Photochemistry of Matrix-Isolated HMn(CO)₅: Evidence for Two Isomers of HMn(CO)₄

STEPHEN P. CHURCH, MARTYN POLIAKOFF,* JOHN A. TIMNEY, and JAMES J. TURNER

Received March 10, 1983

UV photolysis of HMn(CO)₅, isolated in Ar or CH₄ matrices at 20 K, produces HMn(CO)₄ and CO. A combination of ¹³CO enrichment and IR spectroscopy is used to show that $HMn(CO)_4$ has a C_s structure (3). There is a substantial shift (2500 cm^{-1}) in the UV/visible absorption maximum between CH₄ and Ar matrices, probably due to a significant HMn(CO)4...CH4 interaction. Narrow-band photolysis (367 nm in CH4 matrices, 403 nm in Ar) results in the formation of small amounts of a second isomer of $HMn(CO)_4$, most probably with $C_{4\nu}$ structure (2). Prolonged irradiation of $HMn(CO)_5$ in an Ar matrix, with a pulsed ArF excimer laser (193 nm), yields a significant amount of Mn(CO)₅, but the quantum yield for H loss is much lower than that for CO loss from $HMn(CO)_5$.

Introduction

Matrix isolation has proved itself to be an extremely useful technique for determining the structures of coordinatively unsaturated transition-metal carbonyl species.¹ Studies on pentacoordinate d⁶ systems have been particularly successful. For the group 6B metals, (Cr, Mo, and W) the pentacarbonyl fragment, $M(CO)_5$, has been shown² to have a C_{4v} squarepyramidal structure (1) and the substituted species, $M(CO)_4L$

(L = amine,³ pyridine,⁴ phosphine,⁵ or CS⁶), adopt C_{4v} and C_s structures (2 and 3) based on the same square pyramid. The elucidation of these structures has had an important influence on the theoretical rationalization of molecular shapes⁷ and has been crucial in the interpretation of flash photolysis experiments both in solution^{8,9} and in the gas phase.¹⁰

Unexpectedly, the experiments revealed a significant interaction between $M(CO)_5$ and the matrix itself.¹¹ The principal evidence for the interaction is a substantial shift in

- (1) Burdett, J. K. Coord. Chem. Rev. 1978, 27, 1-58. Turner, J. J. "Matrix Jolation Spectroscopy"; Barnes, A. J., Orville-Thomas, W. J., Müller, A., Gaufres, R., Eds.; Reidel: Boston, 1981; Chapter 21, p 495.
- Perutz, R. N.; Turner, J. J. Inorg. Chem. 1975, 14, 262
- (3) Boxhoorn, G.; Stufkens, D. J.; Oskam, A. J. Chem. Soc., Dalton Trans. 1980, 1328.
- (4) Boxhoorn, G.; Oskam, A.; McHugh, T. M.; Rest, A. J. Inorg. Chim. Acta 1980, 44, Ll.

- Acta 1980, 44, L1.
 (5) Black, J. D.; Braterman, P. S. J. Organomet. Chem. 1973, 63, C19.
 (6) Poliakoff, M. Inorg. Chem. 1976, 15, 2022, 2892.
 (7) Burdett, J. K. "Molecular Shapes"; Wiley: New York, 1980. Elian, M.; Hoffman, R. Inorg. Chem. 1975, 14, 1058.
 (8) Bonneau, R.; Kelly, J. M. J. Am. Chem. Soc. 1980, 102, 1220.
 (9) Welch, J. A.; Peters, K. S.; Vaida, V. J. Phys. Chem. 1982, 86, 1941.
 (10) Breckenridge, W. H.; Sinal, N. J. Phys. Chem. 1981, 85, 3557.
 (11) Perutz, R. N.; Turner, J. J. J. Am. Chem. Soc. 1975, 97, 4791.

the visible absorption band of $M(CO)_5$ from one matrix to another (e.g., Ne…Cr(CO)₅ λ_{max} 624 nm, Ar…Cr(CO)₅ λ_{max} 532 nm, and CH₄…Cr(CO)₅ λ_{max} 494 nm). This shift arises from an interaction of a matrix atom or molecule with the vacant coordination site of the pseudooctahedral $M(CO)_5$ fragment, a shift toward shorter wavelength indicating a stronger interaction.^{11,12} We will show in this paper that $HMn(CO)_4$, also a d⁶ system, has a visible absorption, which displays even larger shifts between matrices, presumably because of similar interactions with a vacant coordination site.

Photolysis of $HMn(CO)_5$ is interesting for several reasons. First, there is the problem of whether H or CO is lost on photolysis. In the isoelectronic d⁶ compound $H_2Fe(CO)_4$, loss of H₂ predominates in a matrix,¹³ while in the d⁹ monohydride, $HCo(CO)_4$, loss of CO is much faster¹⁴ than loss of H. Second, what is the structure of $HMn(CO)_4$? Is it based on the C_{4v} pyramidal structure of the group 6B M(CO)₄L species (2 or 3) or is it derived from a trigonal structure (4 or 5)? In other $HM(CO)_x$ species, the H atom seems to be almost inactive stereochemically. HMn(CO)₅ has bond angles¹⁵ similar to those deduced¹⁶ for matrix-isolated $Mn(CO)_5$ while the $Fe(CO)_4$ moiety in $H_2Fe(CO)_4$ has almost the same structure¹⁵ as matrix-isolated¹⁷ $Fe(CO)_4$.

HMn(CO), was in fact one of the first transition-metal carbonyls to be studied in rare-gas matrices. Rest and Turner showed¹⁸ that, in an Ar matrix, the primary photochemical step was loss of CO. The HMn(CO)₄ fragment had three C-O stretching bands in the IR spectrum and was presumed to have the $C_{3\nu}$ structure 4. Irradiation of HMn(CO)₄ with light, λ > 285 nm, regenerated HMn(CO)₅:

$$HMn(CO)_5 \xrightarrow[]{229 \text{ nm}}_{4 \xrightarrow{\sim} 285 \text{ nm}} HMn(CO)_4 + CO$$

At that time, this type of photochemical addition reaction was unprecedented, but it now appears to occur in the matrix photochemistry of most metal carbonyls and has been explained in detail for the particular case of $M(CO)_6$ and M-(CO)₅CS species.^{1,6,12} Rest and co-workers have since studied the matrix photochemistry of the related XMn(CO)₅ species $(X = CH_3, Cl, Br, and I)$. Their early suggestion¹⁹ that $CH_3Mn(CO)_4$ had a C_{3v} structure (4) was revised on the basis of ¹³CO isotope enrichment to the C_{2v} trigonal structure²⁰ 5.

