SOC.* **1973,** *95,* **8177.**
- **(8)** Cotton, F. **A.;** Harris, C. B. *Inorg. Chem.* **1967,** *6,* **925.**
- **(9)** Mortola, **A.** P.; Moskowitz, J. W.; Rosch, N.; Cowman, C. D. Gray, **H.** B. *Chem. Phvs. Lett.* **1975. 32. 283.**
- (10) Cotton, F. **A:;** Frenz, B. **A.1** Stults, B. R.; Webb, T. R. *J. Am. Chem. SOC.* **1976,** *98,* **2768.**
- **(11)** Cotton, F. **A.;** Cowman, C. D.; Gray, H. B.; Trogler, W. C. *J. Am. Chem. SOC.* **1917,** *99,* **2993.**
- **(12)** Cotton, **F. A.** *J. Mol. Struct.* **1980,** *59,* **97.**
- **(13)** Hay, P. *J. Am. Chem. SOC.* **1982,** *104,* **7007.**
- **(14)** Peters, G.; Preetz, W. *2. Naturforsch., B: Anorg. Chem., Org. Chem.* **1979,** *348,* **1767.**
- **(15)** Preetz. W.; Rudzik, L. *Angew. Chem.* **1979,** *91,* **159.**

spectra of the $[Re_2X_8]^{2-}$ ions with excitation wavelengths in the regions of those of the lowest allowed transitions in each case and then to interpret the spectra in terms both of current theories of the resonance Raman effect and of the current theoretical model of the electronic structures and bonding in the complexes. **A** logical assignment to the electronic spectra of the $[Re_2F_8]^2$ and $[Re_2I_8]^2$ ions emerges from the analysis. Some features of the present study have appeared in preliminary form.16

Experimental Section

Preparative Details. The tetrabutylammonium salts were prepared by literature methods.^{14,15,17} When the iodide was recrystallized under nitrogen, particular difficulties were experienced in removing any I_3 ⁻ present, and some traces of it were detected later during resonance Raman experiments. The I_3 ⁻ ion is an excellent resonance Raman scatterer when irradiated with blue or ultraviolet laser light, and even small quantities of it can obscure the spectrum of $[(n-C_4H_9)_4N]_2$ - $[Re_2I_8]$. Anal. Calcd for $[(n-C_4H_9)_4N]_2[Re_2F_8]$: C, 38.0; H, 7.10; N, 2.78. Found: C, 37.9; H, 6.71; N, 2.69. Calcd for *[(n-* C_4H_9 ₄N]₂[Re₂Cl₈]: C, 33.6; H, 6.35; N, 2.46; Cl, 24.9. Found: C, 33.4; H, 6.42; H, 2.42; Cl, 24.5. Calcd for $[(n-C_4H_9)_4N]_2[Re_2Br_8]$: C, 25.7; H, 4.83; N, 1.87; Br, 42.7. Found: C, 25.4; H, 4.83; N, 1.85; Br, 42.1. Calcd for $[(n-C_4H_9)_4N]_2[Re_2I_8]$: C, 20.5; H, 3.87; N, 1.49; I. 54.2. Found: C, 20.6; H, 3.89; N, 1.39; I, 54.0.

Instrumental Details. The Raman spectra were recorded with a Spex 1401 spectrometer for the red and near-infrared regions and a Spex 14018/R6 for the blue and ultraviolet regions. Observations of bands at less than 200 cm^{-1} were carried out with the Spex 14018/R6 spectrometer in the triple mode where necessary in order to minimize stray light. Exciting radiation was provided by Coherent Radiation Models CR3, CRSOOK, CRISUV, and CR3000K lasers and a CR 599 dye laser employing the dye LD 700. Resonance Raman excitation profiles for complexes pressed into potassium sulfate disks were obtained at a nominal 14 K using an Air Products Displex system in conjunction with a Leybold-Heraeus turbomolecular pump. It should be noted that the temperature measured on the cryotip will be lower than that at the point of focus of the laser beam on the sample. Raman-band wavenumber measurements were made on the complexes pressed into disks with the appropriate alkali halide and held at ca. 80 K. Depolarization ratios were based on single *I,,* and *I,* scans for intense bands but on up to 30 repeat scans for weak bands, the latter

⁽¹⁶⁾ Presented in part at the symposium "Inorganic Chemistry: Toward the **21st** Century", Bloomington, **IN:** Clark, R. **J.** H.; Stead, **M. J.** *Adu. Chem. Ser.,* in press.

⁽¹⁷⁾ Cotton, F. **A.;** Curtiss, N. F.; Robinson, W. R. *Inorg. Chem.* **1965,** *4,* **1696.**

Table I. Infrared Spectral Data^a for the Complexes $[(n-C_4H_9)_4N]_2[Re_2X_8]$ for $X=F$, Cl, Br, and I

$X = F$	$X = C1$	$X = Br$	$X = I$	
568 vs 560s 552s	347m 338 sh 332 vs 295 w	232 vs 220 m	178 vs 162 wm 138 vw ?	str modes
243 _m 225 _m	165 _m 154 w 126 vw 95 w	112 _m		bending modes

 a Values are in cm⁻¹.

Table II. Band Maxima^a Observed for the Electronic Spectra of the Complexes $[(n-C_4H_9)_4N]_2[Re_2X_8]$ for $X = F$, Cl, Br, and 1

assignt ^b			Вг	
$b_{1\mathbf{u}}(\delta^*) \leftarrow b_{2\mathbf{g}}(\delta)(z)$	17900	14000	14 000	13000
$b_{111}(\delta^*) \leftarrow e_{\varphi}((X)\pi)(x, y)$		30800	23800	14800
$e_{\mathbf{g}}(\pi^*) \leftarrow e_{\mathbf{u}}(\pi)$ (z)		39 200	26 000	19400

 a Values are in cm⁻¹. b Polarizations are indicated in parentheses.

measurements being carried out with a Nicolet 1180 computer.

Electronic spectra, with the complex pressed into an appropriate alkali halide disk, were recorded at ca. 14 and 295 K, with a Cary 14 spectrometer.

Infrared spectra were obtained with a Perkin-Elmer 225 spectrometer, the complexes being pressed into appropriate cesium halide disks, and with a Nicolet 7199 Fourier transform interferometer (courtesy of Dr. P. L. Goggin), the complexes being suspended in a Fluorolube or Nujol mull between thin polythene plates. All infrared measurements were performed on samples held at room temperature.

