Acknowledgment. This work was supported by the National Science Foundation. Helpful discussions with Dr. Daniel Polcyn and Professor Dennis Evans are gratefully acknowledged.

85096-90-8; Mo₃(OH)₄(C₂O₄)₃, 85096-91-9; HPTS, 104-15-4; HTFMS, 1493-13-6.

Contribution from Rocketdyne, A Division of Rockwell International Corporation, Canoga Park, California 91304

Synthesis of N, N-Difluoro-O-perhaloalkylhydroxylamines. 2. Lewis Acid Catalyzed Addition of NF₃O to Olefins

RICHARD D. WILSON, WALTER MAYA,^{1a} DONALD PILIPOVICH,^{1b} and KARL O. CHRISTE*

Received June 15, 1982

N,N-Difluoro-O-perhaloalkylhydroxylamines, RfONF2, were successfully prepared by the Lewis acid catalyzed addition of NF₃O to olefins. The new compounds $XC_2F_4ONF_2$ (X = F, Cl, Br) were obtained and characterized. The unexpected direction of the NF₃O addition, resulting exclusively in the anti-Markownikoff-type isomer XCF₂CF₂ONF₂, was elucidated by model reactions involving the stepwise addition of BF₃ and NF₃O to $CF_2 = C = CF_2$. It is shown that all reactions can be rationalized in terms of an $R_f BF_2$ intermediate produced by the normal polar addition of BF_3 to the olefin. In the case of $CF_2 = C = CF_2$, the new vinyldiffuoroborane $CF_2 = C(BF_2)CF_3$ was isolated and characterized. Attempts to isolate -ONF2-substituted vinyl compounds by reaction of NF3O with vinyldifluoroboranes led to difluoramino ketones formed via a keto-enol-type tautomerism.

Introduction

Following the discosvery of NF₃O in 1961 by Rocketdyne² and Allied Chemical,³ studies were carried out in these two laboratories to add NF₃O to olefinic double bonds. Except for an incomplete description of some of the Rocketdyne results in a patent⁴ and a one-sentence statement in a paper on NF₃O by the Allied group,³ these data have not been published, partially due to their incompleteness and the lack of a plausible mechanism to explain the observed direction of the NF₃O addition. The previous Rocketdyne studies have now been complemented and are summarized in this paper.

Experimental Section

Caution! The addition reactions of NF₃O to olefins, particularly hydrogen-containing compounds, can proceed explosively. Appropritate safety precautions must be taken when these reactions are carried out.

Materials and Apparatus. The apparatus, handling techniques, and instrumental conditions used in this study have been described in part 1 of this series.⁵ Literature methods were used for the syntheses of NF₃O,⁶ CF₂=C=CF₂,⁷ and CF₂=CFBF₂.⁸ Monomeric CF₂=CF₂ was prepared by vacuum pyrolysis of poly(tetrafluoroethylene); C_2F_3Cl and BF_3 (The Matheson Co.) and C_2F_3Br (Ozark Mahoning Co.) were purified by fractional condensation prior to their use

Syntheses of $XCF_2CF_2ONF_2$. Most reactions of NF₃O in the presence of BF₃ with C_2F_4 , C_2F_3Cl , or C_2F_3Br were carried out according to the following general procedure. Equimolar amounts (3 mmol each) of C_2F_3X (X = F, Cl, Br) and BF₃ were condensed at -196 °C into the tip of a 250-mL Pyrex reactor. The mixture was warmed for 2 h to -78 °C and then recooled to -196 °C. An equimolar

- Pilipovich, D. U.S. Patent 3 440 251, 1969.
 Pilipovich, D. U.S. Patent 3 440 251, 1969.
 Maya, W.; Pilipovich, D.; Warner, M. G.; Wilson, R. D.; Christe, K. O. Inorg. Chem. 1983, 22, 810.
 Maya, W. Inorg. Chem. 1964, 3, 1063.
- Jacobs, T. L.; Bauer, R. S. J. Am. Chem. Soc. 1956, 78, 4815.
- (8) Stafford, S. L.; Stone, F. G. A. J. Am. Chem. Soc. 1960, 82, 6238.

