catalytic properties of a Pd₆Cl₁₂ cluster can be different from those of a $Pd_3(CH_3COO)_6$ cluster or those of mononuclear Pd²⁺ species. In this respect the different catalytic activity of low- and high-temperature forms of PdCl₂ in the isomerization of 1-hexene must be mentioned.¹⁰

Experimental Section

Palladium acetate was prepared by a literature method.⁸ Electronic absorption spectra and reflectance spectra were recorded on a Beckman DK-2A spectrophotometer. The mass spectrum was recorded on a Varian Mat 112 mass spectrometer at 70 eV and 150 °C.

X-ray powder spectra were obtained with a Philips diffractometer equipped with a pulse discriminator and driven by a General Automation minicomputer. Internal calibration was made with silicon (ASTM). Molecular weight determinations in benzene have been carried out by F. Pascher Laboratory, Bonn, West Germany.

Preparation of Pd₆Cl₁₂. To a solution of $Pd_3(CH_3COO)_6$ in glacial acetic acid (about 0.05 M) was added the calculated quantity (2 equiv) of concentrated HCl at room temperature. The resulting brown fine precipitate was separated by centrifugation, washed with acetic acid, and dried in vacuo over NaOH. The yields of Pd₆Cl₁₂ are nearly quantitative.

Acknowledgment. We wish to thank Prof. Cesari and Dr. Perego of Assoreni S.p.A., San Donato Milanese, for collecting the X-ray powder spectra and useful discussions and P. Russo for the mass spectra. We thank the Italian CNR for financial support, and A.Y. thanks the Ministero degli Affari Esteri for a fellowship in the frame of the USSR-Italy scientific exchange program.

Registry No. Pd₆Cl₁₂, 12268-04-1; PdCl₂, 7647-10-1; palladium diacetate, 3375-31-3.

(10)Moiseev, I. I.; Grigor'ev, A. A. Dokl. Akad. Nauk SSSR 1968, 178, 132.

Contribution from the Lash Miller Chemical Laboratories, University of Toronto, Toronto, Ontario, Canada M5S 1A1

Thermal and Photochemical Reactivity of Fe and Fe₂ toward CH₄ in Low-Temperature Matrices

Geoffrey A. Ozin* and John G. McCaffrey

Received November 4, 1982

Diiron, but not iron atoms in their ground electronic states, has been reported to react with methane at cryogenic temperatures, to form species of the type CH₃Fe₂H, structure unknown.¹ This proposal was based on Mössbauer and infrared spectroscopic studies. Subsequently, the nonobservation of a resonance Raman spectrum for Fe_2 in solid CH_4 was considered to be consistent with the idea of a special kind of reactivity associated with the diiron moiety,² and analogies with the dissociative chemisorption of CH₄ on bulk iron,³ involving at least two iron sites have been envisaged.¹ Reactivity patterns of a similar type have also been suspected for Fe/Fe_2 in solid N₂, as determined by Mössbauer, infrared,⁴ and optical

(4) P. Barrett and P. Montano, Ber. Bunsenges. Phys. Chem., 82, 30 (1978); J. Chem. Soc., Faraday Trans. 2, 73, 378 (1977).

spectroscopy, $Fe_2(N_2)_n$ complexes being formed, with Fe atoms remaining unreactive.² Evidence for the coexistence of Fe atoms and Fe2 molecules in solid rare gas matrices was originally established by Barrett et al.^{5a} using Mössbauer spectroscopy and subsequently observed by De Vore et al.^{5b} using optical spectroscopy.

Montano et al. have recently reported matrix EXAFS data for the $Fe/Fe_2/Ar$ system that shed considerable light on the local environment of Fe atoms as well as a value of $2.02 \pm$ 0.13 Å for the bond length of Fe_2 entrapped in the focub lattice of solid Ne.⁶ On the basis of Mössbauer spectroscopy, Montano⁷ has assigned a $^7\Sigma_g$ term for the ground electronic state of Fe₂ in solid Ar, with vibrational constant $\omega_e = 300.26$ cm^{-1} and dissociation energy $D_e = 1.2 eV$ being obtained by DiLella et al.² from an analysis of the corresponding resonance Raman spectrum.