- (12) Burdett, J. K.; Grzybowski, J. M.; Perutz, R. N.; Poliakoff, M.; Turner, J. J.; Turner, R. F. Inorg. Chem. 1978, 17, 147.
 (13) Sweany, R. L. J. Am. Chem. Soc. 1981, 103, 2410.
 (14) Sweany, R. L. Inorg. Chem. 1982, 21, 752.
 (15) McNeill, E. A.; Scholer, F. R. J. Am. Chem. Soc. 1977, 99, 6243.
 (16) Church, S. P.; Poliakoff, M.; Timney, J. A.; Turner, J. J. J. Am. Chem. Soc. 1981, 103, 2191, 103, 2191.

- Soc. 1981, 103, 7515.
- Poliakoff, M. Chem. Soc. Rev. 1978, 7, 527. Rest, A. J.; Turner, J. J. J. Chem. Soc., Chem. Commun. 1969, 375.
- (19) Rest, A. J. J. Organomet. Chem. 1970, 25, C30.

Table I. Wavenumbers (cm^{-1}) of Bands Observed on UVPhotolysis of Matrix-Isolated HMn(CO)₅

Ar	matrix	CH. matrix		
ref 18 ^a	this work ^b	this work ^{b,c}	assignt ^d	
2094	2093.2	2089.9	ν с- ο a'	
	2003.4	1998.8		
2001	2001.3	1997.6	(un a a' ± a''	
	2000.4	1995.1	(^{VC-O a + a}	
	1998.9	1993.0	,	
1970	1968.7	1964.9	ν с- 0 a'	
	1742 ^e		$\nu_{Mn-H} a'$	

^a Dilution HMn(CO)₅: Ar = 1:180; the bands were much broader and less resolved than in this work. ^b Dilution HMn(CO)₅: Ar = 1:4000. ^c See Figures 3b. ^d Based on C_8 structure (3); see text. ^e See Figure 1b.

The same conclusion was reached²¹ for ClMn(CO)₄. The IR spectra of CH₃Mn(CO)₄ and HMn(CO)₄ are similar, and it was suggested²⁰ that HMn(CO)₄ also has structure 5.

We have already reported that UV photolysis of HMn(CO)₅ in pure CO matrices leads to square-pyramidal Mn(CO)₅ (1) and the HCO radical.¹⁶ In this paper we show that, while the original IR observations¹⁸ in Ar matrices were correct, the structures proposed^{18,20} for HMn(CO)₄ were wrong. In both Ar and CH₄ matrices, the primary photolysis product of HMn(CO)₅ is HMn(CO)₄ with the C_5 structure 3, a conclusion supported by full ¹³CO enrichment. In a CH₄ matrix, irradiation of this C_5 isomer with light $\lambda = 367$ nm, leads to formation of a small amount of a second product, probably the C_{4v} isomer of HMn(CO)₄, 2. Similar results are found for HRe(CO)₄. Finally we show that prolonged UV irradiation of HMn(CO)₅ in an Ar matrix using a pulsed ArF excimer laser eventually leads to the formation of Mn(CO)₅ and possibly Mn(CO)₄.

Experimental Section

The low-temperature apparatus, Air Products Displex CS-202A closed-cycle cooler, has been described elsewhere.²² All matrices were prepared by pulsed deposition.²³ IR spectra were recorded on Perkin-Elmer Model 580A and 283B spectrophotometers or Nicolet 7199A or MX3600E Fourier transform interferometers. Interferometric spectra were recorded with 0.5-cm⁻¹ (three degrees of zero filling) and 0.06-cm⁻¹ resolution (one degree of zero-filling). UV/ visible spectra were recorded with a Perkin-Elmer Model 356 spectrometer.

A Philips HPK125W medium-pressure Hg arc was used for photolysis, with Balzer's interference filters when appropriate. The ArF excimer laser photolysis was carried out with the Lambda Physik Model EMG 101 laser, in the laboratory of Dr. I. W. M. Smith (in the Department of Physical Chemistry, University of Cambridge) with our portable matrix isolation apparatus.²⁴ This portable apparatus was also used for preliminary FTIR experiments in Professor I. M. Mills' laboratory at the University of Reading.²⁴

HMn(CO)₅ and HReCO)₅ were prepared by standard methods.²⁵ HRe(CO)₅ was enriched with ¹³CO (BOC Prochem) by UV photolysis of HRe(CO)₅ in isopentane solution under 600 torr pressure gaseous ¹³CO at room temperature. The method did not work reliably with HMn(CO)₅, which almost invariably photodecomposed to Mn₂(CO)₁₀. Finally, HMn(CO)₅ was enriched by a thermal reaction in the gas phase, with use of a CW CO₂ laser and SF₆ absorber for heating. This IR pyrolysis,²⁶ to be described more fully elsewhere,²⁷ allows

- (20) McHugh, T. M.; Rest, A. J. J. Chem. Soc., Dalton Trans. 1980, 2323.
 (21) McHugh, T. M.; Rest, A. J.; Taylor, D. J. J. Chem. Soc., Dalton Trans. 1980, 1803.
- (22) Church, S. P. Ph.D. Thesis, University of Nottingham, 1982.
- (23) Perutz, R. N.; Turner, J. J. J. Chem. Soc., Faraday Trans. 2 1973, 69, 452.
- (24) Church, S. P.; Poliakoff, M.; Timney, J. A.; Turner, J. J. J. Mol. Struct. 1982, 80, 159.
- (25) Eisch, J. J.; King, R. B. "Organometallic Syntheses"; Academic Press: New York, 1965; Vol. 1, p 158.
- (26) Ryott, G. J. Ph.D. Thesis, University of Nottingham, 1982.

Figure 1. Mn–H stretching region of the IR spectrum of $HMn(CO)_5$ in an Ar matrix (dilution 1:2000) at 20 K: (a) after deposition; (b) after 5-min UV photolysis. Spectra were recorded on the MX3600E interferometer at 0.7-cm⁻¹ resolution. Thorough purging of the interferometer with nitrogen was necessary to observe the weak absorptions.

1755

cm='

1725

1785

Figure 2. UV/visible absorption spectra of (a) Ar and (b) CH₄ matrices containing HMn(CO)₅ (dilution 1:2000): (---) spectrum after deposition; (--) spectrum after 2-min UV photolysis. Note the 2500-cm⁻¹ (45-nm) shift between the absorption maxima of HMn-(CO)₄ in the two matrices.

the gas to be heated while the walls of the reactor remain essentially cold. The reaction conditions were $HMn(CO)_5$ (3 torr), ¹³CO (130–150 torr), SF₆ (10 torr), CO₂ laser 10.6 μ m (P22) line, power 1.0 W CW.