amount of NF₃O (3 mmol) was condensed at -196 °C above the C_2F_3X -BF₃ mixture. The reactor was allowed to warm slowly to -78 °C and was kept at this temperature for several hours before being allowed to warm to ambient temperature. The volatile materials were separated by fractional condensation through a series of traps at -78°C, at -95 °C (for C₂F₃Br reaction), or -112 °C (for C₂F₃Cl reaction), or -142 °C (for $C_2\bar{F}_4$ reaction), and at -196 °C. The -78 °C trap contained small amounts of unidentified material. The -196 °C trap contained mainly unreacted BF3, C2F3X, C2F5X, and sometimes small amounts of NF₃O. The -95, -112, or 142 °C trap contained the desired $XC_2F_4ONF_2$ product. The reactor generally contained some white solid residue, which according to its spectra consisted of NOBF₄. The yields of C₂F₅ONF₂, CF₂ClCF₂ONF₂, and CF₂BrCF₂ONF₂ were about 60, 18, and 10%, respectively. Whereas C₂F₅ONF₂ could be obtained in high purity by the above described simple fractionation, ClC₂F₄ONF₂ and BrC₂F₄ONF₂ contained about 10% of an unidentified halocarbon impurity whose removal required either repeated careful fractionations or gas chromatographic techniques.

CF₃^ACF₂^BONF₂^C: bp -24.9 °C; mp -146.5 °C; mol wt found 185; mol wt calcd 187; log $[P (mm)] = 8.0222 - 1271/[T (K)]; \Delta H_{vap}$ = 5.8 kcal/mol; Trouton constant 23.5; mass spectrum (70 eV) [m/e](intensity) ion], 119 (69) $C_2F_5^+$, 100 (3.4) $C_2F_4^+$, 69 (100) CF_3^+ , 66 (2.1) CF_2O^+ , 52 (29) NF_2^+ , 50 (10) CF_2^+ , 47 (7.1) CFO^+ , 33 (7.7) NF^+ , 31 (12) CF^+ , 30 (24) NO^+ , 19 (1.1) F^+ , 16 (0.3) O^+ ; ¹⁹F NMR (positive shifts are low field from CFCl₃) neat ϕ_A (tr tr = sept) -89.0, $\Phi_{\rm B}$ (quart tr) -95.9, $\phi_{\rm C}$ (br tr) 124.9, CFCl₃ solvent $\phi_{\rm A}$ -85.9, $\phi_{\rm B}$ -93.0, $\phi_{\rm C3}$ 128.1 ($J_{\rm AB}$ = 2.02, $J_{\rm AC}$ = 1.01, $J_{\rm BC}$ = 3.0, $J_{\rm NC}$ = 110 Hz); IR 2640 (vw), 2600 (vvw), 2478 (vw), 2408 (vw), 2350 (vvw), 2317 sh, 2235 (vw), 2090 (vvw), 2050 (vw), 1984 (vw), 1931 (vw), 1867 (vw), 1815 sh, 1791 (vw), 1775 sh, 1679 (vw), 1594 (vw), 1510 (vw), 1471 (vvw), 1401 (mw), 1300 sh, 1247 (vs), 1206 (vs), 1114 (vw), 1028 (vs), 903 (s), 850 (vs), 741 (m, PQR), 730 sh, 660 (w), 621 (vw), 569 (vw),531 (mw), 474 (vvw), 462 (vvw), 444 (vvw) cm⁻¹; Raman (liquid -90 °C) 1402 (0.7), 1240 (0.1), 1205 (0.1), 1111 (1.2) p, 1025 (6.6) p, 903 (0.7) dp, 849 (2.4) p, 835 (1.2) p, 741 (10) p, 659 (2.8) p, 619 (0.7) dp, 570 (3.1) p, 559 (0.2) dp, 529 (0.2) dp, 466 (0.2) dp, 442 (0.1) dp, 358 (1.7) p, 342 (1.9) dp, 303 (6.2) p, 244 (4.1) p, 121 (0.6) dp cm⁻¹. Anal. Calcd for C₂F₇NO: N, 7.48. Found: N, 7.21 (N₂ by evolution by Na reduction). $CICF_2^{A}CF_2^{B}ONF_2^{C}$: bp 13.8 °C; mol wt found 204.6; mol wt calcd