Results

Infrared Spectroscopy. Neither the analytical data nor the infrared spectrum of the fluoride provides any evidence for the presence of water in the complex, which is, therefore, contrary to the previous report,¹⁴ believed to be anhydrous. The spectra are as previously reported for the chloride and bromide,^{3,5} but in the case of the iodide,¹⁵ two additional weaker bands were also observed. Unfortunately, no bending modes could be assigned for the iodide as observations were limited to the region above 70 cm^{-1} . The infrared data are given in Table I, together with proposed assignments.⁵

The wavenumbers for the Re-Cl and Re-Br asymmetric stretching vibrations are similar to those reported by Ware¹⁸ for $[ReCl_6]^{2-}$ and $[ReBr_6]^{2-}$ (313 and 217 cm⁻¹, respectively). Bands attributable to bending modes were observed around 160 cm⁻¹ for $[Re_2Cl_8]^{2-}$ and 112 cm⁻¹ for $[Re_2Br_8]^{2-}$, which compare closely with values found for the bending frequencies of $[ReCl_6]^{2-}$ and $[ReBr_6]^{2-}$ (172 and 118 cm⁻¹, respectively).¹⁸ For $[Re_2I_8]^{2-}$, bands attributable to stretching vibrations were observed at 178, 162, and 138 cm-I; they are close to the value of 186 cm⁻¹ found for the $v_3(t_{1u})$ stretching vibration¹⁹ of $[PtI₆]^{2-}.$

Electronic Spectra. The electronic spectra of the $[Re_2X_8]^{2-}$ ions as disks at ca. 14 K are closely similar to those reported previously^{11,14,15} (Figures 2-5). Surprisingly, that of the fluoride displayed no vibronic structure on the band at 17 900 cm-'. The band at lowest energy is, in all cases, assigned to the $\delta^* \leftarrow \delta (b_{1u} \leftarrow b_{2g})$ transition (Table II). The next lowest band has been assigned⁹ in the chloride and bromide complexes to a $\delta^* \leftarrow (X)\pi$ transition ($b_{1u} \leftarrow e_g$), and here we extend the argument by analogy to include the iodide and assign the 14800 -cm⁻¹ band of this ion to this transition. The assignments Table **111.** Assignments, Intensities, and Full-Width Half-Maxima (Fwhm) of the Bands Observed in the Raman Spectrum of the Complex $[(n-C_4H_9)_4N]_2[Re_2F_8]$ at 77 K by Using .
530.9-nm Radiation

wavenumber/ fwhm/ cm^{-1}	cm^{-1}	peak height	assignt
180.7	8	3	
231.6	8	3	
317.8	4	100	v_1
501.5		1	$\nu_1 + 180.7$
623.5	4	3	v_{2}
636.4	6	37	2ν ,
769.5	6	3	
816		1	$2\nu_1 + 180.7$
941.2	6	$\overline{\mathbf{3}}$	$\nu_1 + \nu_2$
953.8	8	12	$3\nu_1$
1089.2		3	$v_1 + 769.5$
1108.9		5	$\nu_1 + \nu_2 + 180.7$
1130		$\overline{\mathbf{c}}$	$3v_1 + 180.7$
1256		\overline{c}	$2v_1 + v_2$
1270.3	10	5	4ν ₁
1407		$\overline{\mathbf{c}}$	$2v_1 + 769.5$
1426		4	2ν , + ν ₂ + 180.7
1446			$4v_1 + 180.7$
1571		$\frac{2}{3}$	$3v_1 + v_2$
1586	13	3	5ν ,
1748		3	3ν , + ν , + 180.7

Table **IV.** Assignments, Intensities, and Full-Width Half-Maxima (Fwhm) of Bands Observed in the Raman Spectrum of the Complex $[(n-C_4H_9)_4N]_2[Re_2Cl_8]$ at 77 K by Using 647.1-nm Radiation

of the higher energy bands are far less certain. The 39 21 *5* cm^{-1} band of $[Re_2Br_8]^{2-}$ and the 37735-cm⁻¹ band of of the higher energy bands are far less certain. The 39.215
cm⁻¹ band of $[Re_2Br_8]^{2-}$ and the 37.735-cm⁻¹ band of
 $[Re_2Br_8]^{2-}$ have been assigned to the $\pi^* \leftarrow \pi$ ($e_g \leftarrow e_g$)
transition 9. However, the orbitals transition.⁹ However, the orbitals involved do have substantial (44% in the case of the chloride) halide character, and so such a transition might be expected to move rather more than the ca. 1500 cm-' implied above on going from C1 to Br. Unfortunately, the alternative of assigning the 26000 cm^{-1} band ca. 1500 cm⁻¹ implied above on going from CI to Br. Un-
fortunately, the alternative of assigning the 26000-cm⁻¹ band
of $[Re_2 Br_8]^{2-}$ to the $\pi^* \leftarrow \pi$ transition seems almost as un-
attication seems almost as unof $[Re_2Br_8]^{2-}$ to the $\pi^* \leftarrow \pi$ transition seems almost as unsatisfactory, since this would imply an excessive shift (\sim 13000 cm^{-1}) on going from Cl to Br. For $[Re_2I_8]^2$, it is suggested satisfactory, since this would imply an excessive shift (\sim 13000 cm⁻¹) on going from CI to Br. For $[Re_2I_8]^{2-}$, it is suggested that the 19 400-cm⁻¹ band arises from the $\pi^* \leftarrow \pi$ transition.

