Contribution from the Department of Chemistry. University of Arizona, Tucson, Arizona 85721

Observation of ⁹⁵Mo-¹⁴N Spin-Spin Coupling in Multinuclear NMR Studies on $(\eta^5 - C_5 H_5)M_0(CO)_2(NO)$ and Related Compounds¹

Martin Minelli, John L. Hubbard, Kenner A. Christensen, and John H. Enemark*

Received December 3, 1982

One impetus for the rapid growth of ⁹⁵Mo NMR as a direct probe of molybdenum centers in the past few years² is the importance of molybdenum in many enzymatic reactions³ and the future possibility of studying the molybdenum-containing cofactors^{4,5} of enzymes by ⁹⁵Mo NMR. Important prerequisites for such future cofactor studies are chemical shift and coupling constant data from known molybdenum complexes. Especially pertinent to the cofactors for nitrogenases⁵ and the cofactors for nitrate reductases⁴ are ⁹⁵Mo NMR studies of molybdenum complexes of simple nitrogen ligands. Here, we report the first example of ⁹⁵Mo-¹⁴N spin-spin coupling in a molybdenum compound.

Experimental Part

The procedure of Legzdins et al.⁶ was used to prepare (η^5 - $C_{1}H_{1}M_{0}(CO)_{2}(NO)$, and the method of Atwood et al.⁷ was used for $(\eta^5 - C_5 Me_5) Mo(CO)_2(NO)$. Both compounds were sublimed prior to the NMR measurements. K[HB(3,5-Me₂Pz)₃Mo(CO)₃] and $K[HB(Pz)_{3}Mo(CO)_{3}]$ (where $HB(3,5-Me_{2}Pz)_{3}$ = hydrotris(3,5-dimethylpyrazolyl)borate and $HB(Pz)_3 = hydrotris(pyrazolyl)borate)$ were prepared according to Trofimenko,8 converted to their dicarbonylnitrosyl derivatives, and purified according to the procedure of McCleverty et al.9

- (1) Presented in part at the Southwest/Rocky Mountain Meeting of the American Chemical Society, El Paso, TX, Dec 1-3, 1982; paper 135.
- (a) Vold, R. R.; Vold, R. L. J. Magn. Reson. 1975, 19, 365. (b) Kautt, W. D.; Kruger, H.; Lutz, O.; Maier, H.; Nolle, A. Z. Naturforsch., A 1976, 31A, 351. (c) Lutz, O.; Nolle, A.; Kroneck, P. Ibid. 1976, 31A, 454; **1977**, 32A, 505. (d) Masters, A. F.; Gheller, S. F.; Brownlee, R. T. C.; O'Connor, M. J.; Wedd, A. G. Inorg. Chem. **1980**, 19, 3866. (e) Masters, A. F.; Brownlee, R. T. C.; O'Connor, M. J.; Wedd, A. G.; Cotton, J. D. J. Organomet. Chem. 1980, 195, C17. (f) Gheller, S. F.; Gazzana, P. A.; Masters, A. F.; Brownlee, R. T. C.; O'Connor, M. J.; Wedd, A. G.; Rogers, J. R.; Snow, M. R. *Inorg. Chim. Acta* 1981, 54, L131. (g) Christensen, K. A.; Miller, P. E.; Minelli, M.; Rockway, T. W.; Enemark, J. H. *Ibid.* 1981, 56, L27. (h) Dysart, S.; Georgii, I.; Mann, B. E. J. Organomet. Chem. 1981, 213, C10. (i) LeGall, J. Y.; Kubicki, M. M.; Petillon, F. Y. Ibid. 1981, 221, 287. (j) Masters, A. F.; Brownlee, R. T. C.; O'Connor, M. J.; Wedd, A. G. Inorg. Chem. 1981, 20, 4183. (k) Minelli, M.; Rockway, T. W.; Enemark, J. H.; Brunner, H.; Muschiol, M. J. Organomet. Chem. 1981, 217, C34. (1) Enemark, J. H. In "Nitrogen Fixation: The Chemical-Biochemical-Genetic Interface"; Newton, W. E., Müller, A., Eds.; Plenum Press: New York, 1983; p 329. (m) Alyea, E. C.; Lenkinski, R. E.; Somogyvari, A. Polyhedron, 1982, 1, 130. (n) Bailey, J. T.; Clark, R. J.; Levy, G. C. Inorg. Chem. 1982, 21, 2085. (o) Gheller, S. F.; Brownlee, R. T. C.; O'Connor, M. J.; Wedd, A. G. Chem. Uses Molybdenum, Proc. Conf., 4th 1982, 67. (p) Alyea, E. C.; Somogyvari, A. Ibid. 1982, 46. (q) Brownlee, R. T. C.; Masters, A. F.; O'Connor, M. J.; Wedd, A. G.; Kimlin, H. A.; Cotton, J. D. Org. Magn. Reson. 1982, 20, 73.
 (r) Jaitner, P.; Wohlgenannt, W. Monatsh. Chem. 1982, 113, 699. (s)
 Alyea, E. C.; Topich, J. Inorg. Chim. Acta 1982, 65, L95. (t) Kubicki,
 M.; Kergoat, R.; LeGall, J. Y.; Guerchais, J. E.; Douglade, J.;
 Mercier R. Aust. J. Chem. 1982, 35, 1543. (u) Donovan-Mtunzi, S.; Hughes, M.; Leigh, G. J.; Mason, J.; Ali, H. M.; Richards, R. L. J. Hughes, M.; Leigh, G. J.; Mason, J.; Ali, H. M.; Richards, R. L. J. Organomet. Chem. 1983, 246, C1. (v) Freeman, M. A.; Schultz, F. A.; Reilley, C. N. Inorg. Chem. 1982, 21, 567.
 (3) Coughlan, M. P., Ed. "Molybdenum and Molybdenum Containing Enzymes"; Pergamon Press: Oxford, 1980.
 (4) Johnson, J. L. Reference 3, p 345 ff.
 (5) Pienkos, P. J.; Shah, V. K.; Brill, W. J. Reference 3, 385 ff.
 (6) Hoyano, J. K.; Legzdins, P.; Malito, J. T. Inorg. Synth. 1978, 18, 126.
 (7) Malito, J. T.; Shakir, R.; Atwood J. L. J. Chem. Soc., Dalton Trans. 1980, 1253.

