Oxidative Displacement and Addition Reactions of F-tert-Butyl Hypochlorite with Metal Chlorides and Oxidative Additions to Several Elements

JOANN M. CANICH.^{1a} GARY L. GARD,^{1b} and JEAN'NE M. SHREEVE*^{1c}

Received *May 20, 1983*

Transition-metal and post-transition-metal chlorides underwent oxidative displacement and oxidative addition reactions with F-tert-butyl hypochlorite to form new F-tert-butoxides. Thus, when $(CF_3)_3$ COCI was reacted with VOCl₃, TiCl₄, and CrO₂Cl₂, the stable compounds VO[(CF₃)₃CO]₃, Ti[(CF₃)₃CO]₄, and CrO₂[(CF₃)₃CO]₂ were formed. With Vaska's compound, oxidative addition occurred at iridium but the phenyl groups of $P(\tilde{C}_6H_5)$ ₃ were also involved. UCl₄, Cu₂Cl₂, SnCI4, and SiC14 did not react under the experimental conditions **used.** F-tert-Butyl hypochlorite has also been shown to add oxidatively to such elements as sulfur, lead, tellurium, bismuth, and iodine to form $S[(CF_3)_3CO]_4$, $Pb[(CF_3)_3CO]_2$, $Te[(CF₃)₃CO]₄$, Bi $[(CF₃)₃CO]₃$, and I $[(CF₃)₃CO]₃$, respectively. With $(C₂H₅)₂NH$, $(CF₃)₃COH$ formed a 1:1 adduct.

Introduction

The behavior of F-tert-butyl hypochlorite as a reactant under mild conditions continues to provide a route to new nonmetal and metal F-tert-butoxides. Recently its ability to behave as a reagent whose reaction mode is oxidative addition, oxidative displacement, or oxidative displacement and oxidative addition has been demonstrated with a variety of non-metal systems, e.g., BCl_3 ,² PCl_3 ,³ PCl_5 ,³, PCl_4 ,⁴ PCl_2F_3 ,⁴ $S(CF_2)_2S$, SCI_{2} , $\text{CF}_{3}\text{S}(\text{O})\text{Cl}$, and S_{4}N_{4} , We now report our studies that deal with its reactions with transition-metal chlorides and some post-transition-metal chlorides as well as with certain elements. Although the decomposition of F-tert-butyl hypochlorite into $(CF_3)_2CO + CF_3Cl$ appears to be enhanced in the presence of some metal compounds, it is possible to prepare relatively volatile metal F-tert-butoxides in acceptable yields by carefully controlling the reaction conditions.

Results and Discussion

The vanadyl complex $VO[(CF₃)₃CO]₃$ was prepared easily by condensing $(CF_3)_3COCl$ onto VOCl₃. The reaction occurred readily at $0^{\circ}C$ to give the product in quantitative yield. sults and Discussion
The vanadyl complex VO[(CF₃)₃CO]₃ was prepared easil
condensing (CF₃)₃COCl onto VOCl₃. The reaction of
rred readily at 0 °C to give the product in quantitative yield
3(CF₃)₃COCl + VOCl

$$
3(\text{CF}_3)_3\text{COCl} + \text{VOCl}_3 \xrightarrow{0 \text{ °C}} \text{VO}[(\text{CF}_3)_3\text{CO}]_3 + 3\text{Cl}_2
$$

After sublimation, the new vanadyl complex is a colorless crystalline solid that melts at $62-63$ °C. Although no molecular ion was observed in the mass spectrum, appropriate fragments result from the F-tert-butoxy groups that are present. The ¹⁹F NMR spectrum has a single resonance band at ϕ -73.3.

When F -tert-butyl hypochlorite was reacted with $TiCl₄$ at 0 °C, the yield of pure titanium(IV) F-alkoxide was nearly quantitative. After sublimation it is a colorless solid that melts at 126 °C. ϕ –73.3.
When *F-tert*-butyl hypochlorite was reacted with TiCl₄
C, the yield of pure titanium(IV) *F*-alkoxide was nean
ntitative. After sublimation it is a colorless solid that me
126 °C.
4(CF₃)₃COCl + TiCl₄

$$
4(CF_3)_3COCl + TiCl_4 \xrightarrow{0 \text{ }^{\circ}C} Ti[(CF_3)_3CO]_4 + 4Cl_2
$$

