Interpretation of Kinetic Data for the Reaction of Azide with Aquapentaamminechromium(III) and the Reverse (Aquation) Reaction

SILVIA CASTILLO-BLUM and A. GEOFFREY SYKES*

Received April 7, 1983

The reaction of azide with $Cr(NH_3)_5H_2O^{3+}$ (pH 2.5-4.5) yields the azido complex $Cr(NH_3)_5N_3^{2+}$, which over extended run periods undergoes further substitution. First-order rate constants for the formation of $Cr(NH_3)_5N_3^{2+}$, k_{obsd} , give a dependence on total azide, $[N_3^-]_T$, of the form $k_{obsd}/[N_3^-]_T = (k_1K_a + k_2[H^+])/(K_a + [H^+])$, where K_a is the acid dissociation constant for HN₃ and k_1 and k_2 are rate constants for the reactions of $Cr(NH_3)_5H_2O^{3+}$ with N₃⁻ and HN₃, respectively. At 50 °C and I = 1.0 M (NaClO₄), $K_a = 5.0 \times 10^{-5}$ M corresponding to $pK_a = 4.3$ ($\Delta H = 2.6$ kcal mol⁻¹, $\Delta S = -11.8$ cal K⁻¹ mol⁻¹), $k_1 = 3.2 \times 10^{-4}$ M⁻¹ s⁻¹, and $k_2 = 5.5 \times 10^{-6}$ M⁻¹ s⁻¹. The interpretation differs from that of a previous study in which a pathway involving reaction of Cr(NH₃)₅OH²⁺ with N₃⁻ was implicated with no consideration of the reaction $Cr(NH_3)_5H_2O^{3+} + HN_3$. A brief study has also been made of the kinetics of the aquation of $Cr(NH_3)_5N_3^{2+}$, which conforms to the rate law $k_{obsd} = k_{aq} + k_H[H^+]$, with $k_{aq} = 1.39 \times 10^{-6} \text{ s}^{-1}$ and $k_H = 4.2 \times 10^{-5} \text{ M}^{-1} \text{ s}^{-1}$ at 50 °C. Activation parameters have been determined for k_1 , k_2 , k_{aq} , and k_H , and updated values for the Br⁻ anation of Cr(NH₃)₅H₂O³⁺ are also presented. A comparison of existing data for substitution on Cr(NH₃)₅H₂O³⁺ is made.

Investigations on substitution reactions of Cr(NH₃)₅H₂O³⁺ are more detailed and require more care than those of Co-(NH₃)₅H₂O³⁺ because of competing NH₃-loss processes,¹ and full kinetic studies of the anation of $Cr(NH_3)_5H_2O^{3+}$ with simple anions such as nitrate, sulfate, fluoride, and formate have yet to be reported.² As more information becomes available, it is clear that NH3-loss processes for Cr(III) complexes $Cr(NH_3)_5 X^{n+}$ fall into at least two different categories. The first is with X a small oxyanion (nitrate,³ sulfate,¹ and carboxylates RCO_2^{-4} but not phosphate⁵ or selenate⁶). Cis labilization is believed to be featured in such reactions since loss of more than one NH₃ is observed.^{1,3} and transient chelation of an uncoordinated O atom is the most likely explanation. Similarly, with glycinate⁷ and oxalate,⁸ rate-determining formation of the monodentate complex is followed by rapid (and permanent) chelation involving NH₃ loss. A second category of reaction with $X = F^-$, OH⁻, (and N_3^-) has been reported, where loss of NH₃ is a consequence of the nature of the bonding Cr-X. Although it is not clear whether cis or trans products predominate in such reactions,² in a recent definitive study with $X = F^{-}$ both appear to be formed.⁹

An earlier study with A^{1} resolution appendix of the conversion of $Cr(NH_3)_5H_2O^{3+}$ (orange) to $Cr(NH_3)_5N_3^{2+}$ (red) also reported formation of low-charged (green) complexes resulting from the replacement of NH_3 's by N_3^- . We confirm that it is possible to monitor the kinetics of the primary process (1)

$$Cr(NH_3)_5H_2O^{3+} + N_3^- \rightarrow Cr(NH_3)_5N_3^{2+} + H_2O$$
 (1)

and that in the latter stages of the reactions there is green coloration. However, we differ in interpretation of the kinetics, which previously included consideration of the reactions of $Cr(NH_3)_5H_2O^{3+}$ and $Cr(NH_3)_5OH^{2+}$ with N_3^- but no contribution from reactions of HN₃. We are interested in evaluating further the kinetics of (1) and comparing the results