- 1980, 1253.
- Trofimenko, S. J. Am. Chem. Soc. 1969, 91, 588. McCleverty, J. A.; Seddon, D.; Bailey, N. A.; Walker, N. W. J. Chem. Soc., Dalton Trans. 1976, 898.

Figure 1. ⁹⁵Mo and ¹⁴N NMR spectra of $(\eta^5-C_5H_5)Mo(CO)_2(NO)$ in CH₃CN at 293 K showing ¹⁴N-⁹⁵Mo spin-spin coupling.

Figure 2. ⁹⁵Mo NMR spectra of $(\eta^5-C_5H_5)Mo(CO)_2(NO)$ in CH₃CN at different temperatures: (A) T = 245 K; (B) T = 263 K; (C) T = 283 K; (D) T = 293 K.

All solvents were dried prior to use, and the NMR spectra were measured in sealed 10-mm NMR tubes under nitrogen or argon. Solution concentrations were usually 0.1 M; less soluble complexes were studied as saturated solutions. The NMR spectra were obtained by using a Bruker WM250 NMR spectrometer. For the ⁹⁵Mo NMR spectra a molybdenum probe (16.3 MHz) was used. A delay of 200 μ s prior to acquisition was used to reduce the effects of probe ringing. A 2 M Na₂MoO₄ solution in H₂O at pH 11 was used as external standard.

For the ¹⁴N (18.1 MHz) and ¹⁷O (33.9 MHz) NMR spectra a 10-mm broad-band probe (9-36 MHz) was used. Nitromethane (neat) was used as external reference for ¹⁴N, and H₂O was the external reference for ¹⁷O.

Results and Discussion

The ⁹⁵Mo NMR signal of $(\eta^5-C_5H_5)Mo(CO)_2(NO)$ (1) occurs at -1567 ppm and is split into a triplet due to ⁹⁵Mo-¹⁴N spin-spin coupling between the molybdenum atom and the nitrogen atom of the nitrosyl ligand. The coupling constant is 46 Hz in CH₃CN at room temperature (Table I and Figure 1). Cooling the sample, which causes an increase in the correlation time (τ_c) , leads to the collapse of the triplet to a single line with a line width that is smaller than the overall width of the triplet (Figure 2). Heating the sample (decrease of τ_c) sharpens the triplet. Because of solvent limitations and decomposition of the complex at higher temperatures, a perfect 1:1:1 triplet could not be observed.

The collapse of the triplet with decreasing temperature follows the trend observed in spectra of protons coupled to ¹⁴N

The 95 Mo, 14 N, and 17 O NMR spectra were measured at two fields, 5.872 T (Bruker WM 250) and 9.395 T (Bruker WM 400). The (10) measurements on the WM 400 were carried out by Dr. C. Brevard at the Bruker facilities in Wissembourg, France.