Resonance Raman Spectra. Previous experiments on $[Re_2Cl_8]^{2-}$ and $[Re_2Br_8]^{2-}$ were concerned in part with the controversy over the assignment of the lowest lying electronic $[Re_2CI_8]^2$ and $[Re_2Br_8]^2$ were concerned in part with the
controversy over the assignment of the lowest lying electronic
band, this being resolved in favor of the $\delta^* \leftarrow \delta (b_{1u} \leftarrow b_{2g})$
Languarity discretion. This c Laporte-allowed transition. This conclusion is now extended to include both the fluoride and the iodide. Excitation within the contours of all the electronic bands of the halide complexes listed in Table I1 was carried out, with the exception of the 39 000-cm⁻¹ band of $[Re_2Cl_8]^2$, for which no suitable excitation lines were available. Depolarization ratios, harmonic wavenumbers, and anharmonicity constants have also been obtained, wherever possible. The resonance Raman spectra obtained by irradiating within the contours of each of the electronic transitions of each ion are described in turn. The spectral data are presented in such a way as to try to show the possible analogies between particular bands of the different complex anions. **IFRUME: IFRUME: PHONOCOPY**
 IFRUME: The $\hat{\lambda}^* \leftarrow \hat{\lambda}$ electronic transition involves orbitals

complex anions.
 Transition. The $\delta^* \leftarrow \delta$ ($b_{1u} \leftarrow b_{2g}$)
 Transition. The $\delta^* \leftarrow \delta$ electronic transition involves orbitals

that are largely matel based and so excitation should lead that are largely metal based, and so excitation should lead primarily to a change in the metal-metal bond length. On the Franck-Condon (FC) model for resonance Raman scat-

⁽¹⁸⁾ Ware, M. J.; Woodward, L. A. *Spectrochim. Acta* **1964,** *20,* 711.

⁽¹⁹⁾ Adam, D. **M.;** Gebbie, H. *Spectrochim. Acta* **1963,** *19, 925.*

⁽²⁰⁾ Preetz, W.; Peters, *G.;* Rudzik, L. *Z. Naturforsch., B Anorg. Chem., Org. Chem.* **1979,** *348,* **1240.**

Figure 1. Resonance Raman spectra of the complexes *[(n-* C_4H_9)₄N]₂[Re₂X₈] at *ca.* 80 K in the region of their $\delta^* \leftarrow \delta$ transitions: $[Re_2F_8]^2$, KF disk, λ_0 = 530.9 nm (100 mW); $[Re_2Cl_8]^2$, KCl disk, $\lambda_0 = 647.1$ nm (100 mW); $[Re_2Br_8]^2$, KBr disk, $\lambda_0 = 647.1$ nm (150) mW); $[Re_2I_8]^{2-}$, CsI disk, $\lambda_0 = 752.5$ nm (100 mW).

Table **V.** Assignments, Intensities, and Full-Width Half-Maxima (Fwhm) of Bands Observed in the Raman Spectrum of the Complex $[(n-C_4H_9)_4N]_2[Re_2Br_8]$ at 77 K by Using 647.1 -nm Radiation

wavenumber/ cm^{-1}	fwhm/ cm^{-1}	peak height	assignt
211			v_{2}
276		100	ν_{1}
488	6		$v_1 + v_2$
552		16	$2\nu,$
764	6		$2\nu_1 + \nu_2$
828	6		3ν ,
1104	14		4ν .

tering, one would therefore expect the resonance Raman spectrum of $[Re₂X₈]²⁻$ ions to be dominated by an overtone progression in v_1 , the metal-metal stretching vibration.

The spectra obtained for $[Re_2F_8]^{2-}$, $[Re_2Cl_8]^{2-}$, and $[Re₂Br₈]$ ²⁻ were similar to those previously reported^{6,15} (Figure 1) and clearly conform with the above expectations. It was noted that, when a sample of the bromide was cooled, the fluorescence background moves to the red and this allows a more well-defined overtone progression to be observed than that previously reported. The results are listed in Tables 111-V for the fluoride, chloride, and bromide, respectively.

For $[Re_2I_8]^2$ ⁻ (for which resonance Raman spectra have not previously been reported), excitation with **13** 287-cm-' radiation gave an overtone progression v_1v_1 (where v_1 is at 257 cm⁻¹) for all values of v_1 up to and including $v_1 = 5$ and a combination band $v_1 + v_5$, where v_5 is at 198 cm⁻¹ (see Table VI and Figure 1). A weak band at 97 cm^{-1} , labeled ν_4 by previous workers, was also observed with very low intensity. The band assigned to the metal-iodine stretching vibration, v_2 , at 152 cm⁻¹ appeared only with very low intensity in the spectrum and did not form detectable combination bands with ν_1 . This is in contrast to the behavior of ν_2 in the resonance Raman

Table VI. Assignments, Intensities, and Full-Width Half-Maxima (Fwhm) of Bands Observed in the Raman Spectrum of the Complex $[(n-C_4H_9)_4N]_2[Re_2I_8]$ at 77 K by Using 752.5-nm Radiation

	$\ensuremath{\text{wavenumber}}\xspace/\xspace$ cm^{-1}	fwhm/ cm^{-1}	peak height	assignt
	97 152 198 257 453 514 771 1027 1280	4 $\begin{array}{c}\n43 \\ 35 \\ 57\n\end{array}$ $1\,0$ $1\,2$	$\frac{2}{1}$ 5 100 1 25 8 4 \overline{c}	ν_A v_{2} $v_{\rm s}$ v_1 $\frac{\nu_1 + \nu_5}{2\nu_1}$ $3\nu_{\scriptscriptstyle 1}$ $4\nu_1$ $5\nu_{1}$
Absorption				
	25 30	$\frac{30}{20}$	$\overline{15}$ Wavenumber / IO3 cm ⁻¹	10 $I(\nu_i)$ 1(50 ²) 5 $\frac{4}{1(50^{2})}$ ہ∟ $\int_{0}^{2} \frac{I(3\nu_{1})}{I(50_{4}^{2})}$ ۰o ĭо

Figure 2. Electronic spectrum of the complex $[(n-C_4H_9)_4N]_2[Re_2F_8]$ as a Cs[BF4] disk at ca. 14 K, together with excitation profiles of the v_1 , $2v_1$, and $3v_1$ Raman bands of the anion.

Figure 3. Electronic spectrum of the complex $[(n-C_4H_9)_4N]_2[Re_2Cl_8]$ as a KCl disk at ca. 14 K, together with excitation profiles of the ν_1 and ν_2 Raman bands of the anion.

spectra of the fluoride, chloride, and bromide complexes, for which a short combination band progression $v_1v_1 + v_2$ is observed. No other bands at low wavenumber were observed.