Matrix gases, Ar and CH_4 , were BOC grade X or Messer Griesheim high-purity gases.

All force constant calculations were performed on an Apple II computer using simple iterative refinement programs.^{2,28} IR spectra were simulated with the Nicolet 1280E computer and a program that constructed Lorentzian band shapes with use of intensity data derived from the Apple programs.

Results

UV Photolysis in Ar and CH₄ Matrices. In our experiments UV photolysis of $HMn(CO)_5$ in Ar matrices produced free CO and a carbonyl-containing product with three C-O stretching bands in the IR spectrum (see Table I), just as

(28) Perutz, R. N. Ph.D. Thesis, University of Cambridge, 1974.

⁽²⁷⁾ Bristow, N. J.; Moore, B. D.; Poliakoff, M.; Ryott, G. J.; Turner, J. J., submitted for publication in J. Organomet. Chem.

Figure 3. IR spectra illustrating UV photolysis of $HMn(CO)_5$ in a CH_4 matrix (dilution 1:4000) at 20 K: (a) spectrum of regenerated³⁵ $HMn(CO)_5$ (peak marked by an arrow is the very weak high-frequency a_1 mode of $HMn(CO)_5$); (b) spectrum after 2-min UV photolysis (note the expanded ordinate scale relative to spectrum a); (c) scaled computer subtraction—spectrum b *minus* 0.18 times spectrum a—to eliminate the residual absorptions of $HMn(CO)_5$ from spectrum b.

reported by Rest and Turner.¹⁸ However, their evidence that the photolysis product contained hydrogen was circumstantial because of the extreme weakness of the ν_{Mn-H} absorptions. We have now succeeded in obtaining good IR spectra in the Mn-H stretching region (Figure 1), despite the weakness of the bands and the strong absorptions of atmospheric water vapor at these frequencies. It is clear that the photolysis product *does* have an ν_{Mn-H} absorption.

Rest and Turner's observation¹⁸ of reversible photolysis of HMn(CO)₅ implies that HMn(CO)₄ has one or more UV/ visible absorptions at $\lambda > 285$ nm. This deduction can now be quantified by the UV/visible spectra (Figure 2a), where the product clearly has an absorption maximum at 445 nm. Irradiation with light $\lambda > 375$ nm, corresponding to this absorption, regenerates HMn(CO)₅. Thus, the photolysis of HMn(CO)₅ in Ar can be summarized

$$HMn(CO)_{5} \xrightarrow[]{UV} HMn(CO)_{x} + CO$$
$$(\lambda_{max} = 445 \text{ nm})$$

Photolysis of HMn(CO)₅ in a CH₄ matrix is similar to that in Ar but with an important difference. The visible absorption, λ_{max} 400 nm, of the product is substantially shifted to the blue (cf. Figure 2) while the IR spectra (Figure 3 and Table I) are almost the same. In both Ar and CH₄ matrices the three groups of ν_{C-O} bands and the visible absorption appear to belong to a single HMn(CO)_x product although there is some change in the splittings of the ν_{C-O} bands as photolysis proceeds, particularly ~1995 cm⁻¹ in a CH₄ matrix. These splittings are similar to those observed in other metal carbonyl fragments, e.g. Fe(CO)₄¹⁷ or Cr(CO)₅.²²⁸ Nevertheless, they caused considerable confusion in the early stages of our experiments but we are now confident that they arise at least in part from a weak interaction between the $HMn(CO)_x$ fragment and the photoejected CO group. Apart from these detailed splittings, the IR spectra are so similar that even at this stage the structure of the $HMn(CO)_x$ species appears to be the same in Ar and CH_4 matrices.

Since HMn(CO)_x has three ν_{C-O} bands, it must be HMn-(CO)₄ or HMn(CO)₃. For all of the metal carbonyls, M-(CO)_x, that have so far been studied by matrix isolation, the primary photolysis product formed by CO loss has been an M(CO)_{x-1} fragment.¹ Thus, the product in this case is almost certainly HMn(CO)₄, but what is the structure? The C_{4v} structure (2) (ν_{C-O} a₁ + e IR active) can clearly be eliminated. However, the IR spectrum (Figure 3c) is consistent not only with a C_{3v} structure (4) (ν_{C-O} 2a₁ + e) but also with the C_s (3) (ν_{C-O} 3a' + a'') or C_{2v} structure (5) (ν_{C-O} 2a₁ + b₁ + b₂), because the absorption at ~1995 cm⁻¹ is broader than the other two bands and could represent two overlapping fundamental bands (cf. matrix-isolated²⁹ Mn(CO)₄NO).

Braterman and co-workers have shown that there is a weak coupling between the ν_{Mn-H} (a_1) and ν_{C-O} (a_1) vibrations of HMn(CO)₅ with the result that there is a small, $\sim 1 \text{ cm}^{-1}$, shift in the frequencies of the two a_1 , ν_{C-O} absorptions when the hydrogen is substituted by deuterium.³⁰ The e symmetry ν_{C-O} absorption however is unshifted. When a mixture of HMn-(CO)₅ and DMn(CO)₅ is photolyzed in an Ar matrix, both the lower frequency ν_{C-O} bands of the product are broadened. Thus, the ν_{C-O} vibrations giving rise to both of these absorptions must be coupled to the ν_{Mn-H} vibration of HMn(CO)₄. Such coupling is incompatible with a C_{3v} structure (4), which requires these bands to be assigned to $\nu_{C-O} a_1$ and e. The ν_{Mn-H} vibration, necessarily a_1 , could only couple with the $a_1 \nu_{C-O}$. The C_{3v} structure would be expected anyway to have an E electronic ground state and to be Jahn-Teller unstable. We must therefore choose between C_s and C_{2v} structures, 3 and 5.

Any proposed structure for $HMn(CO)_4$ not only has to be consistent with the IR spectra but also must explain the blue shift in the visible absorption between Ar and CH₄ matrices (Figure 2). This shift, 2500 cm⁻¹, is 50% larger than the corresponding shift, 1700 cm⁻¹, observed¹¹ for matrix-isolated Cr(CO)₅, where it was attributed to the interaction of CH₄ with the vacant coordination site of the square-pyramidal $M(CO)_5$ (1). The C_s structure of HMn(CO)₄ clearly has a vacant coordination site which could interact with CH₄ in a similar way (6) to produce the observed shift. On the other

hand, there is no obvious site for such an interaction in the $C_{2\nu}$ structure (5). The visible spectra, therefore, are more easily explained on the basis of the C_s structure. We now use ¹³CO enrichment to confirm this structure.