- (1) Ramasami, T.; Wharton, R. K.; Sykes, A. G. Inorg. Chem. 1975, 14, 359
- Al-Shatti, N.; Ramasami, T.; Sykes, A. G. J. Chem. Soc., Dalton Trans. (2)1977, 74
- (3) Guastella, G.; Swaddle, T. W. J. Chem. Soc., Chem. Commun. 1973, 61; Can. J. Chem. 1974, 52, 527.
- (4) Zinato, E.; Furlani, C.; Lanna, G.; Riccieri, P. Inorg. Chem. 1972, 11, 1746.
- (6)
- Ferrer, M.; Sykes, A. G. Inorg. Chem. 1979, 18, 3345. Criex, A.; Ferrer, M. Inorg. Chim. Acta 1982, 59, 177. Ramasami, T.; Taylor, R. S.; Sykes, A. G. Inorg. Chem. 1976, 15, 2318. Nor, O.; Sykes, A. G. J. Chem. Soc., Dalton Trans. 1973, 1232. (8)
- Kirk, A. O.; Glover, S. G. Inorg. Chem. 1983, 22, 176.
- (10) Banerjea, O.; Sarkar, S. Z. Anorg. Allg. Chem. 1972, 393, 301.

Table I. Acid Dissociation Constants, K_a , for NH₃, $I = 1.0 \text{ M} (\text{NaClO}_{4})$

temp, °C	$10^{5}K_{a}, M$	temp, °C	$10^{\circ}K_{a}$, M	
22 25 40	$\begin{array}{r} 3.39 \pm 0.08 \\ 3.63^{a} \\ 4.36 \pm 0.15 \end{array}$	50 60	5.01 ± 0.18 5.62 ± 0.32	

^a Literature value from ref 14.

with earlier data for substitution reactions involving Cr- $(NH_3)_5H_2O^{3+}$.

Experimental Section

Reactants. The nitrate salt of aquapentaamminechromium(III), $[Cr(NH_3)_5H_2O](NO_3)_3 \cdot NH_4NO_3$, was converted into the perchlorate salt, $[Cr(NH_3)_5(H_2O)](ClO_4)_3$, as previously described.⁵ A sample of azidopentaamminechromium(III) perchlorate, $[Cr(NH_3)_5N_3]$ -(ClO₄)₂, was prepared from the latter.¹¹ Relevant details of spectra in 0.10 M HClO₄, λ_{max}/nm (ϵ/M^{-1} cm⁻¹), are for Cr(NH₃)₅H₂O³⁺ 481 (35.4) and 361 (30.8) and for $Cr(NH_3)_5N_3^{2+}$ 500 (144) (Figure 1), in agreement with literature values.^{5,12} Analar grade sodium azide (NaN₃), sodium perchlorate (NaClO₄·H₂O), and sodium bromide were used without further purification. Lithium perchlorate, prepared from Li₂CO₃ (BDH, Laboratory Reagent) and perchloric acid (BDH, AnalaR), was recrystallized three times. Solutions of NaClO4 and LiClO₄ were standardized by passing them down an Amberlite IR 120(H) resin column and titrating the liberated H⁺ with NaOH.