No structure was observed in the excitation profiles of the ν_1 , $2\nu_1$, ν_2 , and ν_5 bands of the iodide, as expected, since the $\delta^* \leftarrow \delta$ band is itself unstructured.^{15,21}

The excitation profiles of the v_1 , $2v_1$, and $3v_1$ bands of $[Re₂F₈]²⁻$ (Figure 2), of the ν_1 band of $[Re₂Cl₈]²⁻$ (Figure 3), of the ν_1 band of $[Re_2Br_8]^2$ ⁻ (Figure 4), and of the ν_1 and $2\nu_1$ bands of $[Re₂I₈]²⁻$ (Figure 5) all maximize within the contours of the ν_1 band of $[Re_2Br_8]^{2-}$ (Figure 4), and of the ν_1 and $2\nu_1$
bands of $[Re_2I_8]^{2-}$ (Figure 5) all maximize within the contours
of the respective $\delta^* \leftarrow \delta$ bands, as expected in the A-term FC
model fo model for resonance Raman scattering. Very slight en-

⁽²¹⁾ Clark, R. J. H.; **Stewart, B.** *J. Am. Chem. SOC.* **1981,** *103,* **6593.**

Wavcnumber *I* **I03cm-'**

Figure 4. Electronic spectrum of the complex $[(n-C_4H_9)_4N]_2[Re_2Br_8]$ as a KBr disk at ca. 14 K, together with excitation profiles of the ν_1 and ν_2 Raman bands of the anion.

Figure 5. Electronic spectrum of the complex $[(n-C_4H_9)_4N]_2[Re_2I_8]$ as a CsI disk at ca. 14 K, together with excitation profiles of the ν_1 , $2\nu_1$, ν_2 , and ν_5 Raman bands of the anion.

hancement to the v_5 band of $[Re_2I_8]^{2-}$ is also observed for hancement to the ν_5 band of $[Re_2I_8]^{2-}$ is also
excitation in the vicinity of the $\delta^* \leftarrow \delta$ band.
Dependentially supported

Depolarization ratios *(p)* of totally symmetric modes associated with an electronic transition between nondegenerate states are expected to be $1/3$ at resonance.^{22,23} In agreement with this, the ρ value of the band assigned to the totally symmetric metal-metal stretching vibration v_1 of $[Re_2F_8]^{2-}$ in dichloromethane was found to be 0.33 ± 0.03 for excitation with 18 837-cm⁻¹ radiation, and for $[Re_2Cl_8]^2$ ⁻ and $[Re_2Br_8]^2$ in acetone they were found to be 0.29 ± 0.02 and 0.33 ± 0.02 , respectively, for excitation with 15 453-cm⁻¹ radiation.

Attempts to dissolve $[Re_2I_8]^{2-}$ in acetone gave a brown solution with an electronic absorption spectrum which was completely different from that of $[Re_2I_8]^{2-}$ in the solid state. However, when the solute was recovered by vacuum distillation in the cold, the product had a solid-state electronic absorption spectrum that was identical with that of $[Re_2I_8]^{2-}$. The nature of $[Re₂I₈]²⁻$ in solution is therefore uncertain, and hence, no polarization studies have been carried out on the vibrational bands of this ion. Iarization studies have been carried out on the vibrational
nds of this ion.
Irradiation within the Contour of the $\delta^* \leftarrow (X)\pi$ **(b_{lu}** $\leftarrow e_g$ **)**
notion. The $\delta^* \leftarrow (X)$ is transition (y unplosined) involves

bands of this ion.
 Transition within the Contour of the $\delta^* \leftarrow (X)\pi (b_{1u} \leftarrow e_g)$ **

Transition.** The $\delta^* \leftarrow (X)\pi$ transition $(x, y$ polarized) involves

transfer of closing density from an orbital essentially localized transfer of electron density from an orbital essentially localized on the ligands (X) (composed of p_{τ} halogen orbitals) to an

Table **VII.** Assignments, Intensities, and Full-Width Half-Maxima (Fwhm) of Bands Observed in the Raman Spectrum of the Complex $[(n-C_4H_9)_4N]_2[Re_2Cl_8]$ at 77 K by Using 337.5-nm Radiation

wavenumber/ cm^{-1}	fwhm/ cm^{-1}	peak height	assignt	
117				
154				
176	sh	6		
188	8	19	ν,	
274		12	ν,	
334		2		
361	8	100	$\scriptstyle v_{\scriptscriptstyle 2}$	
548	8	2		
722	10		$\frac{2\nu_1/\nu_2 + \nu_7}{2\nu_2}$	

Figure *6.* Resonance Raman spectra of the complexes *[(n-* C_4H_9 ₄N]₂[Re₂X₈] at ca. 80 K in the region of their $\delta^* \leftarrow (X)\pi$ transitions: $[Re_2Cl_8]^2$, KCl disk, $\lambda_0 = 337.5$ nm (~20 mW); $[Re₂Br₈]²$, KBr disk, $\lambda_0 = 413.1$ nm (130 mW); $[Re₂I₈]²$, CsI disk, $\lambda_0 = 676.4$ nm (100 mW).

antibonding metal-based orbital? One would therefore expect that the equilibrium geometry of the ion would change on δ^* \leftarrow (X) π excitation along the Q_2 (metal-halogen stretching) coordinate and thus (on the FC model for resonance Raman scattering)^{21,22} that the Raman spectrum would be dominated by an overtone progression in v_2 . Depending on the metalmetal bonding nature of the **LUMO** (the **6*** orbital), some small structural change along the Q_1 coordinate might also be expected, leading, in addition, to a weak overtone progression in ν_1

For $[Re_2Cl_8]^2$, for which the $\delta^* \leftarrow (X)\pi$ transition lies at 30800 cm⁻¹, excitation with 29629-cm⁻¹ radiation yielded only a short overtone progression in v_2 , as far as $2v_2$ (Table VII, Figure 6). However, the excitation profile of ν_2 shown in Figure 3 reveals that the enhancement of this band as resonance is approached is much greater than that of ν_1 , in agreement with the FC model for resonance Raman scattering. In contrast to the spectrum obtained at resonance with the δ^* \leftarrow δ transition, bands at 117, 154, 176, 188, and 334 cm⁻¹ are also seen. Depolarization ratios of ν_2 and of the strong band observed at 188 cm^{-1} , which we shall call ν_7 , were measured on exciting with 29 629-cm⁻¹ radiation and found to be 0.15

⁽²²⁾ Clark, R. J. H.; Stewart, B. *Srrucr. Bonding (Berlin)* **1979,** *36,* **1. (23) Siebrand, W.; Zgierski, M. Z.** *Excited* **Srores 1979, 4, 1.**