Photolysis of ¹³**CO-Enriched HMn(CO)**₅. The use of ¹³CO for determining the structures of matrix-isolated metal carbonyls has been extensively reviewed^{1,33} but the photolysis of ¹³CO-enriched HMn(CO)₅ reveals an interesting limitation to the method, which is discussed below. As explained in the Experimental Section, the ¹³CO enrichment of HMn(CO)₅ is not easy, but once the IR spectrum of HMn(¹²CO)_{5-x}-

- (31) Ibers, J. A.; Hamilton, W. C.; La Placa, S. J.; Davison, A. Inorg. Chem. 1969, 8, 1928.
- (32) Braterman, P. S.; Bau, R.; Kaesz, H. D. Inorg. Chem. 1967, 6, 2097.
- (33) Burdett, J. K.; Dubost, H.; Poliakoff, M.; Turner, J. J. Adv. Infrared Raman Spectrosc. 1976, 2, 1-52.

⁽²⁹⁾ Rest, A. J.; Taylor, D. J. J. Chem. Soc., Chem. Commun. 1977, 717.
(30) Braterman, P. S.; Harril, R. W.; Kaesz, H. D. J. Am. Chem. Soc. 1967, 89, 2851.

0.75 (a) OBS 0.50 0.25 x 20 Absorbance 0.75 CALC (b) 0.50 0.25 x 20 2130 2090 2050 2010 1970 cm.

Figure 4. (a) Observed IR spectrum of $HMn(CO)_5$ with 49% ¹³CO enrichment, isolated in a CH₄ matrix (1:4000) at 20 K. (b) Spectrum calculated³⁴ by using a bond angle of 97.4° and the force constants given in Table II and a Lorentzian band shape, 2-cm⁻¹ fwhm. Note the excellent agreement between the observed and calculated spectra, without including coupling between Mn–H and C–O stretching vibrations.

 $(^{13}CO)_x$ species has been obtained, it can be accurately fitted with a C-O factored force field, completely ignoring the coupling with the Mn-H vibration (Table II). The agreement between the observed and calculated spectra in Figure 4 is particularly striking,³⁴ and therefore it seems reasonable to ignore ν_{C-O}/ν_{Mn-H} coupling in our analysis of the spectrum of HMn(¹²CO)_{4-x}(¹³CO)_x. In order to calculate the relative intensities of the ν_{C-O} bands of HMn(¹²CO)_{5-x}(¹³CO)_x species (Figure 4b), one needs to know the axial-equatorial bond angle of HMn(CO)₅ and the dipole derivative ratio, μ_{ax}/μ_{eq} . Fortunately, given accurate frequency-factored force constants, the relative intensities of the three IR-active modes of $HMn(^{12}CO)_5$ provide enough information to calculate both the angle and ratio. We observed relative integrated intensities $(a_1(high):a_1(low): e = 1:60:225)$ which gave an angle of 97.4°, close to previous values (electron diffraction¹⁵ 95°, X-ray diffraction³¹ 97°, and solution IR spectra³² 96°), and a dipole derivative ratio of 1.00 (solution IR³² 1.04).

In Figure 3, we showed that, given the IR spectrum of a CH_4 matrix containing both $HMn({}^{12}CO)_5$ and $HMn({}^{12}CO)_4$, the bands due to $HMn({}^{12}CO)_5$ could be removed completely by computer subtraction.³⁵ A similar computer subtraction

Figure 5. (a) IR spectrum obtained by UV photolysis of a CH₄ matrix containing ¹³CO-enriched HMn(CO)₅ (see Figure 4a for the spectrum before photolysis). The band marked × is due to photoejected ¹³CO. (b) Spectrum obtained after computer subtraction of peaks due to residual HMn(CO)₅ (cf. Figure 3b,c). (c) Spectrum calculated for C_s HMn(CO)₄ (3) by using the force field defined in Figure 6 and Lorentzian band shapes, 4-cm⁻¹ fwhm. Again note the good agreement between observed and calculated spectra.

Figure 6. Force fields, bond angles, and dipole derivatives used for predicting the IR spectra of (a) C_s HMn(CO)₄ and (b) C_{2v} HMn-(CO)₄.

can be used to obtain the spectrum of $HMn(^{12}CO)_{4-r}(^{13}CO)_{r}$ in the absence of $HMn(^{12}CO)_{5-x}(^{13}CO)_x$ (Figure 5b). This spectrum is consistent with a C_s structure (3), and using the force field defined in Figure 6a, we obtain good agreement between observed and calculated spectra (Figure 5c and Table III). The calculation of the band intensities requires three bond angles and two dipole derivative ratios (Figure 6a). Unfortunately, the spectrum of HMn(12CO)₄ does not contain enough information to calculate all of these angles and ratios independently. We have arbitrarily set both dipole derivative ratios to unity and assumed that $\theta_1 = \theta_2$ to calculate the spectrum shown in Figure 5c, with the result that the bond angles used, $\theta_1 = \theta_2 = 98^\circ$ and $\theta_3 = 167^\circ$, do not represent a unique solution. The spectrum of $HMn(^{12}CO)_{4-x}(^{13}CO)_x$ in an Ar matrix could be fitted with a similar C_s force field (Table IV, available as supplementary material), supporting our contention that $HMn(CO)_4$ has the same structure in Ar and CH_4 matrices.

⁽³⁴⁾ In the spectrum of HMn(¹²CO)₅, the e mode is split into three well-defined components by site effects. These same three splittings appear in the observed spectrum of 49% ¹³CO-enriched HMn(CO)₅. The e mode and related vibrations of HMn(¹³CO)₅ is similarly split (see Figure 4). The origin of these splittings is uncertain, but since we are now aware of their presence, we can allow for them in the calculated spectrum by dividing the total intensity of the calculated e mode into three components of the appropriate relative intensities. As observed with other carbonyls,³³ the other bands of HMn(¹²CO)_{5-x}(¹³CO)_x appear to be much less split.

⁽³⁵⁾ When a matrix-isolated metal carbonyl with splittings in its IR spectrum is photolyzed, one often finds that the relative intensities of these splittings change with progressive photolysis. Hence, the subtraction of parent carbonyl absorptions will not work very well. However, if the UV photolysis is reversed with visible light, it is often observed that the pattern of the matrix splittings of the parent carbonyl bands is unchanged by subsequent UV photolysis. Thus, it was necessary to photolyze and regenerate the HMn(CO)₅ before good quality subtraction spectra could be obtained.