Reactions of a number of photoexcited metal atoms^{8,9} and metal clusters¹⁰ with methane and higher alkanes¹¹ under cryogenic conditions have recently been discovered. In particular, the infrared spectrum of Fe/CH₄ matrices subjected to either broad-band⁸ or narrow-band¹² irradiation at $\lambda > 330$ nm and $\lambda = 300$ nm, respectively, showed the production of a new species assigned to CH₃FeH. The latter excitation corresponded to a $(3d^74p^1, {}^5D_4 \leftarrow 3d^64s^2, {}^5D_4)$ resonance line of atomic iron.¹³ Because of the open-shell electronic configurations of atomic¹³ and diatomic⁷ iron, the Fe/Fe₂ matrix system offers an opportunity for probing ground- and excited-state selectivity and reactivity patterns with CH and CC bonds of saturated hydrocarbons that are not readily accessible with Cu/Cu_2 .9,10

In this note we wish to report that under the conditions of our experiments Fe₂ could be coisolated with Fe atoms in solid CH₄ at 10-12 K and was found to neither react thermally (10-50 K) nor react photochemically (400-580 nm) with CH₄, in contrast to the observations of earlier studies.¹ On the other hand. Fe atoms photoexcited at 300 nm are highly reactive toward CH₄ at 12 K, leading to the oxidative-addition product CH₃FeH.^{8,12}

The optical spectra of matrix entrapped Fe atoms and Fe atoms coisolated with Fe₂ in solid Kr are illustrated in Figure 1B,C. Gas- to matrix-phase correlations for the observed Fe atomic resonance lines can be seen from an examination of Figure 1A,B. The gas-phase spectrum (only spin- and dipole-allowed transitions shown) is represented by sticks (Figure 1A), the wavelengths, heights, and notation of which are in accord with the energies, oscillator strengths, and Russell-Saunders electronic state assignments, respectively, suggested from earlier studies.¹³ The three most prominant visible bands of Fe₂ in Kr occur at 418, 474, and 532 nm, close to the wavelengths observed for Fe_2 in solid Ar, 414.5, 474.0, and 544.8 nm in previous investigations.^{2,5} Partially resolved vibronic structure is best seen on the 474-nm absorption of Fe₂

- (7) P. A. Montano, Symp. Faraday Soc., 14 (1980).
 (8) W. E. Billups, J. L. Margrave, M. M. Konarski, and R. H. Hague, J. Am. Chem. Soc., 102, 7393 (1980).
 (9) G. A. Ozin, D. F. McIntosh, S. A. Mitchell, and J. Garcia-Prieto, J. Am. Chem. Soc., 103, 1574 (1981).
 (10) G. A. Ozin, S. A. Mitchell, and J. Garcia-Prieto, Angew. Chem. Suppl., 709 (1982).
- 798 (1982)
- (11) G. A. Ozin, S. A. Mitchell, and J. Garcia-Prieto, Angew. Chem. Suppl., 369 (1982).
- G. A. Ozin and J. G. McCaffrey, J. Am. Chem. Soc., 104, 7351 (1982).
- D. H. W. Carstens, W. Brashear, D. R. Eslinger, and D. M. Gruen, *Appl. Spectrosc.*, 26, 184 (1972); C. Moore, *Natl. Bur. Stand.* (U.S.) *Circ. No.* 467, 1 (1949), 2 (1952), 3 (1958).

P. H. Barrett, N. Pasternak, and R. G. Pearson, J. Am. Chem. Soc., (1) 101, 222 (1979).

⁽²⁾ M. Moskovits and D. P. DiLella, J. Chem. Phys., 73, 4917 (1980). Dr. Moskovits agrees that his inability to observe a resonance Raman spectrum for Fe2 in CH4 matrices at 12 K most probably originates from electronic quenching or energy-transfer effects rather than chemical quenching of Fe₂ by CH₄ (personal communication). J. R. Anderson, Ed., "Chemisorption and Reactions on Metallic Films",

Vol. 2, Academic Press, New York, 1971 (and references cited therein)

⁽⁵⁾ T. K. McNab, H. Micklitz, and P. H. Barrett, Phys. Rev. B, 4, 3787 (1971); H. Micklitz and P. H. Barrett, Phys. Rev. Lett., 28, 1547 (1972); (b) T. C. DeVore, A. Ewing, H. F. Franzen, and V. Calder, Chem. Phys. Lett., 35, 78 (1975).

P. A. Montano and G. K. Shenoy, Solid State Commun., 35, 53 (1980); H. Purdum, P. A. Montano, G. K. Shenoy, and T. Morrison, Phys. Rev. B, 25, 4412 (1982).