Table **VIII.** Assignments, Intensities, and Full-Width Half-Maxima (Fwhm) of Bands Observed in the Raman Spectrum of the Complex $[(n-C_4H_9)_4N]_2[Re_2Br_8]$ at 77 K by Using 41 3.1-nm Radiation

wavenumber/ cm^{-1}	fwhm/ $\rm cm^{-1}$	peak height	assignt
65	4	1	
88	12	3	
111	sh	\overline{c}	
123	8	25	v_{η}
179	6	6	v_{4}
211	5	100	v_{2}
240	doublet}	2	
250		3	$2\nu_{7}$
277	5	37	ν ,
335	9	6	$v_2 + v_2$
389	\mathfrak{s}	$\mathbf{1}$	
400	5	\overline{c}	$v_1 + v_2$
422	6	27	$2\nu_{2}$
458	16	$\boldsymbol{2}$	$v_1 + 2v_7$
488	5	11	$v_1 + v_2$
526	13	0.7	$v_1 + 2v_7$
545	sh	1.7	$2\nu_{2} + \nu_{7}$
553	6	8	$2\nu_1$
610	12	1.2	$v_1 + v_2 + v_7$
634	8	12	$3v_2$
670	13	1.0	$2\nu_1 + \nu_4/2\nu_2 + \nu_7$
700	7	0.5	$\nu_1 + 2\nu_2$
739	11	0.3	$v_1 + v_2 + 2v_7$
756	sh	0.3	$3v_2 + v_7$
765	8	6	$2\nu_1 + \nu_2$
830	sh	0.2	$3\nu_1$
846	10	4.0	$4\nu_{2}$
880	20	1.7	$2\nu_1 + \nu_2 + \nu_7$
913	10	2.4	$\nu_1 + 3\nu_2$
950	19	1.1	$3\nu_1 + \nu_7$
969	sh	0.7	$4v_1 + v_7$
976	13	2.9	$2\nu_1 + 2\nu_2$
1043	sh	0.2	$3\nu_1 + \nu_2$
1058	12	2.3	$5\nu_{2}$
1186	15	0.2	$2\nu_1 + 3\nu_2$
1267	17	0.3	$6\nu_{2}$

 \pm 0.01 and 0.78 \pm 0.05, respectively. The depolarization ratio of ν_2 at resonance is close to the value $1/8$ as expected for a totally symmetric mode involved in a transition to a doubly degenerate $({}^{1}E_{\mu})$ excited state, and this is consistent with the proposed electronic band assignment. ν_7 is assigned, on the basis of its depolarization ratio, to a non totally symmetric bending mode.

The non totally symmetric mode ν_7 could have gained intensity from Herzberg-Teller (HT) coupling with another excited state or by Jahn-Teller (JT) coupling within the doubly degenerate state. Since the nearest excited state to which there is an allowed electronic transition is 9000 cm⁻¹ away, the HT mechanism is not likely to be very important, and the dominant effect ought to be due to JT coupling.23 This would give intensity to $\Gamma_{e_u} \otimes \Gamma_{e_u} \supset a_{1g} + a_{2g} + b_{1g} + b_{2g}$ vibrational modes, but only the \mathbf{b}_{1g} and \mathbf{b}_{2g} ones would be JT active (a D_{4h} M_2X_8 system does not possess an a_{2g} fundamental). A vibrational analysis of the $[Re_2X_8]^{2-}$ unit shows that there are two stretching modes, one of e_g and one of b_{1g} symmetry, and four bending modes, two of e_g , one of b_{1g} , and one of b_{2g} symmetry, remaining to be assigned. ν_7 is therefore assigned, on the basis of its wavenumber and depolarization ratio, to either a b_{1g} or a b_{2g} bending vibration. The remaining bands cannot be assigned in the absence of depolarization ratio measurements.

For $[Re_2Br_8]^{2-}$, excitation within the contour of the band maximizing at $23\,800 \text{ cm}^{-1}$ using $24\,205 \text{ cm}^{-1}$ radiation gives a complex resonance Raman spectrum (see Figure 6 and Table **VIII),** which is dominated by a strong overtone progression in the metal-bromine stretching vibration ν_2 (211 cm⁻¹) up

Table IX. Assignments, Intensities, and Full-Width Half-Maxima (Fwhm) of Bands Observed in the Raman Spectrum of the Complex $[(n-C_4H_9)_4N]_2[Re_1I_8]$ at 77 K by Using 676.4-nm Radiation $\frac{1}{2}$ represents the state of $\frac{1}{2}$ repres

wavenumber/ cm^{-1}	fwhm/ cm^{-1}	peak height	assignt
50	sh	\overline{c}	
73	sh	2	
84	sh	6	
97	8	17	v_{4}
119	4	1	ν_{κ}
151	4	100	v_{2}
194	4	22	v_{s}
257	3	76	$\nu,$
303	5	13	$2\nu_2$
347	doublet	6	$v_2 + v_5$
352		6	$v_1 + v_4$
409	5	14	$v_1 + v_2$
453	$\overline{7}$	4	$3\nu_2/\nu_1 + \nu_5$
494	sh	1	$2v_2 + v_5$
515	5	4	$2\nu_1$
547	sh	0.05	
562	6	0.15	$\nu_1 + 2\nu_2$
604	10	0.10	$4\nu_{2}$
669	8	0.05	$2\nu_1 + \nu_2$
709	8	0.05	$2\nu_1 + \nu_5$

to $6v_2$, a weaker progression in v_1 (277 cm⁻¹), the totally symmetric metal-metal stretch up to $3\nu_1$, and a strong band observed at 123 cm⁻¹, which we shall call ν_7 . The excitation profiles of v_1 and v_2 are included in Figure 4; both appear to maximize under the peak of the $\delta^* \leftarrow (X)\pi$ band, with ν_2 showing the greater enhancement. HT coupling should be greater than for the corresponding case in $[Re_2Cl_8]^{2-}$, as the nearest state to which there is a strongly allowed transition is only 2200 cm⁻¹ away; however, the dominant effects are still expected to arise from JT coupling within the ${}^{1}E_{u}$ excited state itself.