Determination of Acid Dissociation Constant for HN₃. The pHs of nine solutions, made up with varying concentrations of NaN3 and HN_3 (assumed to be equal to the amount of $HClO_4$ added), were measured at 22, 40, 50, and 60 °C on a Radiometer (PHM62) pH meter calibrated with solutions at I = 1.0 M (NaClO₄). A Russell (Type CWR/322) special stem combination glass electrode was used, with the KCl component replaced by NaCl to enable measurements in ClO₄⁻ solutions. This was immersed in solution in a 1-cm optical cell, the temperature of which was rapidly adjusted with a digitial temperature controller. To avoid loss of HN₃ (bp 37 °C), the cell was closed with a rubber seal holding the electrode. No effective loss of HN₃ was demonstrated for a series of measurements by returning to the initial temperature (22 °C) when an identical reading was obtained. Solutions investigated were in the pH range of 2.8-4.6. Equation 2 was used to calculate acid dissociation pK_a values, and

$$pH = pK_a + \log ([N_aN_3]/[HN_3])$$
(2)

hence K_a as listed in Table I. Values determined spectrophotometrically,¹³ by a procedure based on the different absorbances of

- (12) 240.
- (13) Burns, E. A.; Chang, F. D. J. Phys. Chem. 1959, 63, 1314.

0020-1669/84/1323-1049\$01.50/0 © 1984 American Chemical Society

Linhard, M.; Berthold, W. Z. Anorg. Allg. Chem. 1955, 279, 18. Linhard, M.; Siebert, H.; Weigel, M. Z. Anorg. Allg. Chem. 1955, 278, (11)

Figure 1. UV-visible spectra for $Cr(NH_3)_5N_3^{2+}$ (--) and $Cr-(NH_3)_5H_2O^{3+}$ (---) in 0.1 M HClO₄.

Figure 2. Dependence of first-order rate constants, k_{obsd} , on total azide concentration, $[HN_3] + [N_3^-]$, for the anation of $Cr(NH_3)_5H_2O^{3+}$ with $10^4[H^+]$ (M) = 1.51 (+), 3.39 (×), 6.03 (□), 9.55 (∇), 14.5 (Δ), and 17.4 (O) at 50 °C, I = 1.0 M (NaClO₄).

N₃⁻ and HN₃ in the region 228-242 nm, were in satisfactory agreement with those listed. From the temperature dependence of log K_a against 1/T, $\Delta H = 2.61 \pm 0.08$ kcal mol⁻¹ and $\Delta S = -11.6 \pm 0.3$ cal K⁻¹ mol⁻¹, to be compared with literature values,¹⁴ $I \rightarrow 0$, of $\Delta H = 3.8$ kcal mol⁻¹ and $\Delta S = -8.6$ cal K⁻¹ mol⁻¹.

Buffering of Solutions. For the anation studies azide served as the buffer. Solid NaN₃ was added to solutions of NaClO₄ (or LiClO₄), HClO₄, and Cr(NH₃)₅H₂O³⁺ as required. The pH of duplicate-run solutions was checked at 22 °C and then converted to the higher temperature, 40, 50, or 60 °C (as relevant to the kinetic runs), by means of (2).

Kinetic Studies. Run solutions filled a 1 cm path length optical cell, and Teflon stoppers were put in place with no residual air gap. For the anation reaction azide with in large excess of the complex. Absorbance changes at 500 nm were recorded on a Pye-Unicam SP8000 complete with automatic cell changer, and plots of ln $(A_{\infty} - A_i)$ against time were with calculated A_{∞} values from the known spectrum of $Cr(NH_3)_5N_3^{2+}$. Such plots were linear to 35-75% completion only, due to further reactions involving loss of NH₃ ligands. The slope of the linear section gave first-order rate constants k_{obsd} . A reaction scheme (eq 3-5) is considered here. This gives the de-

$$HN_3 \stackrel{\Lambda_a}{\longrightarrow} H^+ + N_3^- \tag{3}$$

$$Cr(NH_3)_5H_2O^{3+} + N_3^{-} \xrightarrow{k_1} Cr(NH_3)_5N_3^{2+} + H_2O$$
 (4)

$$Cr(NH_3)_5H_2O^{3+} + HN_3 \xrightarrow{k_2} Cr(NH_3)_5N_3^{2+} + H_3O^+$$
 (5)

pendence (6), where $[N_3^-]_T$ is the total azide present as N_3^- and HN_3 .

$$\frac{k_{\text{obsd}}}{N_3^{-}]_{\text{T}}} = \frac{k_1 K_a + k_2 [\text{H}^+]}{K_a + [\text{H}^+]}$$
(6)

The aquation of $Cr(NH_3)_5N_3^{2+}$ was studied at 50 and 55 °C with $[H^+] = 0.02-0.08$ M. Reactions were monitored at 300 nm, and plots of ln $(A_t - A_{\infty})$ against time were linear to at least 50% completion,

Figure 3. Dependence of k_{obsd} on [H⁺], demonstrating the applicability of eq 6 for the azide anation of Cr(NH₃)₅H₂O³⁺, I = 1.0 M (NaClO₄).