203.5; $\log [P(mm)] = 7.6002 - 1355/[T(K)]; \Delta_{vap} = 6.2 \text{ kcal/mol};$ Trouton constant 21.6; mass spectrum (70 eV) [m/e (intensity) ion]137 (16.2) $C_2F_4{}^{37}Cl^+$, 135 (52.3) $C_2F_4{}^{35}Cl^+$, 119 (20.7) $C_2F_5^+$, 118 (0.6) C₂F₃³⁷Cl⁺, 116 (1.9) C₂F₃³⁵Cl⁺, 100 (9) C₂F₄⁺, 87 (32) CF₂³⁷Cl⁺,

Present addresses: (a) Department of Chemistry, California State University, Pomona, CA 91768; (b) MVT, Microcomputer Systems Inc., Westlake Village, CA 91361. (2) Maya, W. U. S. Patent 3 320 147, 1967.

For, W. B.; MacKenzie, J. S.; Vaanderkooi, N.; Sukornick, B.; Wamser, C. A.; Holmes, J. R.; Eibeck, R. E.; Stewart, B. B. J. Am. Chem. Soc. 1966, 88, 2604

85 (100) $CF_2^{35}Cl^+$, 69 (20) CF_3^+ , 68 (2.4) $CF^{37}Cl^+$, 66 (5.3) $CF^{35}Cl^+$, 52 (28) NF₂⁺, 50 (23) CF₂⁺, 49 (1.3) CCl³⁷⁺, 47 (4.2) CCl³⁵⁺, 47 (8.9) CFO⁺, 37 (1.1) ³⁷Cl⁺, 35 (3.4) ³⁵Cl⁺, 33 (7.7) NF⁺, 31 (21.2) CF+, 30 (23) NO+, 19 (1.2) F+, 16 (0.5) O+; 19F NMR (neat) (liquid 29 °C) ϕ_A (tr tr) -75.2, ϕB (tr tr) -93.7, ϕ_C (br tr) 126.0 (J_{AB} = 2.3, $J_{AC} = 0.95$, $J_{BC} 3.15$, $J_{NC} \sim 100$ Hz); IR 1339 (m), 1286 (vw), 1241 (m), 1200 (vs), 1185 (vs), 1129 (s), 1100 sh, 1058 (vw), 1033 (m), 975 (vs), 909 (m), 898 sh, 845 (vs), 802 (w), 784 (vw), 768 (vw), 720 (vw), 702 (vw), 680 (vw), 656 (w), 615 (vw), 558 (vw), 480 (vvw) cm⁻¹

BrCF₂^ACF₂^BONF₂^C: mol wt found 245; mol wt calcd 248; mass spectrum (70 eV) [m/e (intens) ion] 197 (4.6) $C_2F_4^{81}BrO^+$, 195 (4.6) $C_2F_4^{79}BrO^+$, 181 (66) $C_2F_4^{81}Br^+$, 179 (66) $C_2F_4^{79}Br^+$, 162 (2.4) $C_2F_3^{81}Br^+$, 160 (2.4) $C_2F_3^{79}Br^+$, 131 (100) $CF_2^{81}Br^+$, 129 (100) $CF_2^{79}Br^+$, 119 (83) $C_2F_5^+$, 112 (7.8) $CF^{81}Br^+$, 110 (7.8) $CF^{79}Br^+$, 119 (7.8) $CF^{79}Br^+$, 119 (7.8) $CF^{79}Br^+$, 110 (7.8 $\begin{array}{c} CF_2 & Bi \ , 119 \ (05) \ C_2 I_3 \ , 112 \ (1.6) \ C1 \ D1 \ , 110 \ , 1100 \ , 110 \ , 110 \ , 110 \ , 110 \ , 110 \ , 110 \ , 110 \ ,$ $\phi_{\rm A}$ (tr tr) -70.5, $\phi_{\rm B}$ (quint) -91.9, $\phi_{\rm C}$ (br tr) 126 ($J_{\rm AB}$ = 3.2, $J_{\rm AC}$ = 1.0, $J_{BC} = 3.2$ Hz); IR 1330 (m), 1249 (m), 1208 (vs), 1183 (vs), 1126 (s), 1032 (m), 948 (vs), 908 (mw), 882 (w), 848 (s), 825 (sh), 782 (mw), 777 (mw), 751 (w), 672 (w), 650 (w), 635 (vw), 602 (vw), 550 (vw), 477 (vvw) cm⁻¹

Synthesis of $CF_2 = C(BF_2)CF_3$. Tetrafluoroallene (5.1 mmol) and BF₃ (5.1 mmol) were combined at -196 °C in a Pyrex ampule. The mixture was allowed to warm slowly to ambient temperature, then cooled again to -196 °C, and warmed as before. The volatile products were separated by fractional condensation with $CF_2 = C(BF_2)CF_3$ (3.6 mmol) stopping in a -112 °C trap. The other reaction products were a trace of SiF_4 , oily tetrafluoroallene polymer, and unreacted BF_3 .