The structure of this compound is supported by its spectral data. The $(M-F)^+$ fragment was observed as the highest mass peak in the mass spectrum. The ¹⁹F NMR spectrum has a resonance band at $\bar{\phi}$ -74.6. The *F*-alkoxide is stable up to 200 °C. An attempt to prepare $Ti[(CF_3)_3CO]_4$ via the reaction of (CF_3) ₃COH with TiCl₄ was unsuccessful. However, by addition of diethylamine to this mixture a reaction occurred readily even at a low temperature to produce a white solid which is soluble in Freon-11. The 19 F NMR spectrum contained major resonance bands at ϕ -72.7, -74.6, and -76.3. The NMR band at ϕ -74.6 is likely due to the presence of $Ti[(CF₁),CO]₄$ in the mixture. It was found that the major resonance band at ϕ -76.3 was due to the (CF_3) , COH $(C$ - $H_3CH_2)_2NH$ complex. This diethylamine complex is a white solid that is easily prepared by reacting $(CF_3)_3COH$ with $(CH₃CH₂)₂NH.$ It is of interest to compare this amine-alcohol complex with that formed between diethylamine and bis(trifluoromethyl)hydroxylamine, $(CF_3)_2NOH$, under essentially
the same conditions.⁷ The complex isolated was the 1:2 The complex isolated was the $1:2$ adduct, $(C_2H_5)_2NH\{ [CF_3)_2NOH]_2$ (mp 41.5-42.5 °C), and since the hydroxylamine is much less acidic ($pK_a = 8.2$) than (CF_3) ₃COH (p K_a = 5.2), it is not surprising that partial dissociation to the components is observed in the gas-phase infrared spectrum of the 1:2 adduct. This partial dissociation did not occur for the F-tert-butyl alcohol adduct. The solidphase infrared spectra of these two adducts are similar in that no well-defined peaks are observed in the N-H and C-H regions, but rather there are broad, weak bands covering the region 2400-3000 cm^{-1} , probably due to N-H vibrations.

While it appears possible to prepare some F-tert-butoxy derivatives by use of the alcohol and a base or with sodium F -tert-butoxide,^{8,9} the hypochlorite method produces fewer side products and is relatively stable with other strong oxidizing systems with $(CF_3)_2CO$, CF_3Cl , and Cl_2 as the only side products being formed.

The reaction of (CF_3) , COCI with CrO_2Cl_2 required warming above 0° C to ensure complete reaction. The product, CrO₂[(CF₃)₃CO]₂, was formed in nearly quantitative yield.

(CF₃)₃COCl + CrO₂Cl₂ → CrO₂[(CF₃)₃CO]₂ + 2Cl₂

$$
(CF3)3COCl + CrO2Cl2 \rightarrow CrO2[(CF3)3CO]2 + 2Cl2
$$

The new chromyl compound is a thermally stable orange-red liquid that is sensitive to light. In CCI_4 , the UV-vis spectrum has two bands at 279 and 402 nm. Other chromyl compounds in CCl₄ gave similar spectra.¹⁰ The ¹⁹F NMR spectrum has a singlet at ϕ -73.0. Although no molecular ion was observed in the mass spectrum, appropriate fragments resulting from the *F-tert*-butoxy group are present.

Chromyl F-tert-butoxide, like the vanadium and titanium derivatives, is extremely water sensitive. With $CrO₂$ [(C- F_3 , CO], and water, a yellow chromium(VI) solution and $(CF_3)_3COH$ were produced.

- **1979,** *IS,* **205.**
- **(9)** Johnson, **D.** A,; Waugh, A. B. J. *Fluorine Chem.* **1983,** *22,* **51.**
- **(10)** Gerlach, J. **N.;** Gard, *G.* L. Inorg. *Chem.* **1970,** *9,* **1565.**

⁽¹⁾ (a) Portland State University. (b) Visiting Professor on leave from Portland State University, **1982. (c)** University **of** Idaho.

⁽²⁾ Young, D. **E.;** Anderson, L. R.; Fox, W. **B.** Inorg. *Chem.* **1971,10,2810. (3)** Mir, **Q. C.;** Shreeve, R. W.; Shreeve, J. M. *Phosphorus Sulfur* **1980,**

^{8,} **331.** (4) Youngs, D. E.; Fox, W. B. *Inorg. Nucl. Chem. Lett.* 1971, 7, 1033.
(5) Mir, Q. C.; Laurence, K. A.; Shreeve, R. W.; Babb, D. P.; Shreeve, J. M. *J. Am. Chem. Soc.* 1979, *101*, 5949.

⁽⁶⁾ Gard, G. L.; Shreeve, J. M. J. Am. *Chem.* **SOC. 1982,** *104,* **5566.**

^{~~~} (7) Flaskerud, G. G.; Shreeve, J. M. Inorg. *Chem.* **1969,** *8,* **2065. (8)** Johnson, **D.** A,; Taylor, J. C.; Waugh, A. B. Inorg. **Nucl.** *Chem. Lett.*

442 *Inorganic Chemistry, Vol. 23, No. 4, 1984*
CrO₂[(CF₃)₃CO]₂ + 2H₂O
$$
\rightarrow
$$
 [H₂CrO₄] + 2(CF₃)₃COH

The formation of $(CF_3)_3COH$ was confirmed by the appearance of its ¹⁹F NMR singlet at ϕ -74.9.