Figure 4. Dependence of first-order rate constants, k_{obsd} , for the aquation of $Cr(NH_3)_5N_3^{2-}$ on $[H^+]$: (\triangle and \bigcirc) I = 1.0 M (NaClO₄); (\bigcirc) I = 1.0 M (LiClO₄).

Figure 5. Activation plot for the aquation of $Cr(NH_3)_5N_3^{2+}$ with the inclusion of new data (\bullet) alongside previous data (\circ) reported in ref 15, I = 1.0 M (NaClO₄).

the extent of most studies. Supplementary runs on the Br⁻ anation of $Cr(NH_3)_5H_2O^{3+}$ were monitored at 265 nm, when plots were linear to 80% completion.

Ionic strengths were adjusted to a value I = 1.0 M (NaClO₄), and use of LiClO₄ demonstrated that there was no effect of Na⁺ or Li⁺ on k_{obsd} .

Treatment of Data. A nonlinear least-squares program with $1/y^2$ weighting was used to fit data to (6) and obtain activation parameters for k_1 and k_2 . Elsewhere least-squares programs were used.

Results

First-order rate constants k_{obsd} for the anation process are listed in Table II. Figure 2 illustrates the linear dependence of k_{obsd} on $[N_3^-]_T$ at 50 °C, pH 2.53-3.60, with no evidence for positive intercepts at $[N_3^-]_T = 0$ corresponding to contributions from the reverse reactions. The slopes give second-order rate constants, $k_{obsd}/[N_3^-]_T$. A good fit to (6) is obtained, which is illustrated by plotting $k_{obsd}(K_a + [H^+])/[N_3^-]_T$ against $[H^+]$ (Figure 3). The intercepts and slopes correspond to k_1K_a (hence k_1) and k_2 , respectively. At 50 °C

⁽¹⁴⁾ Boughton, J. H.; Keller, R. N. J. Inorg. Nucl. Chem. 1966, 28, 2851.

Table II. First-Order Rate Constants for the Azide Anation of $Cr(NH_3)_5H_2O^{3+}$ (~2.0 × 10⁻³ M), I = 1.0 M (NaClO₄)

temp, °C	10 ⁴ [H ⁺], M	[N ₃ ⁻] _T , M	$10^{5}k_{obsd}, s^{-1}$
40.0	0.34	0.40	2.38
		0.60	3.6
		0.80	4.8
		1.00	6.4
	0.68	0.40	1.82^{a}
		0.60	2.69
		0.80	3.2^{a}
		1.00	4.4
	1.26	0.40	1.21
		0.60	1.81
		0.80	2.34
		1.00	2.77
	2.14	0.40	0.78
		0.80	1.65
		1.00	1.97
	3.16	0.40	0.60
		0.60	0.91
		0.80	1.20
• • •		1.00	1.47
50.0	1.51	0.30	2.39
		0.50	4.1
		0.70	5.9
		1.00	8.7
	3.39	0.30	1.47
		0.50	2.51
		0.70	3.0
	6.02	1.00	4.7
	6.03	0.30	0.92
		0.50	1.60
		0.70	2.08
	0.55	1.00	3.06
	9.55	0.30	0.67
		0.50	1.02
		0.70	1.34
	14.5	1.00	2.28
	14.5	0.30	0.53
		0.50	0.82
		0.70	1.10
	174	1.00	1.02
	17.4	0.50	0.40
		0.30	0.60
		0.70	1.00
60.0	2.45	1.00	1.59
60.0	2.45	0.30	0.7
		0.30	16.5
		1.00	21.7
	1 90	0.30	21.7
	4.70	0.50	5.7
		0.50	8.8
		1.00	13.1
	6.61	0.30	3.2
	0.01	0.50	5 3
		0.20	75
		1.00	10 00
	13.8	0.30	1.62
	10.0	0.50	3.0
		0.70	3.9
		1.00	5.80
	21.9	0.30	1.31
		0.50	2.23
		0.70	3.3
		1.00	4.2
A T 1 C T 1 C C C C C C C C C C	trano hra		

^a I adjusted with LiClO₄. ^b [Cr(III)] = 2.6×10^{-3} M.