Table II. Observed and Calculated Wavenumbers (cm⁻¹) of the IR Bands of Different $HMn({}^{12}CO)_{5-x}({}^{13}CO)_x$ Species in a CH₄ Matrix at 20 K (Figure 4)

molecule	mode	obsd	calcd ^e	molecule	mode	obsd	calcd ^e
$HMn(^{12}CO)_{\mathfrak{s}}(C_{4\nu})$	a ₁ b ₁ e a ₁	2120.0 b 2016.6 ^d 2006.2	2119.5 2045.2 2016.5 2006.7	$HMn({}^{12}CO)_2({}^{13}CO)_3$ (C _s eq, eq, eq) a	a' a' a' a'	2093.9 2020.3 1997.2 1983.7	2094.5 2020.8 1997.9 1982.8
$HMn({}^{12}CO)_4({}^{13}CO)_{ax}(C_{4v})$	a ₁ b ₁ e a ₁	a b 2016.6 ^d c	2114.7 2045.2 2016.5 1966.4	$HMn(^{12}CO)_2(^{13}CO)_3$ (C_s ax, eq, eq (cis))	a'' a' a'' a'	1971.7 ^a 2097.6 2035.0 1991.0	1971.6 2097.7 2034.9 1991.2
$HMn(^{12}CO)_{4}(^{13}CO)(C_{g})$	a' a' a'' a' a'	2112.7 2039.5 2016.6 ^d 2006.9 1982.8 ^d	2112.3 2039.2 2016.5 2007.5 1983.2	$HMn({}^{12}CO)_2({}^{13}CO)_3 (C_{2v} ax, eq, eq (trans))$	a'' a' a ₁ a ₁	1981.2 1962.8 <i>a</i>	1981.5 1962.8 2099.4 2016.9
$HMn(^{12}CO)_{3}(^{13}CO)_{2} (C_{s} ax, eq)$	a' a' a'' a' a'	2107.5 c 2016.6 ^d 1986.4 1964.9	2107.1 2039.0 2016.5 1986.9 1964.2	HMn(¹² CO)(¹³ CO) ₄ ($C_{4\nu}$)	b_1 b_1 a_1 a_1 b_1	2016.6 ^d 1971.7 ^d c a b	2016.5 1971.6 1963.7 2081.9 1999.6
$HMn({}^{12}CO)_{3}({}^{13}CO)_{2}$ (C_{s} eq, eq (cis))	a' a'' a' a'	2103.6 2035.0 2007.0 <i>c</i> 1981.2	2103.7 2034.9 2008.3 1984.8 1981.5	$HMn(^{12}CO)(^{13}CO)_4 (C_8)$	a ₁ e a' a' a'	c 1971.7 ^d 2087.1 c 1984.8	1997.4 1971.6 2087.6 2016.9 1984.2
$HMn({}^{12}CO)_{3}({}^{13}CO)_{2} (C_{2v} eq, eq (trans))$	$\begin{array}{c}a_1\\a_1\\b_1\\a_1\\b_1\end{array}$	a c 2016.6 ^d c 1971.7 ^d	2105.1 2022.2 2016.5 1997.8 1971.6	$HMn(^{13}CO)_{\mathfrak{s}}(C_{4\nu})$	a'' a' a, b, e a,	1971.7 ^d c b 1971.7 ^d c	1971.6 1962.4 2072.2 1999.6 1971.6 1962.0

^a Not observed but predicted to be weak. ^b IR inactive. ^c Not observed, predicted to be overlapped or obscured by bands of other $HMn(^{12}CO)_{s\cdot x}(^{13}CO)_x$ species. ^d Mean value of matrix-split bands³⁵ used in refinement, e.g., e mode of $HMn(^{12}CO)_s$ is split 2018.4, 2016.4, and 2014.9 cm⁻¹. ^e Each observed frequency was only entered once into the least-squares refinement: 24 frequencies, root-mean-square error 0.46 cm⁻¹. Force constants (N m⁻¹): $k_{ax} = 1652.83$, $k_{eq} = 1690.96$, $k_{ax,eq} = 32.51$, $k_{eq,eq}(cis) = 24.74$, $k_{eq,eq}(trans) = 48.21$.

Table III. Observed and Calculated Wavenumbers (cm^{-1}) of the IR Bands of the C_s Isomer (3) of HMn(CO)₄ in a CH₄ Matrix at 20 K (Figure 5)

no. ^a	molecule	mode	obsd	calcd ^e	no.a	molecule	mode	obsd	calcd ^e
1	$HMn(^{12}CO)_4 (C_8)$	a' a'' a' a'	2089.9 1996.6 ^b c 1964.9	2089.7 1996.7 1995.5 1964.6	7	$HMn({}^{12}CO)_2({}^{13}CO)_2(C_1 \text{ ax, eq})$		2070.5 c c c	2070.8 1991.9 1965.2 1929.0
2	$HMn(^{12}CO)_{3}(^{13}CO)_{ax}(C_{s})$	a' a'' a'	d 1996.6 ^b c 1929.6 ^f	2084.2 1996.7 1990.8 1930.3	8	$HMn(^{12}CO)_2(^{13}CO)_2(C_1 eq, eq)$		2071.7 c 1936.2	2071.9 1986.3 1961.5 1937.0
3	$\mathrm{HMn}(^{12}\mathrm{CO})_{\mathfrak{z}}(^{13}\mathrm{CO})_{\mathfrak{eq}}(C_{\mathfrak{z}})$	a' a'' a' a'	d 199 6.6^b c 1937.7 ^f	2085.3 1996.7 1982.6 1937.3	9	$HMn(^{12}CO)_{3}(^{13}CO)$ (C_{g} eq, eq, eq)	a' a' a'' a'	2053.7 c 1951.9 ^b c	2053.5 1968.8 1952.2 1936.9
4	$HMn(^{12}CO)_{3}(^{13}CO)_{eq}(C_{1})$		2077.7 c c c	2077.4 1995.7 1967.4 1960.7	10	$HMn(^{12}CO)_{3}(^{13}CO)$ (C_{g} ax, eq, eq)	a' a' a'' a'	d c 1951.9 ^b 1928.2	2052.4 1978.7 1952.2 1928.2
5	$HMn(^{12}CO)_2(^{13}CO)_2(C_8 \text{ ax, eq})$	a' a'' a' a'	d 1996.6 ^b c c	2079.9 1996.7 1959.8 1921.2	11	$HMn(^{12}CO)_3(^{13}CO)(C_1)$		2065.0 1975.4 c 1921.6 ^b	2065.3 1974.9 1951.2 1920.9
6	$HMn({}^{12}CO)_2({}^{13}CO)_2(C_s eq, eq)$	a' a' a''	с 1962.8 1951.9 ^ь	1979.1 1962.9 1952.2	12	$HMn(^{13}CO)_4 (C_s)$	a' a'' a' a'	d 1951.9 ^b c c	2043.1 1952.2 1951.0 1920.8