While it is known that $(CF_3)_3COCl$ will add oxidatively to free carbon monoxide, its behavior with coordinated carbon monoxide groups was unknown. $(CF_3)_3COCl$ reacts readily with trans- $[IrCl(CO)(PPh_3)_2]$ to produce a light yellow solid that when warmed to 150 "C under vacuum turns golden brown. This golden brown solid is insoluble in water but soluble in CCl₃F. Its melting point is 137 ± 2 °C. The ¹⁹F NMR spectrum contained two resonance bands at ϕ –69.6 and -70.5 with a relative band area of 3:1, respectively. The ¹H NMR spectrum contained major bands at 7.58, 2.00 and 1.25 ppm. The infrared spectrum contained a band of medium intensity at 2085 cm^{-1} , which is in the region found for carbon monoxide coordinated to an iridium(III) complex.¹¹ A weak band at 308 cm⁻¹ is in the Ir-Cl region. The above data strongly suggest that $(CF_3)_3COCl$ has oxidatively added to iridium(I), giving an iridium(II1) complex that is tentatively postulated as $[Ir{(CF_3)}, CO_2]C1(CO)L_2]$ where L is no longer PPh_3 but a complex ligand containing (CF_3) , CO- and Clgroups. The above NMR studies support a ligand complex with three (CF_3) ₃CO- groups per PPh₃. Iridium would be bonded to two (CF_3) , CO groups. It should be pointed out that bis(trifluoromethyl) nitroxide, $(CF_3)_2NO$, is also capable of oxidizing trans- $[IrCl(CO)(PPh_3)_2]$ in CCl_4 to the iridium(III) complex $[Ir(ON(CF₃)₂]₂Cl(CO)(PPh₃)₂·CCl₄].¹²$

 F -tert-Butyl nitrite, $(CF_3)_3$ CONO, is easily prepared, in nearly quantitative yield, by reacting $(CF_3)_3COCl$ with NOCl at 0° C.

$$
NOCl + (CF3)3COCl \xrightarrow{0°C} (CF3)3CONO + Cl2
$$

This material was previously prepared¹³ by the following sequence:

$$
(CF3)2C=CF2 + NOF \rightarrow (CF3)3C-N=O
$$

$$
\xrightarrow{\text{No}_2}
$$

$$
\xrightarrow{\text{XOn}} (CF3)3CONO
$$

The complete infrared spectrum of this compound is now reported along with its mass spectrum. Although no molecular ion was observed, appropriate fragments resulting from the F -tert-butoxy groups as well as the NO⁺ ion are present.

The infrared spectra of all new compounds clearly indicate the presence of tert- C_4F_9O groups, with absorption bands in the $1145-1305$ -cm⁻¹ region attributable to the C-F stretching frequency and with bands in the $720-762$ -cm⁻¹ region for the C-F deformation modes. It is likely that the absorption bands around 1000 cm-' are due to the C-0-C stretching vibration. Metal oxygen vibrations $(M=O)$ also occur in this region.

Surprisingly, UCl₄, Cu₂Cl₂, and post-transition-metal chlorides such as $SnCl₄$ and $SiCl₄$ fail to react with $(CF₃)₃C$ -OC1. In all cases, the hypochlorite is decomposed to (C- F_3)₂C=O and CF₃Cl without reaction.

The halogen-like behavior of $(CF_3)_3COCl$ is particularly evident in **its** reactions with easily oxidizable elements. For example, just as bismuth and tellurium react at room temperature with an excess of chlorine or $(CF_3)_3NO^{-14}$ to form BiR_3 and TeR₄ (R = Cl or (CF₃)₃NO), these metals react under essentially the same conditions with $(CF_3)_3COCl$ to form under essentially the same conditions with (CF_3) , COC1 to
Bi[(CF₃)₃CO]₃ and Te[(CF₃)₃CO]₄, viz.
2Bi + 6(CF₃)₃COCl \rightarrow 2Bi[(CF₃)₃CO]₃ + 3Cl₂

$$
2Bi + 6(CF_3)_3COCl \rightarrow 2Bi[(CF_3)_3CO]_3 + 3Cl_2
$$

Te + 4[(CF_3)_3COCl] \rightarrow Te[(CF_3)_3CO]_4 + 2Cl_2

These compounds are white, crystalline solids that hydrolyze with water to form the parent alcohol. While powdered lead reacts with $(CF_3)_3COCl$ to give $Pb[(CF_3)_3CO]_2$ in essentially quantitative yield, no reaction was found to occur with silicon under any conditions that preclude total hypochlorite decomposition.

Although the behavior of $(CF_3)_3COCl$ and $(CF_3)_2NO$ with metal halides and metals is essentially identical, their respective reactions with sulfur and iodine are disimilar. With sulfur, as with all lower valent compounds that contain sulfur, the hypochlorite adds oxidatively to produce a compound that contains sulfur(IV), specifically with $S_8 \rightarrow S[(CF_3)_3CO]_4$.⁵ The purple radical, $(CF_3)_2NO$, oxygenates and oxidatively adds to sulfur to form the same product as obtained with *SO₂*, i.e., $[(CF_3)_2NO]_2SO_2$, where sulfur exists as S^{VI} . There are no examples where (\overline{CF}_3) ,COCl reacts with sulfur compounds to oxidize sulfur from a lower oxidation state to sulfur(V1) with the exception of the oxidative addition to SO₂ to form $(CF_3)_3COSO_2Cl$. There is no evidence for the *tert*-butyl hypochlorite behaving as an oxygenating reagent.

With iodine, an excess of $(CF_3)_3$ COCl reacts to form the orange iodine(III) compound, $I[(CF₃)₃CO]₃$, in 97% yield under mild reaction conditions. In sharp contrast, no isolable compound is formed between iodine and $(CF_3)_2NO$, although traces of iodine catalyzed the reactions of the radical with certain less reactive halides.¹⁴ It should be noted that even when a large excess of hypochlorite was used in the reaction with iodine, no evidence for I^V was found. The orange solid sublimes slowly at 25 °C to form a crystalline material.