Table I. ⁹⁵Mo, ¹⁴N, and ¹⁷O NMR Data

	chem shift, ppm		⁹⁵ Mo- ¹⁴ N	chem shift, ppm		
compd	95 Mo ^a	¹⁴ N ^b	coupling, Hz	C ¹⁷ O ^c	N ¹⁷ O	
$(\eta^{5}C_{3}H_{3})M_{0}(CO)_{2}(NO)$ $(\eta^{5}-C_{3}Me_{3})M_{0}(CO)_{2}(NO)$ HB(3,5-Me_{2}Pz)_{3}M_{0}(CO)_{2}(NO) HB(Pz)_{3}M_{0}(CO)_{2}(NO)	$\begin{array}{c} -1584 \ (\leqslant 40)^{d,j} \\ -1404 \ (\leqslant 40)^{d,j} \\ -751 \ (60)^{g,j} \\ -672 \ (70)^{g,j} \end{array}$	38 (50) ^e 52 (60) ^e 17 (130) ^e 18 (160) ^e	46 ^d 46 ^f 44 ^h i	423 (10) ^d 424 (10) ^d	448 (100) ^d 454 (120) ^d	

^a Relative to 2 M Na, MoO₄ at pH 11; line width in Hz in parentheses. ^b Relative to nitromethane neat. ^c Relative to H₂O. ^d In CH₃CN at 293 K. ^{*e*} In CH₂Cl₂/CD₂Cl₂ at 293 K. ^{*f*} In CH₃CN at 343 K. ^{*g*} In CH₃CN/acetone at 293 K. ^{*h*} In DMF at 423 K. ^{*i*} Not yet resolved in DMF at 423 K. ^{*i*} Line width of the central peak at half-height.

as the rate of electric quadrupole relaxation of the ¹⁴N nucleus is increased.¹¹⁻¹⁴ The line widths as estimated from peak intensities follow the expected 3:2:3 ratio for an intermediate rate of quadrupole relaxation of the ¹⁴N nucleus.¹⁵ Similar ⁹⁵Mo-¹⁴N spin-spin coupling was observed in DMF, CH₂Cl₂, and benzene. In higher viscosity solvents, elevated temperatures were required to observe well-resolved triplets. The splittings are field independent,¹⁰ further confirming their origin as spin-spin coupling.

If the $(\eta^5 - C_5 H_5)^-$ ligand of 1 is replaced by $(\eta^5 - C_5 M e_5)^-$, HB(3,5-Me₂Pz)₃⁻, or HB(Pz)₃⁻, then τ_c increases in the order $(\eta^5-C_5H_5)^- < (\eta^5-C_5Me_5)^- < HB(3,5-Me_2Pz)_3^- < HB(Pz)_3^-$, and elevated temperatures are required to resolve the ⁹⁵Mo-¹⁴N coupling (Table I). The relative order of τ_c for the HB- $(3,5-Me_2Pz)_3^-$ and $HB(Pz)_3^-$ complexes is the opposite of that expected from their molecular weights. The same relative order of τ_c is found from ¹¹B NMR on these two complexes. Different interactions of the complexes with the solvent are one possible explanation for this behavior. For the $HB(Pz)_{1}$ compound the triplet is just beginning to be resolved at 423 K in DMF.

The ⁹⁵Mo chemical shifts become more deshielded in the order $(\eta^5 - C_5 H_5)^- < (\eta^5 - C_5 M e_5)^- < HB(3, 5 - M e_2 P z)_3^- < HB$ $(Pz)_3^-$. Methylation of the $(\eta^5-C_5H_5)^-$ ligand causes deshielding whereas methylation of the $HB(Pz)_3^{-1}$ ligand causes more shielding.

The ⁹⁵Mo-¹⁴N spin-spin coupling of 46 Hz was also detected in the ¹⁴N NMR spectrum of 1 by using Gaussian multiplication (Figure 1). A sextet of weak satellite peaks is expected in the ¹⁴N spectrum from coupling to ⁹⁵Mo ($I = \frac{5}{2}$, 15.8% abundant), but the inner two components are obscured by the strong central line for ¹⁴N bonded to the molybdenum isotopes with I = 0. This central line is broadened by coupling to ⁹⁷Mo (I = 5/2, 9.46% abundant), which has a larger quadrupole moment than ⁹⁵Mo. The ¹⁵N spectrum of **1** in CDCl₃ was reported earlier,¹⁶ but no ¹⁵N–⁹⁵Mo coupling was observed.

Replacement of the $(\eta^5 - C_5 H_5)^-$ group of 1 by $(\eta^5 - C_5 M e_5)^$ causes a 14 ppm downfield shift of the ¹⁴N resonance of the nitrosyl group. The nitrosyl groups of the $HB(3,5-Me_2Pz)_3^{-1}$ and $HB(Pz)_{3}$ compounds have nearly identical resonances ~20 ppm upfield from 1 (Table I).^{17,18}

The ¹⁷O chemical shifts for the $(\eta^5 - C_5H_5)^-$ and $(\eta^5 - Me_5C_5)^$ derivatives are also listed in Table I. No coupling between ¹⁷O and ¹⁴N was detected. Attempts to observe ⁹⁵Mo-¹³C coupling as satellite peaks in the ¹³C spectra were unsuccessful.