 $k_1 = 3.2 \times 10^{-4} \text{ M}^{-1} \text{ s}^{-1}$ and $k_2 = 6.1 \times 10^{-6} \text{ M}^{-1} \text{ s}^{-1}$, and from the temperature dependence and plots of log (k/T) against 1/T (Eyring equation), activation parameters are $\Delta H_1^* = 23.0$ 0.4 kcal mol⁻¹, $\Delta S_1^* = -3.6 \pm 1.2$ cal K⁻¹ mol⁻¹, $\Delta H_2^* = 26.1$ \pm 2.2 kcal mol⁻¹, and $\Delta S_2^* = -2.0 \pm 0.7$ cal K⁻¹ mol⁻¹. Rate constants, k_{obsd} , for the aquation of $Cr(NH_3)_5N_3^{2+}$ at 50 and 55 °C (Table III) conform to the dependence (Figure 4)

$$k_{\text{obsd}} = k_{\text{aq}} + k_{\text{H}}[\text{H}^+] \tag{7}$$

Table III.	First-Order Rate Constants for the Aquation
of Cr(NH ₃	$_{5}N_{3}^{2+}$ (~4.0 × 10 ⁻⁴ M), $I = 1.0$ M (NaClO ₄)

te	mp, °C	10 ² [H ⁺], M	$10^{6}k_{obsd}, s^{-1}$
	50.0	2.0 4.0 6.0	2.1 3.3 ^{<i>a</i>} 3.9
	55.0	8.0 2.0 4.0 6.0 8.0	4.7 ^a 4.2 5.8 7.6 9.2

^{*a*} I adjusted with LiClO₄.

Table IV. Equilibration Rate Constants for the Reaction of Br with $Cr(NH_3)_5H_2O^{3+}$ at $[H^+] = 0.10$ M and I = 1.0 M (LiClO₄) as a Supplement to Existing Data²¹

[Br ⁻], M	At 40 °C 0.10, 0.30, 0.40, 0.50, 0.60
$10^{\circ}\kappa_{eq}$, s	0.45, 0.52, 0.53, 0.56, 0.56
[Br] M	
$10^{3}k_{eq}, s^{-1}$	3.5, 3.7, 3.9, 4.1, 4.4

with $k_{aq} = (1.4 \pm 0.2) \times 10^{-6} \text{ s}^{-1}$ and $k_{H} = (4.2 \pm 0.4) \times 10^{-5} \text{ M}^{-1} \text{ s}^{-1}$ at 50 °C. By combination of the data at 50 and 55 °C with literature values at 60 and 65 °C,¹⁵ I = 1.0 M (NaClO₄), activation parameters ΔH^* (kcal mol⁻¹) and ΔS^* (cal K⁻¹ mol⁻¹) are respectively 23.8 ± 0.2 and 11.6 ± 0.2 (for k_{aq}) and 20.1 ± 2.2 and -16.5 ± 3.6 (for k_{H}).

Runs in which the ionic strength was adjusted with $LiClO_4$ instead of $NaClO_4$ were in excellent agreement (see Tables II and III). The supplementary runs on the Br⁻ anation are listed in Table IV.