One of the drawbacks in using $(CF_3)_3COCl$ with oxidizable compounds is its relatively low stability. Reactions must be run routinely at 0° C or below to prevent rather rapid thermal decompoistion of the hypochlorite. It is also easily decomposed by ultraviolet radiation. Thus, only the mildest conditions may be employed in the study of its chemistry.

A UV-vis spectrum of F-tert-butyl hypochlorite in perfluoro-2-butyltetrahydrofuran was obtained on a Cary 14 spectrophotometer. The λ_{max} occurred at 256 nm; other organic hypochlorites give similar spectra.

Experimental Section

Materials. The compounds used in this work were obtained from commercial sources: $(CF_3)_3COH$ and TiCl₄ (PCR), CrO₂Cl₂ (treated with mercury and vacuum distilled), Cu₂Cl₂, SbCl₅, TiCl₄, and VOCl₃ (Alfa), NOCl, and UCl₄ (ROC/RIC), SnCl₄, CCl₄ (Baker), (C- H_3CH_2 ₂NH, Te, Pb, Si, and I_2 (Mallinckrodt), and S_8 (MCB). Except for CrO₂Cl₂, they were used without further purification. **F-tert-Butyl hypochlorite was synthesized by the literature method.15 We are indebted to Dr.** M. **Roundhill for a gift of trans-[IrCI-** $(CO)(PPh_3)_2$].

General **Procedure. Gases were manipulated in a conventional Pyrex vacuum apparatus equipped with a Heise Bourdon tube gauge and a Televac thermocouple gauge. Infrared spectra were obtained by using a 5-cm stainless steel cell with KBr windows or as solids between KBr disks** on **a Perkin-Elmer 599 spectrometer.** I9F **NMR spectra were recorded with a JEOL** FX90Q **spectrometer operating at 84.26 MHz. Chemical shifts** are **relative to CCI,F. Mass spectra were measured with a Hitachi Perkin-Elmer RMU-6E mass spectrometer** at 15 eV. The UV-vis spectrum of CrO₂[(CF₃)₃CO]₂ was obtained on **a Hewlett-Packard 8450A spectrophotometer. Elemental analyses were performed at the University of Idaho or by Beller Laboratories, Gottingen, W. Germany.**

VOCl, with **(CF,),COCl. To a 75-mL Pyrex-glass vessel equipped with a Kontes Teflon valve and Teflon stirring bar were added 0.677** mmol of VOCl₃ and 2.73 mmol of (CF₃)₃COCl. The reaction mixture was maintained at 0 °C (22 h). After the volatile materials were removed under vacuum, the light yellow solid, $\text{VO}[(\text{CF}_3)_3\text{CO}]_3$ (0.670 **mmol), was formed in** *99%* **yield. Separation and analyses of the** volatile material found $(CF_3)_2CO$, CF_3Cl , and Cl_2 (2.05 mmol,

⁽¹¹⁾ Collman, J. P.; Roper, *W.* **R.** *Adv. Organomet. Chem.* **1968, 7, 53. (12) Booth, B. L.; Haszeldine, R. N.; Holmes, R.** *G. J. Chem. SOC., Dalton*

Trans. **1982, 52.**

⁽¹³⁾ Andreades, S. *J. Org. Chem.* **1962,** *27,* **463.**

⁽¹⁴⁾ Babb, D. P., Shreeve, J. M. *Intra-Science Chem. Rep.* **1971,** *5, 55.*

⁽¹⁵⁾ Gould, **D. E.; Anderson, L. R.; Young, D. E.; Fox, W. B.** *J. Am. Chem. SOC.* **1970,** *92,* **2313.**

theoretical yield **2.03** mmol). The light yellow product sublimed in vacuo at ~ 60 °C to a white crystalline solid, mp $62-63$ °C. The infrared spectrum of VO[(CF₃)₃CO]₃ shows bands (cm⁻¹) at 1300 **(s), 1265 (s,** b), **1192** (m), **1140 (s,** b), **1044** (w), **977 (s), 847** (ms), **⁸¹⁰**(sh), **760** (vw), **753** (w), **727 (s).** The 19F spectrum contained a singlet at **-73.3** ppm.