Figure 1. UV-visible spectra of (A) gaseous Fe atoms,¹³ (B) Fe atoms isolated in solid Kr $(1/10^4)$ at 10–12 K, (C) Fe atoms and Fe₂ dimers coisolated in solid Kr $(1/10^3)$ at 10–12 K and annealed at 20 K, (D) Fe atoms isolated in solid CH₄ $(1/10^4)$ at 10–12 K, (E) Fe atoms and Fe₂ dimers coisolated in solid CH₄ $(1/10^3)$ at 10–12 K. (Lines marked with an asterisk in part B are ascribed to Fe atoms isolated in thermally unstable (secondary) trapping sites in the lattice of solid Kr.)

 $(\omega_e \sim 230 \text{ cm}^{-1})$, in close agreement with earlier matrix studies.^{2,5} Photoexcitation into the most intense UV lines of Fe atoms in Kr leads only to slight bleaching of the atomic lines with concomitant agglomeration to Fe₂ to only a minor extent. These effects should be contrasted with the extreme sensitivity of the Cu,¹⁴ Ag,¹⁵ and Rh¹⁶ rare-gas matrix systems with respect to metal atom photoaggregation. In addition,

(14) G. A. Ozin, S. A. Mitchell, and J. Garcia-Prieto, J. Phys. Chem., 86, 473 (1982).
(15) J. Farrell, S. A. Mitchell, G. Kenny-Wallace, and G. A. Ozin, J. Am.

(16) G. A. Ozin and A. J. Lee Hanlan, Inorg. Chem., 18, 1781 (1979).

narrow-band irradiation into each of the visible bands of Fe_2 in Kr matrices causes only minor perturbations to the optical spectra of Fe and Fe₂, with very little indication of photofragmentation of Fe₂ to Fe atoms in contrast to that observed in the Cu₂,^{14,17} Ag₂,^{17,18} Cr₂,¹⁹ Mo₂,¹⁹ and Rh₂¹⁶ rare-gas matrix systems. These kinds of Fe/Fe₂/rare-gas solid photochemical experiments served as a necessary prelude to our investigations of Fe/Fe₂/CH₄ matrices, which are described below.

The optical spectra of Fe atoms deposited with CH₄ at 10-12 K under conditions that favored the generation of Fe and Fe/Fe₂ composites (Fe/CH₄ $\simeq 1/10^4$ and $1/10^3$, respectively) are depicted in Figure 1D,E. Correlation of the Fe atomic resonance lines between the gas phase, rare-gas solids, and solid methane is clear from Figure 1. Of particular note is the observation of three well-defined absorptions at 425, 475, and 528 nm in Figure 1E, under matrix preparation conditions which are conducive to the production of substantial concentrations of Fe2. These three absorptions occur at energies very close to the similar bands ascribed to Fe₂ in Ar and Kr solids. Noteworthy also is the observation of partially resolved vibronic structure ($\omega_e \sim 230 \text{ cm}^{-1}$) on the 475-nm band in solid CH₄, which should be compared with the vibrational spacings ($\omega_{\rm e} \sim 220-230~{\rm cm}^{-1}$) observed on the 474-nm bands of Fe_2 in solid Ar and Kr. From these results there can be little doubt that Fe and Fe_2 can be coisolated in 10-12 K CH₄ matrices. Similar Fe/CH₄ $\simeq 1/10^4$ and $1/10^3$ deposits prepared at 10-12 K were examined by infrared spectroscopy in the 4000-200-cm⁻¹ wavelength range. No absorptions other than those attributable to methane were observed in a series of six different experiments.

Narrow-band irradiation into the intense 300-nm (3d⁷4p¹, ${}^{5}D_{4} \leftarrow 3d^{6}4s^{2}$, ${}^{5}D_{4}$) atomic resonance line of Fe atoms in CH₄ under high dispersion $(1/10^4)$ conditions caused rapid bleaching of all Fe atom bands with concomitant growth of a weak, broad absorption around 415-420 nm, corresponding to CH₃FeH.¹² The corresponding infrared experiments¹² clearly demonstrated the production of the CH₃FeH insertion product absorbing strongly at 2921, 2888, 2869, 1650, 1148, 1145, 547, 544, 519, 300, and 293 cm⁻¹, which is in accord with the original observations of Billups et al.⁸ Similar UVvisible and infrared experiments were conducted under lower dispersion conditions (Fe/CH₄ $\simeq 1/10^3$), which promoted the coisolation of Fe/Fe_2 in CH_4 as described above. Under these circumstances, the photoreactivity of Fe₂ toward CH₄ could be investigated by performing selective irradiations at 425, 475, and 528 nm, which correspond to the band maxima of Fe_2 in solid CH₄. Only minor perturbations of the optical spectra of Fe₂ in CH₄ were observed following photochemical treatment of the above type (signaling site interconversions and thermal annealing effects but not chemical reaction). Confirmation of the photoinertness of Fe₂ toward CH₄ stemmed from the analogous infrared experiments, in which no absorptions other than those ascribable to methane were detected in the 4000-200-cm⁻¹ range, in agreement with earlier observations.8