 $CF_2 = C(BF_2)CF_3$: colorless liquid and gas; mol wt found 179; mol wt calcd 179.8; approximate bp 12 °C; ¹⁹F NMR (neat liquid, 25 °C) $\phi(CF_c)$ (broad unresolved multiplet) -47.6, $\phi(CF_t)$ (d quart)

-57.3, $\phi(CF_3)$ (d d)-59.9, $\phi(BF_2)$ (br s) -82.2; area ratios 1:1:3:2 $(J_{CF_cCF_3} = 22.6, J_{CF_cCF_3} = 12.0, J_{CF_cCF_1} = 39.0 \text{ Hz})$. Vibration spectra: IR (gas) 1769 (mw), 1714 (vs), 1689 (sh), 1469 (m), 1426 (vs), 1392 (vs), 1323 (m), 1290 (mw), 1260 (sh) 1170 (vs), 1129 (mw), 1081 (vw), 1043 (s), 998 (ms), 969 (mw), 875 (vw), 744 (mw), 736 (m), 708 (vw), 650 (vw), 642 (mw), 608 (m), 581 (w), 539 (mw), 434 (w), 392 (w) cm⁻¹; Raman (liquid, -80 °C) 1770 (0.3) p, 1713 (1.6) p, 1689 (sh), 1465 (0+), 1415 (0.1), 1382 (0.1), 1323 (0.7) p, 1298 (0.4), 1175 (0.1), 1135 (0.1), 992 (0.3) p, 964 (0.2) p, 873 (1.5) p, 742 (10) p, 730 (1.8) dp, 708 (0.5) p, 650 (2.4) p, 637 (1.7) dp, 608 (0.8) p, 580 (0.2) dp, 538 (0.6) p, 434 (0.2) dp, 399 (2.1), 376 (4.5) p, 331 (1.4) p, 193 (0.2) dp, 169 (1.5) dp, 150 (0.2) dp, 129 (0.2) cm⁻¹. The mass spectrum showed parent at m/e 180 ($C_2^{11}BF_7^+$) and 179 $(C_2^{10}BF_7^+)$ and parent minus F at m/e 161 and 160. Hydrolysis of $CF_2 = C(BF_2)CF_3$ gave $CF_2 = CHCF_3 + (HOBF_2)$. Reaction of $CF_2 = C(BF_2)CF_3$ with NF₃O. Trifluoramine oxide (1.8)

mmol) and $CF_2 = C(BF_2)CF_3$ (0.45 mmol) were combined at -196 °C in a Pyrex reactor and allowed to warm slowly to room temp. This cooling-warming was repeated several times. The volatile materials were separated by fractional condensation and consisted of BF₃ (0.45 mmol), unreacted NF₃O (1.3 mmol), and CF₃COCF₂NF₂ (0.45 mmol). This ketone stopped in a -112 °C trap and was identified by its infrared, mass, and ¹⁹F NMR spectra,⁹ molecular weight, and its hydrolysis reaction, which yielded the hydrate CF₃C(OH)₂CF₂NF₂.

The compound CF3COCF2NF2 was also directly obtained by cocondensing equimolar amounts of NF₃O, BF₃, and CF₂=C=CF₂ at -196 °C in a Pyrex ampule and allowing the mixture to warm up slowly to ambient temperature. This warm-up procedure was repeated twice to ensure complete reaction. The reaction products were separated by fractional condensation with the -112 °C trap containing CF₃COCF₂NF₂ in 25% yield. CF₃^ACOCF₂^BNF₂^C: ¹⁹F NMR (CFCl₃) $^{-55}$ °C) ϕ_{A} (tr tr) $^{-76.2}$, ϕ_{B} (quart tr) $^{-109.9}$, ϕ_{C} (br s) 18.0 (J_{AB} = 6.4, J_{AC} = 2.0, J_{BC} = 3.1 Hz), area ratios A:B:C = 3:2:2.