^a Molecules numbered as in ref 6. ^b Mean value of matrix splitting entered. ^c Not observed, predicted to be overlapped or obscured by bands of $HMn(^{12}CO)_{s.x}(^{13}CO)_x$ or $HMn(^{12}CO)_{4.x}(^{13}CO)_x$ species. ^d Not observed, predicted to be weak. ^e Each frequency was only entered once into the least-squares refinement: 17 frequencies, root-mean-square error 0.40 cm⁻¹, maximum error 0.82 cm⁻¹. Force constants (see Figure 6, N m⁻¹): $k_1 = 1601.56$, $k_2 = 1664.62$, $k_3 = 1611.62$, $k_{1,2} = 40.04$, $k_{1,3} = 45.59$, $k_{2,2} = 53.98$, $k_{2,3} = 31.13$. ^f Band position determined from an experiment with 5% ¹³CO-enriched HMn(CO)₄.

Our analysis of the spectra favors a C_s structure for HMn(CO)₄, but it is clear from Figure 6 that the force fields

for C_s and C_{2v} structures are not very different. In fact the spectrum of any C_{2v} molecule could be reproduced with use

Figure 7. Illustration of the differences between the spectra predicted for C_s (3) and $C_{2\nu}$ (5) structures of HMn(CO)₄: (a) observed spectrum of ¹³CO-enriched HMn(CO)₄ (cf. Figure 5b); (b) predicted spectrum for C_s HMn(CO)₄ with optimized force constants (see Table III); (c-e) predicted spectra as the values of k_1 and k_3 , and k_{12} and k_{23} , become more nearly equal; (f) predicted spectrum for a $C_{2\nu}$ structure (5), where $k_1 = k_3$ and $k_{12} = k_{23}$. The values of force constants (N m⁻¹) used are as follows (k_1 , k_3 , k_{12} , k_{23} , respectively): (f) 1606.6, 1606.6, 35.58, 35.58; (e) 1605.0, 1607.4, 36.04, 34.5; (d) 1604.6, 1608.6, 37.04, 33.5; (c) 1603.6, 1609.6, 38.04, 32.5; (b) 1601.56, 1611.62, 40.04, 31.13.

of the C_s force field in which $k_1 = k_3$ and $k_{12} = k_{23}$. For our simulated spectrum of HMn(CO)₄ in CH₄ (Figure 5c) k_1 (1601.6 N m⁻¹) is quite close to k_3 (1611.6 N m⁻¹) and it is reasonable to wonder whether HMn(CO)₄ is not C_{2v} after all. Fortunately, there is a significant difference between the spectra predicted for C_s and C_{2v} structures, as shown in Figure 7. The four lowest frequency bands in the observed spectrum of HMn(¹²CO)_{4-x}(¹³CO)_x (Figure 7a) closely resemble the spectrum predicted by our optimized C_s force constants (Figure 7b). However, as k_1 becomes more nearly equal to k_3 , and k_{12} to k_{23} , the two central bands in the simulated spectra coalesce, until for a C_{2v} structure (5) only three bands are predicted in this region (Figure 7f). Our observation of four bands, therefore, means that a C_{2v} structure (5) is improbable and that HMn(CO)₄ almost certainly has the C_s structure (3).

Unfortunately, the converse of this argument is not true. Namely, three bands in this region of the spectrum (e.g. Figure 7f) do not automatically imply a C_{2v} structure for an XMn- $(CO)_4$ molecule since such a spectrum can also be fitted with a C_s force field where $k_1 \neq k_3$ and $k_{12} \neq k_{23}$. In such a case,^{20,21} analysis of the IR spectrum of the ¹³CO-enriched XMn(CO)₄ species would not by itself be able to distinguish between the two structures and additional experiments would be required (e.g. shifts in UV/visible spectra etc.). Thus, we are particularly fortunate that, in the case of HMn(CO)₄, ¹³CO enrichment experiments provide conclusive evidence for the C_s structure.

The Second Isomer of HMn(CO)₄. Some d⁶ M(CO)₄L species have previously been shown to have two isomers, ^{5,6} $C_{4\nu}$ (2) and C_s (3), which can be interconverted by UV/visible irradiation. Although the C_s isomer of HMn(CO)₄ (3) is the primary photolysis product of HMn(CO)₅, a second isomer can be generated in small amounts by subsequent selective-wavelength irradiation. In CH₄ matrices, HMn(CO)₄ has a broad visible absorption band, λ_{max} 400 nm (q.v.), and irradiation at 367 nm, corresponding to the short-wavelength edge of this absorption, causes a broadening and red shift of the band (see Figure 8). At the same time, in the IR spectrum there is an increase in the intensity of the absorptions of HMn(CO)₅ and a decrease in those of HMn(CO)₄ (Figure 9b) but interestingly there is also a small but reproducible

Figure 8. UV/visible absorption spectra showing changes occurring when the second isomer of $HMn(CO)_4$ is formed: (---) spectrum after deposition of a CH_4 matrix containing $HMn(CO)_5$ (dilution 1:2000); (--) spectrum after 2-min UV photolysis; (---) spectrum after 90-min irradiation at 367 nm. The arrow on the right indicates the wavelength (544 nm) of light that destroys the second isomer of $HMn(CO)_4$.

Figure 9. IR spectra illustrating the formation of the second isomer of HMn(CO)₄ in a CH₄ matrix (1:4000) at 20 K: (a) spectrum after 2-min UV photolysis of HMn(CO)₅ (cf. Figure 3b; the strongest bands are due to the C_s isomer of HMn(CO)₄); (b) spectrum after 90-min irradiation with $\lambda = 367$ nm; (c) scaled computer subtraction (spectrum b minus 0.57 times spectrum a) to remove absorption due to the C_s isomer of HMn(CO)₄. The band near 1960 cm⁻¹ is due to a second, $C_{40}(?)$, isomer of HMn(CO)₄.

change in the relative intensities of these HMn(CO)₄ bands. The original relative intensities can be restored by irradiation with light, $\lambda = 544$ nm, corresponding to the tail of the "new" visible absorption. Computer subtraction of the appropriate IR spectra show that these intensity changes are due to the growth and decay of a single ν_{C-O} band at a frequency, 1966 cm⁻¹, very close to the lowest frequency band of C_s HMn(CO)₄ (Figure 9c). This band cannot be due to a "matrix splitting" of the C_s HMn(CO)₄ absorptions because in that case no change would be expected in the relative integrated intensities of the IR bands or the position of the UV/visible absorption. It must, therefore, be assigned to a new species.