Measurement of the depolarization ratios of the bands observed for $[Re_2Br_8]^2$ in acetone solution gave the following values: v_1 , 0.09 \pm 0.01; v_2 , 0.12 \pm 0.01; the 179-cm⁻¹ band, v_4 , 0.74 \pm 0.02; the 123-cm⁻¹ band, v_7 , 0.77 \pm 0.01 for excitation with 24 205-cm-' radiation. **A** value of 1/8 is expected for a totally symmetric mode coupled to an electronic transition between a nondegenerate ground state and a doubly degenerate excited state, while a value of 0.75 is expected for non totally symmetric modes involved in such a transition.^{22,23} These values confirm our assignment of v_1 and v_2 to totally symmetricd modes and also support the assignment of the resonant electronic transition. Thus, ν_7 is assigned to either a b_{1g} or a b_{2g} metal-bromine bending mode, its intensity being derived from JT coupling (cf. $[Re_2Cl_8]^2$), while the band at 179 cm⁻¹, v_4 , is assigned to a b_{1g} stretching vibration. The other weaker bands account for the remaining vibrations, but no positive assignment **can** be made as they are too weak to obtain reliable depolarization measurements thereon.

Simple extension of the above arguments to the iodide leads to the assignment of the electronic absorption band at 14800 cm⁻¹ to the δ^* \leftarrow $(X)\pi$ transition. This extension appears to the hand such the appeariment to the assignment of the electronic absorption band at 14 800 be borne out by the experimental observation of an overtone progression v_2v_2 , for all values of v_2 up to and including v_2 = 4, a short v_1v_1 progression, and a series of combination bands of the type $v_1v_1 + v_2v_2 + v_5v_5$ (where v_5 is at 194 cm⁻¹). The spectrum (see Figure *6)* is similar to those observed when excitation is within the contours of the analogous transitions of the chloride and bromide complexes. The excitation profiles of v_1 , $2v_1$, v_2 , and v_5 all maximize at 14800 cm⁻¹ (see Figure **5). A** complete list of all bands observed for excitation with 14783-cm-' radiation is shown in Table **IX.** Again, JT coupling is thought to be a more important intensity-giving mechanism than is HT coupling to the lower lying A_{2u} excited

Figure 7. Resonance Raman spectra of the complexes *[(n-* C_4H_9)₄N]₂[Re₂X₈] at ca. 80 K in the region of their higher energy (possibly $\pi^* \leftarrow \pi$) transitions: $[Re_2Br_8]^2$, KBr disk, $\lambda_0 = 363.8$ nm (75 mW); $[Re_2I_8]^2$, CsI disk, $\lambda_0 = 514.5$ nm (100 mW).

state 1800 cm^{-1} away. Previous workers²⁰ assigned the weakest band at 119 cm⁻¹, v_6 , to an e_g stretching mode; this is reasonable if one invokes weak HT coupling to ${}^{1}A_{2u}$ state since $\Gamma_{a_{2u}} \otimes \Gamma_{c_u} \supset c_g$. The stronger band at 97 cm⁻¹ is assigned to a \overline{b}_{18} stretching vibration, which gains intensity via JT coupling. No attempt has been made to assign modes observed below 90 cm-I, as they are probably strongly mixed with the lattice modes.

The strong band observed at 194 cm⁻¹, labeled ν_5 , is difficult to assign. Others²⁰ had assigned it to a first overtone of the 97-cm⁻¹ mode, v_4 . This is difficult to accept for two reasons; first, overtones of non totally symmetric modes are normally expected to be very weak, $22,23$ and second, the band appears first, overtones of non totally symmetric modes are normally
expected to be very weak,^{22,23} and second, the band appears
on exciting within the contour of the $\delta^* \leftarrow \delta$ transition, con-
divises under which with the it ditions under which ν_4 itself is very weak.

Assignments of the weaker bands must be regarded as tentative where no depolarization ratios can be obtained.

Irradiation within the Contour of the Band Tentatively Assigned to the $\pi^* \leftarrow \pi$ **(** $e_g \leftarrow e_u$ **) Transition.** Since the $e_u(\pi)$ orbital is Re-Re π bonding and Re-Cl is σ antibonding, whereas the $e_g(\pi)$ orbital is Re-Re π antibonding and orbital is Re-Re π bonding and Re-Cl is σ antibonding,
whereas the $e_g(\pi)$ orbital is Re-Re π antibonding and
(probably) Re-Cl is nonbonding,⁹ the $e_g \leftarrow e_u$ transition is expected to be associated with an increase in the Re-Re bond length and a decrease in the Re-Cl bond length. Thus, Raman progressions in both v_1 and v_2 are expected to be observed at resonance.

For $[Re_2Br_8]^2$, excitation within the contour of the band maximizing at 26 000 cm⁻¹ leads to the development of short overtone progressions in v_1 as well as v_2 and to combination bands of the type $v_1v_1 + v_2v_2 + v_7v_7$. Additionally, weaker bands were seen at $310, 296, 194,$ and 162 cm^{-1} , but these bands formed neither overtone nor combination band progressions. A full list of bands observed in the resonance Raman spectrum obtained by irradiating with $27.488 \cdot \text{cm}^{-1}$ radiation is given in Table **X,** and the complete spectrum is shown in Figure 7. Thus, both v_1 and v_2 are, as expected, strongly enhanced at resonance (Figure 4).

The depolarization ratios of the bands assigned to the ν_1 and ν_2 modes of $[Re_2Br_8]^2$ ⁻ in acetone are as follows: ν_1 , 0.18 \pm 0.02; v_2 , 0.16 \pm 0.02. However, the π^* \leftarrow π transition gives rise only to nondegenerate excited states, ${}^{1}A_{2u}$, ${}^{1}A_{1u}$, ${}^{1}B_{1u}$, and \mathbf{B}_{2u} , of which only the transition to the ${}^{1}A_{2u}$ state is expected to be strongly allowed. The depolarization ratios of totally symmetric modes coupled to a ${}^{1}A_{2u} \leftarrow {}^{1}A_{1g}$ transition are expected to be 1/3. The measured values for the bands assigned to v_1 and v_2 are thus closer to those expected for an electronic transition involving a doubly degenerate excited