The thermal reactivity of Fe_2 with respect to CH_4 was also examined in the accessible cryogenic range 10-50 K. Up to the temperature that the methane actually sublimed away from the sample window (around 50 K) no new infrared or optical bands ascribable to an Fe atom, Fe_2 dimer, or Fe_n cluster CH_4 reaction product were ever observed.

Collectively, these observations for $Fe/Fe_2/CH_4$ matrices force one to the inescapable conclusion that diiron does not

(19) G. A. Ozin, J. Mol. Catal., 3, 195 (1977).

⁽¹⁵⁾ J. Farrell, S. A. Mitchell, G. Kenny-Wallace, and G. A. Ozin, J. Am. Chem. Soc., 102, 7702 (1980).

⁽¹⁷⁾ G. A. Ozin, H. Huber, D. McIntosh, S. A. Mitchell, J. G. Norman, Jr., and J. Nordleman, J. Am. Cham. Soc. 101, 3504 (1979)

<sup>and L. Noodleman, J. Am. Chem. Soc., 101, 3504 (1979).
(18) J. Farrell, S. A. Mitchell, G. Kenny-Wallace, and G. A. Ozin, J. Am. Chem. Soc., 103, 6030 (1981).</sup>

react with CH₄ on deposition, or during subsequent thermal annealing (10-50 K), or following photoexcitation into any of its visible absorptions (400-580 nm). In contrast, 300 nm photoexcited Fe atoms do react with CH₄ at 12 K to yield CH₃FeH, whereas ground-state Fe atoms are inert toward CH_4 up to 50 K.

We believe that the nonobservation of Mössbauer and resonance Raman spectra of Fe2 in solid CH4, compared to the case of solid rare gases^{1,2} in earlier studies, could well be traced to differences in the experimental conditions required to produce detectable amounts of Fe₂ in CH₄ and/or to electronic quenching or energy-transfer effects and that the infrared spectra reported by Pearson et al.¹ might have originated from back-streaming of methane into the furnace region and subsequent trace cracking of CH₄ on the hightemperature source possibly followed by reaction of fragments such as CH₃, CH₂, CH, C, and H with Fe/Fe₂²⁰ during the matrix deposition.

Acknowledgment. The generous financial assistance of the Natural Sciences and Engineering Research Council of Canada's Strategic Energy Programme is greatly appreciated. In addition, J. G. McCaffrey expresses his gratitude for a University of Toronto Open Scholarship.

Registry No. Fe₂, 12596-01-9; Fe, 7439-89-6; CH₄, 74-82-8; CH₃FeH, 83615-51-4.

Contribution from the Department of Chemistry, University of British Columbia, Vancouver, B.C., Canada V6T 1Y6

Magnetic Behavior of Tetranuclear Copper(II) Complexes. An Explanation in Terms of the Isotropic Heisenberg Model

Donald H. Jones, John R. Sams, and Robert C. Thompson*

Received August 4, 1982

Complexes such as chloro(2-(diethylamino)ethanolato)copper(II),¹ (acetylacetone)(o-hydroxyanil)copper(II),² $Cu_2Br_4(C_5H_5N)_2$,³ Fe₄Cl₃(OMe)₉,^{4,5} and Fe(C₆H₅COO)- $(OMe)_2^6$ exhibit magnetic behavior that has been modeled successfully by an isotropic Heisenberg Hamiltonian involving more than one coupling constant, J. The purpose of this work is to show that such a model also provides a satisfactory explanation for the magnetism of a number of tetranuclear copper(II) complexes of the form $Cu_4OX_6L_4$, where X represents a chloride or bromide ion and L a Lewis base ligand, many of which show a maximum in the magnetic moment as a function of temperature. The structure of several of these tetranuclear complexes has been shown to be based on a $(CuL)_4$ tetrahedron with an oxygen atom at the center and edge-bridging halides.⁷⁻⁹