Anal. Calcd: C, **18.67.** Found: C, **17.71.**

TiCl₄ with $(CF_3)_3$ COCl. To a 200-mL Pyrex-glass vessel equipped with a Kontes Teflon valve and Teflon stirring bar were added **1.40** mmol of TiCl₄ and 6.83 mmol of (CF₃)₃COCl. The reaction mixture was maintained at 0 °C (18.5 h); an additional 1.62 mmol of (C- F_3)₃COCl was added and again the mixture was maintained at 0 $^{\circ}$ C **(41.5** h). After the volatile materials were removed under vacuum, the white solid, Ti[(CF₃)₃CO]₄ (1.35 mmol), was obtained (96% yield). Separation and analyses of the volatile material showed (CF_1) , CO, CF3C1, and C12 **(5.1** mmol, theoretical yield **5.6** mmol). The white solid sublimes at \sim 50 °C under vacuum; mp 126 °C

The infrared spectrum of Ti $[(CF_3)_3CO]_4$ shows bands (cm⁻¹) at **1305** (m), **1255 (s,** b), **1194** (m), **1150 (s,** b), **1085** (sh), **986 (s), 858** (m), **736 (s), 583** (w), **562** (w), **550** (m), **415** (m). The 19F NMR spectrum contained a singlet at **-74.6** ppm. A molecular ion was not observed, but other appropriate fragment ions were found: m/e 969 **(M** – F)⁺, 919 **(M** – CF₃)⁺, 753 **[M** – (CF₃)₃CO]⁺, 684 **[M** – (M - F)⁺, 919 (M - CF₃)⁺, 753 [M - (CF₃)₃CO]⁺, 684 [M - (CF₃)₃CO - 2CF₃]⁺, 615 [M - (CF₃)₃CO - 2CF₃]⁺, 518 [M - 2-(CF3)3CO]+, **197** [(CF,),CO - 2F]+, **178** [(CF3)pCO - 3F]+, **¹⁴⁷** $[(CF₃)₂CO - F]⁺$, 97 $(CF₃CO)⁺$, 69 $(CF₃)⁺$. Fragment ions with titanium present were a multiplet.

Anal. Calcd: Ti, **4.82;** C, **19.45;** F, **69.2.** Found: Ti, **5.00;** C, **18.56;** F, **69.3.**

TiCl₄ with (CF_3) ₃COH. To a 200-mL Pyrex-glass vessel equipped with a Kontes Teflon valve and a Teflon **stirring** bar were added **0.7822** mmol of TiCl₄ and 3.573 mmol of (CF₃)₃COH. The reaction mixture was maintained at room temperature (18 h) and then heated to 30–50 ^oC (7.5 h). No reaction was evident, and an infrared spectrum showed essentially $(CF_3)_3COH$ and no HCl.

TiCl₄ with $(CF_3)_3COH$ and $(CH_3CH_2)_2NH$. To the above reaction mixture was added 3.114 mmol of (CH₃CH₂₂NH. A yellowish white solid was formed as the reaction mixture was warmed slowly from **-196** to 0 "C. After **20** h at 0 "C the volatile materials were removed, leaving behind **1.1498 g** of a light yellow solid. The I9F NMR spectrum of the solid in Freon-11 gave the major resonance bands at ϕ -72.7, -74.6, and -76.3. Since the solid contained several different compounds, further studies were discontinued.

(CF₃)₃COH with (CH₃CH₂)₂NH. To a 100-mL Pyrex-glass vessel equipped with a Kontes Teflon valve and a Teflon stirring bar were added 0.66 mmol of $(CF_3)_3COH$ and 7.4 mmol of $(CH_3CH_2)_2NH$. Upon warming to room temperature a white solid was immediately formed and after **0.75** h at room temperature the volatile materials were removed, leaving behind a sublimable white solid **[0.62** mmol of (CF3)3COH.(CH3CH2)zNH], yield **94%;** mp 159 **f 2** "C.

The infrared spectrum of $(CF_3)_3COH(CH_3CH_2)_2NH$ shows bands (cm-I) at **3038** (w), **2996** (m), **2952** (m), **2918** (wm), **2868** (wm), **2600** (vb, m), **1656** (sh), **1648** (m), **1502** (m), **1480** (m), **1458** (m), **1394** (m), **1376** (m), **1290** (sh), **1256 (s), 1220** (b, **s), 1172 (s), 1150** (sh), **1064** (m), **1050** (m), **1014** (w), **956 (s), 866** (w), **822 (s), 758** (w), **720 (s), 668** (w).

The 19F NMR spectrum contained a singlet at **-76.3** ppm. The 'H NMR spectrum gave a broad singlet at **10.10** ppm, a quartet at **2.74** ppm, and a triplet at **1.34** ppm; the relative **peak** areas were NH (2.0), CH₂ (4.0), and CH₃ (6.0).

Anal. Calcd: C, **31.07;** H, **3.92;** N, **4.53.** Found: C, **30.83** H, **3.93; N, 4.65.**

CrO₂Cl₂ with (CF_3) ₃COCl. To a 200-mL Pyrex-glass vessel equipped with a Kontes Teflon valve and a Teflon stirring bar were added 1.18 mmol of $CrO₂Cl₂$ and 3.65 mmol of $(CF₃)₃COCl$. The reaction mixture was warmed to 0 "C and then to room temperature $(1.8 h)$; an additional 2.12 mmol of $(CF_3)_3$ COCl was added and the mixture maintained at 0 "C **(66** h). The volatile materials at **-44** ^oC were separated and analyzed; (CF₃)₂CO, CF₃Cl, Cl₂ (2.35 mmol, theoretical yield **2.36** mmol) were found. The nonvolatile material left behing at -44 °C was an orange-red liquid, $CrO₂[(CF₃)₃CO]₂$, **1.12** mmol; yield **95%.**

The gaseous infrared spectrum of $CrO₂[(CF₃)₃CO]₂$ shows bands (cm-I) at **1305** (m), **1272 (s,** b), **1198** (vw), **1180** (vw), **1167** (sh), **1145 (s), 1000** (m), **985** (ms), **837** (w), **732** (m), **542** (w). The I9F NMR spectrum contained a singlet at **-73.0** ppm. Addition of water to a sample of $CrO₂[(CF₃)₃CO]₂$ produced $(CF₃)₃COH$, as identified by its characteristic NMR resonance at ϕ -74.9 and a yellow oxidizing solution of H_2CrO_4 . The UV-vis spectrum of the compound in CCl₄ contained two bands at **279** and **402** nm.