Results and Discussion

Syntheses of -ONF₂-Substituted Perhalocarbons and Mechanism of the NF₃O Addition. Shortly after the discovery

of NF₃O in 1961,^{2,3} studies were begun at Rocketdyne to add NF₃O across olefinic double bonds. At ambient temperature neat NF₃O was unreactive toward olefins such as CF₂=CF₂ or CH2=CH2. Furthermore, UV irradiation of mixtures of NF₃O with either CF_2 =CF₂ or CF_2 =CFCl in Pyrex did not result in any appreciable reaction. Although heating of NF₃O with C_2F_4 or C_2F_3Cl to 150 °C resulted in reaction, the principal products (C₂F₆, C₄F₁₀, CF₃COF, C₂F₅Cl, etc.) arose from fluorination of the olefins and were not the desired RONF₂ addition compounds. However, Lewis acids catalyzed the addition of NF₃O to olefinic double bonds. The most effective Lewis acid was BF₃, but the reaction was generally limited to perhalogenated olefins. Low temperatures were necessary with NF₃O being added at -196 °C to a mixture of BF₃ and the olefin, which had been premixed at -78 °C. The ternary mixture was allowed to warm slowly from -196 to -78 °C and sometimes to ambient temperature. Although other Lewis acids such as PF_5 , AsF_5 , or SbF_5 in the presence or absence of solvents such as anhydrous HF or CF₃COCF₃ were also used, the above described low-temperature BF₃catalyzed reaction gave generally the best and most reproducible results. With use of this method, the following reactions were carried out and their reaction products well characterized.

$$\begin{array}{ccc} XC^{\delta +}F = C^{\delta -}F_2 + NF_3O \xrightarrow{BF_3} XCF_2CF_2ONF_2 \\ X = F, Cl, Br \end{array}$$
(1)

For X = F the yields of the $-ONF_2$ adduct were as high as 70% but decreased with increasing atomic weight of X, with the competitive fluorination reaction to C_2F_5X becoming dominant. For X being iodine, the yield of $ICF_2CF_2ONF_2$ became almost zero.

Only one isomer was obtained for all reactions and, surprisingly, corresponded to an anti-Markownikoff-type addition; i.e., the ONF₂ group was added to the positively polarized carbon atom of the substrate. The observation of only one isomer and the fact that free-radical conditions such as UV irradiation and heat did not produce significant amounts of RONF₂ adducts suggest a polar mechanism.

Since NF₃O is known¹⁰ to form with Lewis acids such as BF₃ ionic adducts containing the NF_2O^+ cation and since the positive charge in NF_2O^+ resides on the nitrogen atom, the simplest polar mechanism would involve a $\pi - \pi$ bond interaction between the N=O bond of NF₂O⁺ and the C=C bond of the olefin:

Although such an intermediate could conveniently account for an attack of the positively polarized carbon by oxygen, the following arguments can be raised against this mechanism: (i) the above $\pi - \pi$ mechanism is analogous to the reaction of two ground-state ethylene molecules to ground-state cyclobutane, which is symmetry forbidden;¹¹ (ii) also, the π - π mechanism cannot account for the products observed in the reaction of $CF_2 = C(BF_2)CF_3$ with NF₃O (see below); (iii) the Lewis acid catalyzed addition of NF₃O to the olefin appears to require reaction temperatures at which the NF₂O⁺ salt has some, albeit small, dissociation pressure. If a preformed stable NF_2O^+ salt is used, fluorination is obtained instead of sub-

Christe, K. O.; Maya, W. Inorg. Chem. 1969, 8, 1253. Wamser, C. A.; (10)Vanderkooi, N.; Buya, W. Inorg. Chem. 1909, 6, 1253. Wamser, C. A.;
Fox, W. B.; Sukornick, B.; Holmes, J. R.; Stewart, B. B.; Juurik, R.;
Vanderkooi, N.; Gould, D. Ibid. 1969, 8, 1249.
Woodward, R. B.; Hoffmann, R. In "The Conservation of Orbital Symmetry"; Verlag Chemie, GmbH: Weinheim/Bergstrasse, West

⁽¹¹⁾ Germany, 1971.