This is the first observation of ${}^{95}Mo{-}{}^{14}N$ spin-spin coupling. Previously, coupling of ${}^{95}Mo$ to ${}^{17}O, {}^{19}$ ${}^{31}P, {}^{2e,h,m,n}$ ${}^{19}F, {}^{2n}$ and ${}^{13}C^{20}$ has been reported. The observation of ⁹⁵Mo-¹⁴N spin-spin coupling enhances the value of ⁹⁵Mo NMR as a tool for elucidating the structures of molybdenum compounds and the potential of ⁹⁵Mo NMR for investigating the binding of nitrogen-containing substrates to molybdenum centers.

Acknowledgment. We thank the U.S. Department of Agriculture for supporting this work under Grant No. 59-2041-1-626 and the National Science Foundation for the purchase of the NMR spectrometer. We thank Dr. C. Brevard at Bruker Spectrospin, SA, Wissembourg, France, for the 400-MHz NMR spectra and his helpful discussions. We also thank Drs. G. Webb and M. Barfield for helpful comments and Dr. R. Richards for a preprint of ref 2u.

Registry No. 1, 12128-13-1; $(\eta^{5}-C_{5}Me_{5})Mo(CO)_{2}(NO)$, 51213-19-5; HB(3,5-Me₂Pz)₃Mo(CO)₂(NO), 86272-24-4; HB(Pz)₃Mo-(CO)₂(NO), 24981-46-2.

(19) Vold, R. R.; Vold, R. L. J. Chem. Phys. 1974, 61, 4360.
(20) (a) Braterman, P. S.; Milner, D. W.; Randall, E. W.; Rosenberg, E. J. Chem. Soc., Dalton Trans. 1973, 1027. (b) Gansow, O. A.; Kimura, B. Y.; Dobson, G. R.; Brown, R. A. J. Am. Chem. Soc. 1971, 93, 5922.

> Contribution from the Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996-1600

Electrochemical Studies of Tetrakis(isocyanide) Rhodium(I) Dimers Containing Bis(diphenylphosphino)methane as the Bridging Ligand

Don R. Womack, Paul D. Enlow, and Clifton Woods*

Received February 23, 1982

Dinuclear rhodium(I) isocyanide complexes have received a great deal of attention since Gray and co-workers¹ reported the hydrogen-generating properties of $[Rh_2(bridge)_4][B (C_6H_5)_4]^2$ (bridge = 1,3-diisocyanopropane). Structurally and electronically similar complexes containing the cation [Rh₂- $(RNC)_4(L_2)_2$ ²⁺ (R = alkyl group; L_2 = bis(diphenylphosphino)methane (DPM) or bis(diphenylarsino)methane (DAM) have also been prepared,^{2,3} but many of the properties of the DPM and DAM complexes have not been fully explored.

The generation of hydrogen from HCl solutions by the "bridge" complex results in the formation of mixed-oxidation-state oligomeric species.⁴ Subsequent photolysis of these oligomers gives $[Rh_2(bridge)_4Cl_2]^{2+}$. This species is also obtained from the oxidative addition of Cl_2 to the parent "bridge"

⁽¹¹⁾ Ogg, R. A.; Ray, J. D. J. Chem. Phys. 1957, 26, 1515.
(12) Kintzinger, J. P.; Lehn, J. M.; Williams, R. L. Mol. Phys. 1969, 17, 135.
(13) Shepperd, C. M.; Schaefer, T.; Goodwin, B. W.; T'Raa, J. Can. J. Chem. 1971, 49, 3158.
(14) Larger D. W. J. Phys. Cl. 1051, 141.

⁽¹⁴⁾ Larsen, D. W. J. Phys. Chem. 1971, 75, 509.
(15) Pople, J. A. Mol. Phys. 1958, 1, 168.

⁽¹⁶⁾ Botto, R. E.; Kolthammer, B. W. S.; Legzdins, P.; Roberts, J. D. Inorg. Chem. 1979, 18, 2049.

⁽¹⁷⁾ The HB(3,5-Me₂Pz)₃ ligand itself absorbs at -13 ppm with a line width

⁽¹⁷⁾ The The Start (17) in the test in the test is a search of the start o L.; Webb, G. A. Annu. Rep. NMR Spectrosc. 1981, 11B.

Lewis, N. S.; Mann, K. R.; Gordon, J. G.; Gray, H. B. J. Am. Chem. (1) Soc. 1976, 98, 7461.
Balch, A. L. J. Am. Chem. Soc. 1976, 98, 8049.
Balch, A. L.; Labadie, J. W.; Delker, G. Inorg. Chem. 1979, 18, 1224.
Sigal, I. S.; Mann, K. R.; Gray, H. B. J. Am. Chem. Soc. 1980, 102, 2002.

⁽²⁾

⁽⁴⁾ 7252.