Anal. Calcd: Cr, **9.39;** C, **17.35.** Found: Cr, **9.38;** C, **16.82. NOCl with (CF₃)₃COCl.** To a 200-mL Pyrex-glass vessel equipped with a Kontes Teflon valve and a Teflon stirring bar were added 2.64 mmol of NOCl and 3.59 mmol of (CF₃)₃COCl. The reaction mixture was slowly warmed to 0 °C (20 h). Trap-to-trap separation gave 2.48 mmol of (CF3)3CON0, yield **94%,** and **2.53** mmol of C1, (theoretical yield **2.64** mmol).

The gaseous infrared spectrum of $(CF_3)_3$ CONO shows bands (cm^{-1}) at **1810 (s), 1305 (s), 1288** (vs), **1264 (s), 1210** (w), **1190** (w), **1160** (m), **1132** (m), **1008** (m), **986** (m), **960** (w), **797** (w), **762** (m), **734** (m), **648** (m), **545** (w), **523** (w). The 19F NMR spectrum contained a singlet at **-70.9** ppm. A molecular ion was not observed, but other appropriate fragment ions were found: m/e 197 $[(CF_3)_3CO - 2F]^+,$ **97** (CF3CO)+, **69** (CF,)', 30(NO)+. **166** $[(CF_3)_2CO]^+$, **147** $[(CF_3)_2CO - F]^+$, **128** $[(CF_3)_2CO - 2F]^+$,

trans-[IrCl(CO)(PPh₃)₂] with $(CF_3)_3$ COCl. To a \sim 50-mL Pyrex-glass vessel equipped with a Kontes Teflon valve and Teflon stirring bar were added 0.1188 mmol of *trans*-[IrCl(CO)(PPh₃)₂] and 3.16 mmol of $(CF_3)_3$ COCl. The reaction mixture was maintained at 0 "C **(25** h). After the volatile materials were removed under vacuum a yellow solid was left behind. An attempt to sublime this material at temperatures up to **150** "C produced a crystalline golden-yellow solid, mp $137 \triangleq 2^{\circ}$ C. It is soluble in Freon-11 but insoluble in H_2O . The infrared spectrum shows bands (cm-') at **3080** (w). **2085** (m), **1620** (w), **1570** (mw), **1545** (sh), **1440** (mw), **1409** (m), **1385** (sh), **1368** (w), **1265** (vs, br), **1186 (s), 1143 (s,** br), **1105 (s), 1006 (s), 973 (s), 885** (w), **841** (w), **882** (w), **809** (w), **773** w), **742 (s), 731 (s), 690** (w), **620** (w), **546** (mw), **405** (w), **333** (w), **308** (w).

The ¹⁹F NMR spectrum contains two resonance bands at -69.6 and **-70.5** ppm, with a relative band area of **1:3,** respectively. The IH NMR spectrum has major resonance bands at **7.58,2.00,** and **1.25** PPm.

Anal. Calcd for $IrCl_9(CO)[(CF_3)_3CO]_8(PPh_3)_2$: P, 2.16; C, 28.84; H, **1.06;** F, **47.62.** Found: P, **2.65;** C, **28.38;** H, **1.12;** F, **48.60.**

SnCl₄ with (CF_3) , COCl. To a 200-mL Pyrex-glass vessel equipped with a Kontes Teflon valve and a Teflon stirring bar were added 0.422 mmol of SnCl₄ and 2.57 mmol of (CF₃)₃COCl. The reaction mixture was maintained at 0 °C (9 h) and then at room temperature for 48 h. No solid product was formed, and in the gas phase only the decomposed (CF_3) ,COCl products were observed $[(CF_3)_2C=O$ and CF,Cl].

SiC14 **with** (CF3),COCl. To a **200-mL** Pyrex-glass vessel equipped with a Kontes Teflon valve and a Teflon stirring bar were added 0.409 mmol of SiCl₄ and 3.3 mmol of (CF₃),COCl. The reaction mixture was warmed to $0 °C$ (2.5 h) and then to room ttemperature. No solid/liquid products were formed, and in the gas phase only the decomposed (CF_3) ,COCl products were observed $[CF_3C]$ and $(CF_3)_2C=O1$

UCL₄ with (CF_3) , COCl. To a 200-mL Pyrex-glass vessel equipped with a Kontes Teflon valve and a Teflon stirring bar were added 0.654 mmol of UCl₄ and 3.3 mmol of (CF₃)₃COCl. The reaction mixture was warmed to 0 °C (120 h). The volatile material contained (C- F_3)₂CO and CF₃Cl. The weight of the solid left behind was essentially unchanged.