Unfortunately, the yield of this new species is low in CH_4 matrices and even lower in Ar, and no convincing spectra could

Figure 10. (a) IR spectrum of a CH₄ matrix containing ¹³CO-enriched HMn(CO)₅ and photolysis products. (b) Spectrum of the second isomer of HMn(CO)₄ obtained by computer subtraction of absorptions due to isotopomers of HMn(CO)₅ and the C_s isomer of HMn(CO)₄ from spectrum a. Note that there is a ×4 expansion in the ordinate scale relative to spectrum a. The band marked with an arrow in spectrum a becomes the most intense band in spectrum b, after computer subtraction. (c) Spectrum predicted, with Lorentzian bands (4-cm⁻¹ fwhm), for a C_{4v} isomer (2) of HMn(CO)₄ (see Table V).

Table V. Observed and Calculated Wavenumbers (cm^{-1}) of the IR Bands of the Second Isomer of $HMn(CO)_4$ with ¹³CO Enrichment in a CH₄ Matrix at 20 K (Figure 10)

obsd	calcd ^b	assignt
1966.3ª	1966.5	e, HMn(¹² CO) ₄
1 94 0.6	1 94 0.1	$a'', HMn({}^{12}CO)_2({}^{13}CO)_2 C_8$
193775	1937.9	a', $HMn(^{12}CO)_3(^{13}CO)$
1957.7)	1937.3	$a', HMn({}^{12}CO)({}^{13}CO)_3$
1935.3	1935.5	$a'', HMn({}^{12}CO)_2({}^{13}CO)_2 C_8$
1922.3ª	1922.7	e, $HMn(^{13}CO)_4$
		•

^a This band is matrix split. ^b Calculated for C_{4U} HMn(CO)₄ (2): root-mean-square error 0.33 cm⁻¹, maximum error 0.5 cm⁻¹. Force constants (N m⁻¹): k = 1625.0, $k_{cis} = 26.53$, $k_{trans} = 62.73$.

be obtained in the ν_{Mn-H} region. However, the UV/visible absorption band of the product appeared to shift to longer wavelength in Ar:

 CH_4 matrix

HMn(CO)₄ (C_s,
$$\lambda_{max}$$
 400 nm) $\xrightarrow[544 \text{ nm}]{367 \text{ nm}}$ X

Ar matrix

$$HMn(CO)_4 (C_s, \lambda_{max} 445 \text{ nm}) \xrightarrow[589 \text{ nm}]{403 \text{ nm}} X$$

The presence of only one ν_{C-O} band in this region limits the possible structures for X (i.e. HMn(CO)₄ $C_{4\nu}$ (2) HMn(CO)₃ $C_{3\nu}$, and Mn(CO)₄ D_{4h} or T_d , etc.), although some of these assignments presume a weak unobserved high-frequency band. However, X is unlikely to be HMn(CO)₃, as it is not formed by prolonged UV photolysis of HMn(CO)₄, which should promote formation of HMn(CO)_{4-x} species. Mn(CO)₄ has

Figure 11. IR spectra illustrating the effects of ArF laser irradiation, 193 nm, on HMn(CO)₅ in an Ar matrix (1:4000) at 20 K: (a) after deposition; (b) after 10 laser pulses; (c) after 260 laser pulses; (d) after 4×10^5 laser pulses at 30 Hz (bands colored black are due to Mn(CO)₅); (e) after a further 1 h photolysis with light $\lambda > 375$ nm. Note that these spectra are recorded with a change in wavenumber scale at 2000 cm⁻¹ and with a spectrometer of lower resolution than that used for the spectra shown in the other figures in this paper.

been predicted to have a C_{2v} structure⁷ (ν_{C-O} 2a₁ + b₁ + b₂), incompatible with the single IR band of X, and also HMn-(CO)₄ would not be expected to lose H under such mild photochemical conditions (see below). Thus the C_{4v} isomer of HMn(CO)₄ is the most probable assignment for X. The spectrum obtained for ¹³CO-enriched X (Figure 10b) is strikingly similar to the spectrum calculated for a C_{4v} HMn-(CO)₄ fragment (Figure 10c and Table V). The shift in UV/visible absorption of X between CH₄ and Ar matrices is similar to that of the C_s isomer of HMn(CO)₄ and could be best explained by an interaction between the matrix material and the vacant coordination site of C_4 , HMn(CO)₄ (7). Thus,

the evidence suggests that X is a C_{4v} isomer of HMn(CO)₄ but that, unlike Cr(CO)₄CS, the C_s isomer of HMn(CO)₄ is significantly more stable in the matrix than the C_{4v} . This difference between Cr(CO)₄CS and HMn(CO)₄ is what might have been expected on simple π -bonding grounds, if CS were a better acceptor than CO.

Photochemical Cleavage of the Mn–H Bond—ArF Laser Photolysis. UV photolysis of HMn(CO)₅ in solution rapidly leads to the formation of $Mn_2(CO)_{10}$, the source of the problem in synthesizing HMn(${}^{12}CO)_{5-x}({}^{13}CO)_x$ (q.v.). This reaction may well be a radical chain reaction,³⁶ but nevertheless it is surprising that our IR spectra show little evidence for loss of H during UV photolysis of HMn(CO)₅ in Ar matrices, particularly since Mn(CO)₅ can be detected by ESR spectroscopy after such an irradiation.³⁷ We have previously shown that the quantum yield for CO loss in matrices is much higher than for H loss but that Mn(CO)₅ can be produced in pure CO matrices, where CO loss is effectively surpressed.¹⁶

⁽³⁶⁾ Timney, J. A. Ph.D. Thesis, University of Newcastle-upon-Tyne, 1979.
(37) Sweany, R. L.; Symons, M. C. R. Organometallics 1982, 1, 834.

Table VI. Wavenumbers (cm⁻¹) of IR Bands Observed^a on ARF Laser (193 nm) Photolysis of HMn(CO), in Ar Matrices at 20 K (Figure 11)

band	assignt	band	assignt
1992.5 1990 1986	} Mn(CO) ₅	1961 1944 1929	$\left.\right\} \mathrm{HMn(CO)}_{x} \ (x < 4)$

^a Excluding bands due to HMn(CO)₄ (see Table I).