- (1) Hall, J. W.; Estes, W. E.; Estes, E. D.; Scaringe, R. P.; Hatfield, W. Hall, J. W., Estes, W. E., Lette, D. S., Chen, 1969, 8, 1376. E. Inorg. Chem. 1977, 16, 1572. Hatfield, W. E.; Inman, G. W. Inorg. Chem. 1969, 8, 1376. Swank, D. D.; Willett, R. D. Inorg. Chem. 1969, 22, 97. Kakos, G. A. Winter, G. Aust. J. Chem. 1969, 22, 97.
- (4)
- (5)
- Abbreviations used in this work: Me, methyl; py, pyridine, pyo, pyridine N-oxide; tmu, tetramethylurea; Me₂SO, dimethyl sulfoxide; 3-quin, 3-quinuclidinone
- (6) Kokot, E.; Mockler, G. M.; Sefton, G. L. Aust. J. Chem. 1975, 28, 299.

Table I. Fits to the Heisenberg Model Using Data from Wong¹²

complex	$J_1,$ cm ⁻¹	J_2, cm^{-1}	X	g	FITª
$(NMe_4)_4(Cu_4OCl_{10})^b$	200	-135	0.94	2.10	0.068
$(NMe_4)_4(Cu_4OCl_6)Br_4^b$	220	-148	0.96	2.07	0.068
$Cu_{4}OBr_{6}(py)_{4}$	45	-28	0.94	2.21	0.038
Cu ₄ OCl ₆ (pyo) ₄	210	-106	~0	2.14	0.031
$Cu_4OCl_6(tmu)_4$	190	97	~0	2.04	0.09°
$Cu_4OCl_6(Me_2SO)_4$	280	-141	~0	2.11	0.029
$Cu_4OBr_6(Me_2SO)_4$	195	-98.8	~0	2.25	0.027

^a FIT = rms deviation of the calculated from the experimental moments. ^b These data may be affected by a monomeric impurity. c Neither the orbital degeneracy model nor the Heisenberg model gives good fits to these data.

Figure 1. Coupling constants of the copper tetrahedron.

The experimental results tested are those of Lines,¹⁰ Hatfield,¹¹ Dickinson,⁷ and Wong.¹² The data of Wong et al.¹² are the most recent and extensive and are considered in detail.

When considering magnetic exchange in polyatomic systems it is usual to assume the following: (1) all coupling constants J are equal; (2) the ground state is an orbital singlet; (3) intercluster interactions are negligible. The magnetic behavior can often be explained if these assumptions are retained; removing them complicates the model and causes ambiguity in any fits to experimental results. For the tetranuclear complexes under consideration here, no explanation retaining all the above assumptions is possible. Previous models have removed assumptions 2 and 3,^{10,13} but not assumption 1, though models with several J's have previously been used successfully for effectively antiferromagnetic systems.¹

The experimental data for these complexes have been successfully fitted to an orbitally degenerate ground state model by Lines et al.¹⁰ However, as noted by Wong et al.,¹² copper complexes in which orbital effects are important in magnetic exchange are rare and thus on this model the tetranuclear copper(II) complexes seem anomalous. The intercluster exchange model,¹⁰ though it fits the experimental data almost as well as the orbitally degenerate model, frequently invokes an intercluster exchange parameter that is larger than is physically reasonable-large enough to cause long-range ordering effects that are not observed experimentally. Thus some doubt exists about the validity of both these earlier models.

In the present work it is shown that a pairwise antiferromagnetic distortion of a ferromagnetic tetrahedron can re-

- Dickinson, R. C.; Helm, F. T.; Baker, W. A.; Black, T. D.; Watson, W. (7)H. Inorg. Chem. 1977, 16, 1530.
- Bertrand, J. A.; Kelley, J. A. Inorg. Chem. 1969, 8, 1982. Bertrand, J. A. Inorg. Chem. 1967, 6, 495.
- Lines, M. E.; Ginsberg, A. P.; Martin, R. L.; Sherwood, R. C. J. Chem. (10)Phys. 1972, 57, 1. Barnes, J. A.; Inman, G. W.; Hatfield, W. E. Inorg. Chem. 1971, 10, (11)
- 1725. Wong, H.; tom Dieck, H.; O'Connor, C. J.; Sinn, E. J. Chem. Soc., (12)
- Dalton Trans. 1980, 786.
- (13) Ginsberg, A. G.; Lines, M. E. Inorg. Chem. 1972, 11, 2289.

⁽²⁰⁾ R. Hague and J. Margrave at Rice University have also found that Fe₂ is nonreactive toward CH4 at 12 K (private communication). Recent unpublished research by R. Pearson and P. Barrett also appears to support the view that it is Fe atoms and not Fe_2 that react with CH_4 (private communication).