Cu2C12 with (CF,),COCI. To a **50"** vessel quipped with a Kontes Teflon valve and Teflon stirring bar were added 0.448 mmol Cu₂Cl₂ and 3.847 mmol of (CF₃)₃COCl. The reaction mixture was maintained at 0 °C (18 h) and then at room temperature (23 h). The volatile material contained only $(CF_3)_2C=O$ and CF_3Cl . The weight of the solid left behind increased only **0.0147** g. The reaction was not studied

further.
I, with (CF_3) , COCl. To a 200-mL Pyrex-glass vessel equipped with **I2 with** (CF,),COCl. To a 200-mL Pyrex-glass vessel equipped with a Kontes Teflon valve were added **0.40** mmol of **I2** and **4.82** mmol of (CF_3) , COCl. The reaction mixture was maintained at $0 °C$ (44 h). After removal of the volatile materials under vacuum, **0.78** mmol of the orange solid, I[(CF,),CO],, was formed in **97%** yield. Separation and analyses of the volatile material found $(CF_2)_3CO$, CF_3Cl , and C12 **(1.20** mmol, theoretical yield **1.21** mmol). The product, $I[(CF₃)₃CO]₃$, slowly sublimed at room temperature under vacuum; mp **22.5-2315** "C.

The infrared spectrum shows bands (cm⁻¹) at 1256 (s, b), 1194 (ms), 1172 (ms), 1144 (s), 1104 (s), 1068 (s), 972 (s), 976 (w), 666 **(s),** 726 (s), 686 (ms). The 19F NMR spectrum contained a singlet at -72.0 ppm.

Anal. Calcd: C, 17.32; F, 61.65; I, 15.25. Found: C, 17.39; F, 61.3; I, 15.20.

Pb with (CF_3) **, COCL** To a 50-mL Pyrex-glass vessel equipped with a Kontes Teflon valve and Teflon stirring bar were added 0.499 mmol of Pb and 4.50 mmol of $(CF_3)_3$ COCl. The reaction mixture was maintained at $0 °C$ (90 h) and at room temperature (50 h); an additional 1.63 mmol of (CF_3) , COCl was added and again maintained at room temperature (24 h). The materials volatile at -78 °C were periodically removed during this time. The materials volatile at room temperature were removed under vacuum, leaving 0.508 mmol of a light tan solid, $Pb[(CF_3)_3CO]_2$, in \sim 100% yield. Separation and analysis of the volatile materials found $(CF_3)_2CO$, CF_3Cl , and Cl_2 (0.49 mmol, theoretical yield 0.50 mmol).

The infrared spectrum of $Pb[(CF₃)₃CO]₂$ shows bands (cm⁻¹) at 1304 (ms), 1248 **(s,** b), 1214 (sh), 1184 (m), 1140 (s), 970 (s), 766 (m) , 724 (ms), 674 (w). The ¹⁹F NMR spectrum contained a singlet at -74.0 ppm.

Anal. Calcd: C, 14.19. Found: C, 12.81.
Si with (CF₃)₃COCl. To a 50-mL Pyrex-glass vessel equipped with a Kontes Teflon valve and a Teflon stirring bar were added 0.602 mmol of silicon and 0.933 mmol of $(CF_3)_3COCl$. The reaction mixture was maintained at $0 °C$ (18 h) and then at room temperature (24 h). The volatile material contained only $(CF_3)_2C=O$ and CF_3Cl . The weight of the solid left behind increased only 0.0060 **g.** The reaction was not studied further.

^Swith **(CF,),COCI.** To a 50-mL Pyrex-glass vessel equipped with a Kontes Teflon valve and a Teflon stirring bar were added 2.59 mmol of sulfur and 3.59 mmol $(CF_3)_3$ COCl. The reaction mixture was maintained at $0 °C$ (2 h). Separation and analyses of the volatile material found Cl_2 and S_2Cl_2/SCl_2 . The white solid left behind was found to be 0.701 mmol of $S[(CF_3)_3CO]_4$ which was formed in 78% yield. Melting point and spectral data agree with literature values.⁵ Te with $(CF_3)_3COCI$. To a 50-mL Pyrex-glass vessel equipped with

a Kontes Teflon valve and Teflon stirring bar were added 0.429 mmol of Te and 3.67 mmol of $(CF_3)_3$ COCl. The reaction mixture was maintained at 0 °C (100 h), at room temperature (90 h), and between 25 and 30 °C (2 h); an additional 1.08 mmol of $(CF_3)_3$ COCl was added and the reaction again maintained at room temperature (24 h). The materials volatile at -78 °C were periodically removed during this time. The materials volatile at room temperature were removed under vacuum, leaving 0.385 mmol of the white solid, $Te[(CF_3)_3CO]_4$, in 90% yield. Separation and analysis of the volatile materials found $(CF₃)₂CO, CF₃Cl, and Cl₂ (0.85 mmol, theoretical yield 0.86 mmol).$ The new compound sublimes in vacuo at 70 \degree C and melts in a sealed tube at 94 ± 1 °C.