N.N-Difluoro-O-perhaloalkylhydroxylamines

stitution; (iv) premixing of the Lewis acid with the olefin enhances the yield of RONF₂. Most of these arguments suggest that the first step in the NF₃O addition to olefins is the interaction of the olefin with the Lewis acid. Examination of the BF₃-C₂F₄ system at -112 °C showed a positive interaction between the two compounds; i.e., the vapor pressure was significantly lower than that expected from Raoult's law, but no stable adduct was formed. The lack of a stable C_2F_4 ·BF₃ adduct is not surprising since -BF2-substituted saturated fluorocarbons are very unstable due to the great facility for intramolecular migration of a fluorine atom from an α - or β -carbon atom to boron followed by BF₃ elimination.¹² This facility of BF₃ elimination can be strongly decreased by incorporation of an α -perfluorovinyl group. Thus CF₂=CFBF₂ is known⁸ to be stable, and another stable compound CF_2 = $C(BF_2)CF_3$ was prepared for the first time during this study from tetrafluoroallene and BF_3 (eq 2). The direction of this

$$C^{\delta+}F_2 = C^{\delta-} = C^{\delta+}F_2 + F^{\delta-} - B^{\delta+}F_2 \rightarrow CF_2 = C(BF_2)CF_3$$
(2)

addition agrees with that expected from the known¹³ polarity of the bonds in tetrafluoroallene and a normal polar addition of BF₃. The observation of only the BF₃ monoadduct is not surprising, since the addition of a second BF₃ molecule would result in a saturated -BF₂-substituted fluorocarbon, which would be prone to undergo the above mentioned BF_3 elimination¹² with re-formation of $CF_2 = C(BF_2)CF_3$.

The availability of $CF_2 = C = CF_2$ and of its BF_3 adduct allowed us to test the hypothesis that a BF_3 adduct is an intermediate in the BF₃-catalyzed addition of NF₃O to perhaloolefins. If in the BF₃-catalyzed addition reaction of NF₃O to $CF_2 = C = CF_2$ the intermediate is $CF_2 = C(BF_2)CF_3$, then the reaction of $CF_2 = C(BF_2)CF_3$ with NF₃O should result in the same final product. Indeed this was found to be the case. In both reactions, CF₃COCF₂NF₂ was the only -NF₂ containing product. For the $CF_2 = C = CF_2 + BF_3 + NF_3O$ reaction its yield was 25%, whereas for the $CF_2 = C(BF_2)CF_3$ + NF₃O reaction its yield was essentially quantitative. The fact that CF₃COCF₂NF₂ was the only product and that no evidence for an -ONF₂-substituted compound was observed can be readily rationalized by the following sequence. Reaction 2 is followed by a Lewis acid-Lewis base interaction between $CF_2 = C(BF_2)CF_3$ and NF_3O . The formed adduct can then undergo BF_1 elimination (eq 3) to form the vinyl-ONF₂ compound, followed by a quasi keto-enol tautomeric rearrangement (eq 4) to give the observed final product, a difluoroamino ketone. The fact that in the BF₃-catalyzed ad-

dition of NF₃O to $CF_2 = C = CF_2$ the yield of NF₂CF₂C(O)-CF₃ was only 25% compared to 100% for the CF₂=C(BF₂)- $CF_3 + NF_3O$ reaction can be ascribed to the low (60%) yield observed for reaction 2 and the ease of polymerization of tetrafluoroallene.7

The above reactions of tetrafluoroallene lead to a better understanding of the observed reactions between CF2==CFBF2 and NF₃O. Two-NF₂-containing products, CF₃CF₂ONF₂ and $NF_2CF_2CF(O)$, were observed for this reaction. The formation of the latter compound is analogous to the tetrafluoroallene reactions

The formation of $CF_3CF_2ONF_2$ is ascribed to the competitive fluorination reaction (6), followed by reaction 1, the BF_3 -

$$CF_2 = CF(BF_2) + NF_2O^+BF_4^- \rightarrow CF_2 = CF_2 + NO^+BF_4^- + BF_3$$
(6)

catalyzed addition of NF_3O to CF_2CF_2 .