Table X. Assignments, Intensities, and Full-Width Half-Maxima (Fwhm) of Bands Observed in the Raman Spectrum of the Complex $[(n-C_4H_9)_4N]_2[Re_2Br_8]$ at 77 K by Using 3 6 3.8-nm Radiation

wavenumber/ cm^{-1}	fwhm/ cm^{-1}	peak height	assignt
124	10	49	ν ,
162	12	10	$v_{\scriptscriptstyle 6}$
194	16	4	
212	10	100	$\nu,$
248	18	12	2ν ,
277	8	98	v_{1}
296	10	4	
310	4	8	
335	18	14	$\nu_{2} + \nu_{2}$
400	8	5	$\nu_{1} + \nu_{2}$
424	16	5	$2\nu_{2}$
463	sh	4	$\nu_{2} + 2\nu_{7}$
489	10	21	$v_1 + v_2$
524	8	2	$v_1 + 2v_7$
552	10	9	2ν
677	6	3	$2\nu_1 + \nu_2/2\nu_2 + 2\nu_2$
700	14	4	$\nu_1 + 2\nu_2$
765	14	2	$2\nu_1 + \nu_2$
887	15	$\overline{\mathbf{c}}$	$2\nu_1 + \nu_2 + \nu_7$
975	14	\overline{c}	$2\nu_1 + 2\nu_2$

state. From this one might infer either that the electronic assignment is incorrect or that the *p* value has been determined too far from rigorous resonance to give the expected value. In fact, measurement of ρ for v_2 using 28 511-cm⁻¹ radiation, which is even further from resonance, reveals a reduction in the value of ρ for $[Re_2Br_8]^{2-}$ to 0.05 \pm 0.01, suggesting that polarization dispersion might indeed account for the unusually low value of ρ .²³ However, the matter is complicated since the appearance of the 123-cm⁻¹ band, v_7 , suggests that JT coupling is present and, hence, that the transition involves a doubly degenerate excited state. To explain the appearance of new bands, HT coupling to the excited state nearby or to the more distant ${}^{1}E_{u}$ state could be invoked. Vibrational modes that are HT coupled to **'E,** state, to which there is an allowed electronic transition, are more likely to be resonance Raman active than vibrational modes HT coupled to states to which electronic transitions are forbidden.' On this basis one would expect to see $\Gamma_{a_{2u}} \otimes \Gamma_{e_u} \supseteq e_g$ modes enhanced; thus, we tentatively assign the 162-cm⁻¹ band, v_6 , to an e_8 stretching mode.

For $[Re_2I_8]^{2-}$, excitation with 19435-cm⁻¹ radiation gives a strong resonance Raman spectrum with short progressions in v_1 , v_2 , and v_5 and a series of combination bands of these fundamentals. These results are similar to those obtained for the bromide for excitation with 27488-cm⁻¹ radiation. Weaker bands at 118, 99, and 84 cm^{-1} are also observed. The appearance of the band at 99 cm⁻¹ assigned²⁰ to a b_{1g} metaliodine stretching mode suggests that JT coupling may also be important for this ion. Table **XI** presents a full list of all bands observed for excitation with 19 435-cm-' radiation, and part of the spectrum is included in Figure 7. The assignments are different from those of the previous workers²⁰ and they do not require the unusual intensity patterns in the band progressions involving totally symmetric modes that have been proposed.

The resonance Raman excitation profiles of $[Re₂I₈]²⁻$ are included in Figure 5, and these seem to suggest that there are two electronic transitions occurring in the **19** 000-20 OOO-cm-' region, one involving the metal-metal bond and the other involving the metal-iodine bonds. The $19\,400\text{-cm}^{-1}$ band is plainly asymmetric. The excitation profile of the band assigned to v_1 maximizes under the main band while the excitation profile of the ν_2 band maximizes under the shoulder at 19800 cm^{-1} on the 19400-cm⁻¹ absorption band. The behavior of the ν_5 band is somewhat unusual, as it appears to have a local minimum between the main band and the shoulder; this could

Table **XI.** Assignments, Intensities, and Full-Width Half-Maxima (Fwhm) of Bands Observed in the Raman Spectrum of the Complex $[(n-C_4H_9)_4N]$ ₂ $[Re_2I_8]$ at 77 K by Using 51 4.5-nm Radiation

wavenumber/	fwhm/	peak	assignt
cm^{-1}	cm^{-1}	height	
84	sh	4	v_{4}
99	8	16	
118	5	6	ν_{κ}
153		27	ν_{2}
196		13	v_{s}
258	$\begin{array}{c} 9 \\ 5 \\ 7 \end{array}$	100	ν_{1}
303		$\boldsymbol{2}$	$2v_2$
346 353 389	{doublet sh	$\frac{3}{3}$ $\mathbf{1}$	$v_2 + v_5$ $v_1 + v_4$ $2\nu_s$
409	5	22	$\nu_1 + \nu_2$
452		4	$v_1 + v_5$
514 561 604	$\frac{9}{2}$	$\overline{7}$ $\frac{4}{2}$	$2\nu_1$ $\nu_1 + 2\nu_2$ $v_1 + v_2 + v_5$
610	doublet	$\mathbf{1}$	$2v_1 + v_4$
648	sh	0.7	$\nu_1 + 2\nu_5$
665 710 755	7 12	6 $\mathbf{1}$ 0.4	$2\nu_1 + \nu_2$ $2v_1 + v_5$ $v_1 + 2v_2 + v_5$
764	doublet	0.4	$3v_1$
818	8	2.0	$2\nu_1 + 2\nu_2$
860 905 918 967	16 ∫doublet 15	0.7 0.4 0.5 0.4	$2\nu_1 + \nu_2 + \nu_5$ $2\nu_1 + 2\nu_5$ 3ν , + ν , $3v_1 + v_5$
1013	20	0.3	$2\nu_1 + 2\nu_2 + \nu_5$

be caused by interference between the two adjacent electronic transitions. 24

In the absence of depolarization ratios, no firm assignment of the 19400-cm^{-1} electronic band can be made except to say that it appears to be similar in nature to the 26000 cm^{-1} band of $[Re_2Br_8]^2$ and involves both metal- and iodine-based orbitals.

Anharmonicity Constants. $[Re_2F_8]^2$. The overtone progression observed by exciting with $18\,837$ -cm⁻¹ radiation, i.e. within the contour of the $\delta^* \leftarrow \delta$ transition, gives a value for ω_1 of 318.5 \pm 0.3 cm⁻¹ and for x_{11} of -0.24 ± 0.08 cm⁻¹.

 $[Re₂Cl₈]^{2-}$. The overtone progressions observed were too short to permit the determination of any harmonic frequencies or anharmonicity constants.