After prolonged (e.g. hours) UV photolysis of HMn(CO), in Ar matrices with an unfiltered Hg arc, one can observe weak IR bands, possibly due to Mn(CO)₅. More convincing evidence for formation of Mn(CO), in an Ar matrix comes from photolysis with an ArF excimer laser (193 nm, 30 mJ/pulse at matrix, 30-Hz repetition rate), a single pulse of which produces an effect similar to 1-s irradiation with an unfiltered Hg arc. The results are shown in Figure 11. ArF laser photolysis initially generates $HMn(CO)_4$, the IR bands of which rapidly reach a steady-state intensity. As the photolysis proceeds, other bands gradually grow in until after 4×10^5 pulses, the bands colored black are the strongest in the spectrum (see Table VI). Although the frequencies of these bands are slightly different from those of $Mn(CO)_5$ in a pure CO matrix,¹⁶ they can be shown to be due to Mn(CO), by doping the matrix with CO. This reduces the yield $HMn(CO)_4$ and increases the production of Mn(CO)₅. The final yield of Mn(CO), can be increased in a pure Ar matrix by irradiation with light, $\lambda > 375$ nm, after the ArF laser photolysis (Figure 11). This observation implies that $Mn(CO)_5$ is itself photolyzed by the laser to some lower carbonyl, perhaps $Mn(CO)_4$, which can recombine with CO to regenerate $Mn(CO)_5$, when irradiated with $\lambda > 375$ nm light. Excimer laser excitation of metal carbonyl compounds in the gas phase has been shown to lead to the simultaneous loss of two or more CO groups,³⁸ e.g.

$$M(CO)_x \xrightarrow{h_{\nu}} M(CO)_{x-2} + 2CO$$

There is no evidence from our experiments that such a process is occurring with matrix-isolated HMn(CO), presumably because the matrix deactivates the excited carbonyl fragments before a second CO group can be expelled. Similar results have been found for laser photolysis of other metal carbonyls in condensed media.⁹ Thus, the formation of Mn(CO)₅ in Ar matrices does not apparently involve exotic laser-induced effects. The absence of Mn(CO)₅ from our conventional UV photolysis experiments is merely a reflection of low quantum yields and the relative insensitivity of IR as a means of detecting reaction products. Both these problems have been overcome by the use of the excimer laser, which produces a UV light intensity on the matrix so much higher than with arc lamps that a high conversion to Mn(CO), can be achieved without excessively long photolysis times.

Photolysis of HRe(CO)₅. The photochemistry of HRe(CO)₅ in Ar and CH₄ matrices appears to be broadly similar to that of HMn(CO)₅. The primary photolysis product has IR spectra consistent with a C_s isomer of HRe(CO)₄, and this can be converted photochemically into a second species, probably the C_{4v} isomer. In general, the matrix splittings of the IR bands are greater than those of the corresponding $HMn(CO)_x$ species with the result that quantitative interpretation is more difficult. (See Figure 12, available as supplementary material.)

Conclusion

The photochemistry of matrix-isolated HMn(CO)₅ is summarized in Scheme I. It has been surprisingly difficult to Scheme I. Photochemistry of HMn(CO),/Ar

unravel, but we believe that the principal features are now established. We have shown that the structure of $HMn(CO)_4$ is based on the same square-based pyramid as other d⁶ fivecoordinate species.¹ Furthermore, the photochemical mechanism,¹² proposed for Cr(CO)₅, would also explain the observed behavior of $HMn(CO)_4$.

The C_s structure of HMn(CO)₄ (3) was determined by ¹³CO enrichment. However, it has become clear that this technique cannot always distinguish between C_s and $C_{2\nu}$ structures (3) and 5), but fortunately in this case the results were unambiguous. Whether the H ligand is stereochemically active is perhaps more open to dispute. On one hand it can be argued that $HMn(CO)_{4}$ is a typical five-coordinate square pyramid. but on the other hand it could be suggested that the carbonyl moiety has the same geometry³⁹ as $Cr(CO)_4$. The C_s structure of $HMn(CO)_4$ is consistent with molecular orbital predictions,^{40,41} one of which⁴¹ predicts little energy difference between the C_{4v} (2) and C_s (3) structures of HMn(CO)₄. However, our experiments provide strong evidence that the HMn(CO)₄ fragment interacts with CH₄ matrices, so a more realistic comparison might be with calculations for Mn(CO)₄L₂ species, 40 which predict that the cis-substituted compound (6) is more stable for weak σ -donor ligands. Our results suggest that $HMn(CO)_4$ may well interact with hydrocarbon solvents in room-temperature reactions, and such interactions should clearly be considered when the mechanisms of these solution reactions are interpreted.

Acknowledgment. We thank the Science and Engineering Research Council and Perkin-Elmer Ltd. for supporting this research. Some of the experiments were performed (by J.A.T.) at the University of Newcastle-upon-Tyne. We are indebted to Dr. I. W. M. Smith and Professor I. M. Mills for enabling us to work in their laboratories. We are grateful to N. Woodhead for his advice, to J. A. Crayston for his help with computing, to N. J. Bristow for preparing the sample of $HMn(^{12}CO)_{5-x}(^{13}CO)_x$ by IR laser pyrolysis, and to S. C. Fletcher and J. R. Mitchell for their assistance with the HRe(CO)₅ preparations. We thank Dr. M. A. Healy for all his help.

Registry No. 2 (L = H), 87069-55-4; 3 (L = H), 87069-54-3; HMn(CO)₅, 16972-33-1; Ar, 7440-37-1; CH₄, 74-82-8; CO, 630-08-0.

Supplementary Material Available: Observed and calculated frequencies of C_s HMn(¹²CO)_{4-x}(¹³CO)_x species in an Ar matrix (Table IV) and IR spectra of HRe(CO), and HRe(CO)₄ in CH₄ matrices (Figure 12) (5 pages). Ordering information is given on any current masthead page.

⁽³⁸⁾ Tumes, W.; Gitlin, B.; Rosan, A. M.; Yardley, J. T. J. Am. Chem. Soc. 1982, 104, 55.

⁽³⁹⁾ Perutz, R. N.; Turner, J. J. J. Am. Chem. Soc. 1975, 97, 4800.

 ⁽⁴⁰⁾ Burdett, J. K. Inorg. Chem. 1976, 15, 212.
 (41) Lichtenberger, D. L.; Brown, T. L. J. Am. Chem. Soc. 1978, 100, 366.