The formation of an intermediate perhalo difluoroborane can also explain the unexpected "anti-Markownikoff-type" addition of NF₃O to the unsymmetric perhalogenated ethylene (eq 1). The observed reaction products can be rationalized by a mechanism assuming the normal polar addition of BF₃ to the double bond, followed by the interaction of the Lewis base NF₃O with the Lewis acid R-BF₂, followed by BF₃ elimination, a fluoride migration from the β - to the α -carbon atom, and formation of the $C-ONF_2$ bond (eq 7). This

mechanism is analogous to that (eq 3 and 5) outlined for the perfluorovinylboranes, except for the -ONF₂ substitution occurring on the β -carbon due to the facile migration of fluorine from the β -carbon to the α -carbon in these saturated fluoroalkylboranes. The $-ONF_2$ substitution on the β -carbon in saturated fluoroalkylboranes vs. α -carbon substitution in vinylboranes may also be favored by the decrease in the C-C-B bond angle upon going from an sp²-hybridized vinylborane to an sp³-hybridized alkylborane.

Attempts to extend the BF3-catalyzed NF3O addition to hydrogen-containing olefins such as CH=CH₂, CF₂=CH₂, and CF₂=CFH were unsuccessful due to both fluorination and polymerization of the substrate. Fluorination of the double bond was also the only reaction observed for CFCI=CFCI and CF_2 =CClCF₂Cl. Similarly, attempts to replace the BF₂ group in CH₂FBF₂ by an ONF₂ group by low-temperature treatment with NF₃O were unsuccessful, resulting in the quantitative fluorination (8).

$$CH_2FBF_2 + NF_3O \rightarrow CH_2F_2 + NO^+BF_4^-$$
 (8)

The low-temperature BF_3 -catalyzed addition of NF_3O to the perfluorinated acetylene CF3C=CCF3 was also studied, but no reaction was observed under the given conditions. With perfluorobutadiene a smooth reaction occurred, but resulted only in fluorination to perfluorobutene-2.

Attempts were unsuccessful to verify the intermediates postulated in eq 3-5 and 7 by low-temperature ¹⁹F NMR spectroscopy. For the $CF_2 = C(BF_2)CF_3 - NF_3O$ system, when kept at -80 °C or below, only the final products NF₂CF₂C-

Lappert, M. F. In "The Chemistry of Boron and its Compounds"; Muetterties, E. L., Ed.; Wiley: New York, 1967; p 461. Banks, R. E.; Hazeldine, R. N.; Taylor, D. R. Proc. Chem. Soc., London (12)

⁽¹³⁾ 1964, 121.

(O)CF₃ and BF₃ were observed. For CF₂=CF₂ and BF₃ in CFCl₃ solution, no interaction was observable at temperatures as low as -120 °C.

Properties of the N,N-Difluoro-O-perhaloalkylhydroxylamines. All the XCF₂CF₂ONF₂-type (X = F, Cl, Br) compounds prepared in this study are colorless gases or liquids, which are stable at ambient temperature. The thermal stability of the compounds is surprisingly high. For example, C₂F₅O-NF₂, when heated over CsF in a Pyrex ampule to 93 °C for 17 h, showed no decomposition. In stainless steel, heating to 325 °C for several hours was required to observe degradation to C₂F₆ and NO. In their chemical properties these R-ONF₂ compounds are similar to NF₃. Thus, C₂F₅ONF₂ is not reduced by HI and is not hydrolyzed by concentrated aqueous alkali solutions at 50 °C. Fluorination of C₂F₅ONF₂ with F₂ at 150 °C produced C₂F₆, but no evidence for NF₃O or the unknown and probably unstable FONF₂ was obtained.

The lack of NF_3O formation in this fluorination reaction supports the spectroscopic evidence that the ONF_2 group in these $RONF_2$ compounds is bonded to the carbon atom through an oxygen and not a nitrogen atom.

The new RONF₂ compounds prepared in this study were thoroughly characterized by spectroscopic techniques, and the observed data are listed in the Experimental Section. ¹⁹F NMR data were particularly useful to demonstrate the presence of the $-ONF_2$ group and to show that, for the unsymmetric perhaloethylenes, $XCF_2CF_2ONF_2$ was the only isomer formed. It should be mentioned that for $BrCF_2CF_2$ - ONF_2 the ¹⁹F NMR spectra were strongly temperature dependent, indicating the presence of different rotamers due to hindered rotation caused by the bulky bromine ligand. The $BrCF_2CF_2ONF_2$ molecule is expected to exist as three different rotamers, one trans and two equally probable gauche forms, which could be sterically less favored.