The infrared spectrum of $Te[(CF_3)_3CO]_4$ shows bands (cm⁻¹) at 1308 (sh), 1260 **(s),** 1172 (m), 968 (ms), 760 (sh), 724 **(s),** 626 (vs, b). The 19 F NMR spectrum contained a singlet at -72.1 ppm.

Anal. Calcd: C, 17.99. Found: C, 17.17.

Bi with (CF_3) **, COCI.** To a 50-mL Pyrex-glass vessel equipped with a Kontes Teflon valve and Teflon stirring bar were added 0.427 mmol of Bi and 1.941 mmol $(CF_3)_3$ COCl. Additional amounts of $(C F₃$ ₂COCl were added later (2.86, 3.28, and 0.71 mmol). Cumulatively, the reaction mixture was maintained at $0 °C$ (40 h), room temperature (94 h), and 25-30 °C (6 h). The materials volatile at -78 °C were removed periodically during this time. The materials volatile at 25 °C were removed under vacuum, leaving 0.40 mmol of the white solid, $Bi[OC(CF_3)_3]_3$, in 93% yield. Separation and analyses of volatile materials found CF_3Cl , $(CF_3)_2C(O)$, $(CF_3)_3COH$, and Cl,.

The infrared spectrum of $Bi[OC(CF_3)_3]_3$ shows bands (cm⁻¹) at 1303 (ms), 1245 **(s),** 1207 (sh), 1153 (s), 965 **(s),** 765 (w). 723 **(s).** The ¹⁹F NMR spectrum contained a singlet at -74.2 ppm.

Anal. Calcd: C, 15.77; F, 56.12. Found: C, 15.45; F, 54.4.

Acknowledgment. Acknowledgment is expressed to the donors of the Petroleum Research Fund, administered by the American Chemical Society, and to the National Science Foundation (Grant CHE-8100156) for support of this research. We thank Dr. Gary Knerr for mass and 19F NMR spectral data.

Registry No. $VO[(CF₃)₃CO]₃$, 88391-96-2; Ti $[(CF₃)₃CO]₄$, 88391-97-3; $CrO_2[(CF_3)_3CO]_2$, 88391-99-5; $Pb[(CF_3)_3CO]_2$, Te[(CF₃)₃CO]₄, 88392-02-3; Bi[(CF₃)₃CO]₃, 88392-03-4; (CF₃)₃C-27579-40-4; (CF₃)₃CONO, 677-88-3; trans-[IrCl(CO)(PPh₃)₂], 15318-31-7; 12, 7553-56-2; Pb, 7439-92-1; *S,* 7704-34-9; Te, 13494- 80-9; Bi, 7440-69-9. 88392-01-2; I[(CF₃)₃CO]₃, 88392-00-1; S[(CF₃)₃CO]₄, 71906-37-1; OH \cdot (CH₃CH₂)₂NH, 88391-98-4; NOCl, 2696-92-6; (CF₃)₃COCl,

Contribution from the Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6

Cis Effect of the Phosphorus Ligand, L, in Six-Coordinate $Ru(CO)_{3}(L)(SiCl_{3})_{2}$ **Compounds. Importance of the Steric Factor'**

KAREN L. CHALK and ROLAND K. POMEROY*

Received *May 13, 1983*

The rate of substitution of the equatorial carbonyl by $P(OME)$, has been investigated for 24 different molecules of the type mer-Ru(CO)₃(L)(SiCl₃)₂ (SiCl₃ groups mutually cis; L a phosphorus donor ligand). Detailed studies on the substitution in $Ru(CO)₃(PPh₃)(SiCl₃)$ ₂ were entirely consistent with a dissociative mechanism for the process. Rates, at 40 °C, vary by \sim 10³ depending on the nature of L. With four exceptions, the activation parameter ΔH^* was found to be approximately constant for each case. This is interpreted as signifying that ground-state electronic effects are unimportant in determining the differences in rates. In contrast, for these nonexceptional examples, the ΔS^* values vary from 4 to 19 cal mol⁻¹ deg⁻¹. Furthermore, there is a reasonably linear correlation between ΔS^* and the size of the phosphorus ligand as measured by the cone angle, *8,* of L. It is concluded that the origin of the cis effect of L in these complexes **is** almost entirely steric.

Introduction

The most common mechanism by which metal carbonyl complexes undergo substitution reactions is by the initial dissociation of *CO* as the rate-determining step.2 In substituted metal carbonyl compounds it appears for most cases

⁽¹⁾ Taken in part from: Chalk, K. L. M.S. Thesis, Simon Fraser University, **1982.**

⁽²⁾ Darensbourg, D. J. *Adu. Organomef. Chem. 1982, 21,* **113.**

that the CO groups cis to the non-carbonyl substituent are labilized with respect to dissociation.³ This, of course, is in contrast to ligand-displacement reactions in square complexes where the trans effect is of dominant importance.⁴ Brown and co-workers have developed the Site-Preference model in

⁽³⁾ Atwood, J. D.; Brown, T. L. J. *Am. Chem.* **SOC. 1976,** *98,* **3161.** (4) Cotton, F. A,; Wilkinson, G. "Advanced Inorganic Chemistry", 4th *ed.;*

Wiley: New York, **1980,** p **1199.**