 $[Re₂Br₈]²$. Measuring the wavenumbers of the overtone progression of ν_1 produced by exciting with 15 453-cm⁻¹ radiation gives values of $\omega_1 = 276.0 \text{ cm}^{-1}$ and $x_{11} = 0.00 \pm 0.04$ cm⁻¹. These values differ slightly from those found previously $(276.2 \text{ and } -0.39 \text{ cm}^{-1})$, respectively),⁶ but it should be noted that the present measurements were made at ca. 80 K rather than at room temperature and that, in the previous work, the wavenumber determination had to be made on a spectrum with a rapidly rising fluorescence background. Analogous results were found for ν_2 , viz. $\omega_2 = 211.0 \text{ cm}^{-1}$ and $x_{22} = 0.00 \pm 0.04$ cm-', from the data obtained **by** irradiating within the contour of the $\delta^* \leftarrow (X)^*$ transition.

 $[Re_2I_8]^2$. The overtone progression observed by exciting with of the $\delta^* \leftarrow (X)^*$ transition.

[Re₂I₈]²⁻. The overtone progression observed by exciting with

13 287-cm⁻¹ radiation, i.e. within the contour of the $\delta^* \leftarrow \delta$

transition since a value for ω of 257.5 + 0.2 13 287-cm⁻¹ radiation, i.e. within the contour of the $\delta^* \leftarrow \delta$ transition, gives a value for ω_1 of 257.5 \pm 0.2 cm⁻¹ and for x_{11} of -0.2 ± 0.05 cm⁻¹. Exciting within the contour of the δ^* \leftarrow $(X)\pi$ transition with 14783-cm⁻¹ radiation allows calculation, from the v_2v_2 progression, of a value for ω_2 of 151.5 \pm 0.1 cm⁻¹ and for x_{22} of -0.15 \pm 0.05 cm⁻¹.

Discussion

The foregoing interpretation of the electronic spectra of the $[Re₂X₈]²⁻$ ions is based on a simple FC view of resonance Raman scattering. The assignment of the lowest electronic Ke_2X_8 ² ions is based on a simple FC view of resonance
Raman scattering. The assignment of the lowest electronic
transition of the fluoride and iodide to the $\delta^* \leftarrow \delta$ transition
is firmly hazed since the resonance is firmly based, since the resonance Raman spectra of these ions with 18 837- and 13 287-cm⁻¹ excitation, respectively, is very similar to those obtained for the chloride and bromide complexes when being excited within the contour of their δ^* \leftarrow δ transitions. The assignment is confirmed by the fact that the depolarization ratios of the a_{1g} bands are $1/3$ at resonance. The assignment of the band occurring at 198 cm^{-1} in the spectrum of the iodide is, however, not certain, but the initial proposal²⁰ that it be assigned to the first overtone of the 97cm⁻¹ band is seen to be unlikely.

The tentative assignment for the 30800 -cm⁻¹ band of $[Re_2Cl_8]^2$ ⁻ by Mortola et al.⁹ to a $\delta^* \leftarrow (X)\pi$ ligand-to-metal charge-transfer transition is confirmed. Again the simple FC view of resonance Raman scattering explains the main features of the spectra obtained, that is, the strong overtone progressions based on the metal-halogen stretching vibration ν_2 , but the appearance of an intense non totally symmetric mode, ν_7 , cannot be so explained and must result from JT coupling. The measured depolarization ratios of the a_{1g} modes at resonance of approximately 1/8 are in agreement with the resonant excited state being degenerate $({}^{1}E_{n})$. The depolarization ratio of $3/4$, measured for the ν ₇ band indicates that this band arises from a non totally symmetric mode.

The striking feature of the resonance Raman spectrum of the bromide is the appearance of a strong band at 123 cm-' which is assigned to a non totally symmetric mode on the basis of its depolarization ratio of $3/4$. The intensity of this band results from JT coupling within the excited state. The first overtone of this band is weak, about one-tenth the intensity of the fundamental, as is characteristic of the behavior of non totally symmetric modes.^{22,23}

Without depolarization ratio measurements for the iodide the assignment of the electronic absorption band at 14800 cm^{-1} to the $\delta^* \leftarrow (X)\pi$ transition is tentative, but the assignment is supported by the observation that the resonance Raman spectrum of the ion is similar to those obtained for $[Re_2Cl_8]^2$ and $[Re₂Br₈]²$ with excitation resonant with their analogous electronic transitions.

The resonance Raman spectra obtained by excitation within the contour of the band that has been tentatively assigned to the $\pi^* \leftarrow \pi$ transition of $[Re_2Br_8]^2$ and $[Re_2I_8]^2$ are similar to one another in having short progressions in both ν_1 and ν_2 ; although this is the expected behavior at resonance with a transition involving orbitals that have substantial metal as well as ligand character, as occurs for other dinuclear molybdenum and ruthenium systems, $25-28$ the assignments remain uncertain in this region.

Raman spectra of the ions have also been obtained in the regions of Laporte- and/or spin-forbidden bands,¹¹ but only very slight Raman-band enhancements occur at these wavelengths.

Acknowledgment. We thank the Science and Engineering Research Council and the University of London for financial support.

Registry No. $[(n-C_4H_9)_4N]_2[Fe_2F_8]$, 72931-85-2; $[(n C_4H_9$ ₄N]₂[Re₂Cl₈], 14023-10-0; $[(n-C_4H_9)_4N]_2[Re_2Br_8]$, 14049-60-6; $[(n-C_4H_9)_4N]_2[Re_2I_8]$, 67815-33-2.

⁽²⁴⁾ Clark, **R. J.** H.; Dines, T. J. *Chem. Phys. Left.* **1981,** *79,* **321.**

⁽²⁵⁾ Clark, R. J. H.; Franks, **M.** L. *J. Am. Chem. SOC.* **1975,** *97,* **2691.**

⁽²⁶⁾ Clark, R. J. H.; D'Urso, N. R. *J. Am. Chem. Soc.* 1978, 100, 3088.
(27) Clark, R. J. H.; Franks, M. L. J. Chem. Soc., Dalton Trans. 1976, 1825.

⁽²⁸⁾ Clark, R. J. H.; Ferris, L. T. H. *Inorg. Chem.* **1981, 20, 2759.**