At 30 °C, the two CF_2 group signals consisted of broad (~15-Hz half-width) unresolved lines. At 20 °C, the two lines separated into two signals each, a resolved lower field signal for the trans isomer and a poorly resolved signal of similar intensity at slightly higher field attributed to the two gauche isomers. At -20 °C the relative intensity and resolution of the trans signals were significantly increased. At -50 °C, the resolution of the trans signal decreased again and the frequency separation between the trans and the gauche signals increased.

Although only the $XCF_2CF_2ONF_2$ isomers were present, the mass spectra generally exhibited CF_3^+ ions of medium intensity. This is not unusual for compounds of this type and is readily explainable by ion recombination in the mass spectrometer. The vibrational spectra are listed in the Experimental Section. The assignments for the CONF₂ group are straightforward and can be made by comparison with those previously discussed for CF₃ONF₂.⁵ In addition to the characteristic⁵ CONF₂ stretching modes in the 1050–850-cm⁻¹ region and the CF₂ stretching modes in the 1300–1100-cm⁻¹ region, the spectra exhibit a medium intense infrared and weak Raman band at about 1400 cm⁻¹, characteristic for the C–C stretching mode.

Properties of $CF_2 = C(BF_2)CF_3$. This new vinyldifluoroborane is a colorless liquid and gas and is stable at ambient temperature. In addition to its spectroscopic identification (see Experimental Section), the compound was identified by its hydrolysis reaction (9), yielding $CF_2 = CHCF_3$.¹⁴ The vi- $CF_2 = CF(BF_2)CF_3 + H_2O \rightarrow CF_2 = CHCF_3 + (HOBF_2)$ (9)

brational spectra of CF_2 =C(BF₂)CF₃ show bands in the regions expected for the stretching modes of the C=C (~1710 cm⁻¹), BF₂, (~1450 and 1290 cm⁻¹),¹⁵ and F₂C=CF (~1390, 1177, and 1040 cm⁻¹)¹⁶ groups. However, these assignments are tentative, and a definitive assignment will require a more detailed study.

Conclusion. The Lewis acid catalyzed addition of NF₃O to olefins provides a useful method for the synthesis of -ONF₂-substituted halocarbons, provided the substrates do not contain hydrogen and are highly fluorinated. Heavy halogens such as iodine or bromine also appear to be detrimental to the yield of $R_f ONF_2$. The only isomer observed for the addition of NF₃O to XCF=CF₂ is $XCF_2CF_2ONF_2$. This apparent anti-Markownikoff-type addition is explainable by the normal polar addition of the Lewis acid to the olefins followed by appropriate substitution and elimination reactions. The intermediate formation of the Lewis acid-olefin adduct was demonstrated for $CF_2 = C = CF_2$. The reactions of NF_3O with vinyldifluoroboranes such as CF_2 =CFBF₂ and CF_2 = C(BF₂)CF₃ indicate that -ONF₂-substituted vinyl compounds are unstable and easily undergo a keto-enol-type tautomeric rearrangement to the corresponding difluoramino ketones.

Acknowledgment. The authors are grateful to M. Warner for his help with some of the experiments and to Drs. C. J. Schack, W. W. Wilson, and L. R. Grant for helpful discussions. This work was financially supported by the Air Force, the Office of Naval Research, and the Army Research Office.

Registry No. NF₃O, 13847-65-9; C_2F_4 , 116-14-3; C_2F_3Cl , 79-38-9; C_2F_3Br , 598-73-2; CF₃CF₂ONF₂, 24687-10-3; ClCF₂CF₂ONF₂, 24684-27-3; BrCF₂CF₂ONF₂, 24684-28-4; CF₂=C(BF₂)CF₃, 84238-04-0; CF₃COCF₂NF₂, 4188-38-9; CF₃C(OH)₂CF₂NF₂, 84238-05-1; BF₃, 7637-07-2; tetrafluoroallene, 461-68-7.

(14) Hauptschein, M.; Oesterling, R. E. J. Am. Chem. Soc. 1960, 82, 2868.
 (15) Parsons, T. D.; Self, J. M.; Schaad, L. H. J. Am. Chem. Soc. 1967, 89,

<sup>3446.
(16)</sup> Shimanouchi, T. Natl. Stand. Ref. Data Ser. (U.S., Natl. Bur. Stand.)
1972, NSRDS-NBS 39, 75-83.