Discussion

Anation of $Cr(NH_3)_5H_2O^{3+}$ proceeds by two dominant kinetic pathways at pH 2.5-4.5, here assigned to the reaction of $Cr(NH_3)_5H_2O^{3+}$ with $N_3^-(k_1)$ and $Cr(NH_3)_5H_2O^{2+}$ with $HN_3(k_2)$. Previous interpretation has been in terms of reaction of N_3^- with $Cr(NH_3)_5H_2O^{3+}$ and $Cr(NH_3)_5OH^{2+}$, with no contributions from reaction paths involving HN₃, which at 50 °C and pH \leq 4.3 is the dominant form of azide. It would be unusual if HN₃ did not participate since a path $k_{\rm H}$ depending on $[H^+]$ and corresponding to the aquation of HN_3 is involved in the aquation of $Cr(NH_3)_5N_3^{2+}$. As a general rule, replacement of a negative ligand by a negative ion does not occur directly and certainly would not be expected for an interchange mechanism in which the two ions involved are in close proximity. Thus in the reaction of $Co(NH_3)_5NO_3^{2+}$ with NCS- it has been demonstrated that the reaction proceeds with intermediate formation of $Co(NH_3)_5H_2O^{3+}$.¹⁶ There are no grounds for supposing that in the present study the OH⁻ in $Cr(NH_3)_5OH^{2+}$ would be a good leaving group. A reaction path involving $Cr(NH_3)_5OH^{2+}$ would moreover have to be very favorable for there to be a significant contribution, since the pK_a of 5.2¹⁷ for Cr(NH₃)₅H₂O³⁺ indicates that Cr- $(NH_3)_5OH^{2+}$ is a minority species at pH ≤ 4.5 . It is apparent also in other studies involving $N_3^{-,18}$ $\dot{F}^{-,19}$ and SO_4^{2-} ligands²⁰ that protonation is similarly effective in both the forward and the reverse reactions. The interpretation now adopted with K_a for HN₃ incorporated in the rate law (6) gives at 50 °C

- (15) Chatterjee, C.; Chaudhuri, P. Indian J. Chem. 1971, 9, 1132.
 (16) Moore, J. W.; Pearson, R. G. Inorg. Chem. 1964, 3, 1334.
 (17) Wilmarth, W. K.; Graff, H.; Gustin, S. T. J. Am. Chem. Soc. 1956, 78,
- 2683.
- (18) Templeton, J. C.; King, E. L. J. Am. Chem. Soc. 1971, 93, 7160.
 (19) Swaddle, T. W.; King, E. L. Inorg. Chem. 1965, 4, 532. Thompson, G. A. K.; Taylor, R. S.; Sykes, A. G. Ibid. 1977, 16, 2880.
 (20) Finholt, J. E.; Denning, S. N. Inorg. Chem. 1967, 6, 1553. Monacelli, E. Inorg. Chim. Acta 1973, 7 65.
- F. Inorg. Chim. Acta 1973, 7, 65.

Table V. Summary of Rate Constants (k_f) and Activation Parameters for the Replacement of H₂O in [Cr(NH)₅H₂O]³⁺ with Different Incoming Ligands X, I = 1.0 M (Standard Deviations in Parentheses)

X	$10^{4}k_{f}$ - (50 °C), M ⁻¹ s ⁻¹	$\Delta H_{\rm f}^{\pm},$ kcal mol ⁻¹	ΔS_{f}^{\ddagger} , cal K ⁻¹ mol ⁻¹	ref
N ₃ ⁻	3.2	23.0 (0.4)	-3.6 (1.2)	this work
NCS ⁻	4.2	24.4	3.0	21, 22
CCl ₃ CO ₂ ⁻	1.81	25.2	2.2	21
CF ₃ CO ₂	1.37			21
Cl-	0.69	25.6	2.0	21
Br~	3.7	$26.5 (2.5)^a$	$7.7 (7.7)^a$	this work
NH ₃ ⁺ CH ₂ CO ₂ ⁻	7.8	25.3	5.6	7
HC,O	6.5	26.7	9.4	8
H ₂ PO ₄ ⁻	2.59	25.0	-1.2	5
H ₂ PO ₂	1.14	28.7	12.3	Ь
H ₂ O	13.7 ^c	23.2	0	25
H ₃ PO ₄	0.46	25.0	2.3	5
H ₃ PO ₂	0.45	28.7	14.9	b
$C_{2}O_{4}^{2}$	29.1	24.9	7.8	8

^a From data at 40, 50, and 60 °C; previous values $\Delta H^{\ddagger} = 21.9$ kcal mol⁻¹, $\Delta S^{\ddagger} = -4.0$ cal K⁻¹ mol⁻¹.²¹ ^b Martinez, M.; Ferrer, M. Inorg. Chim. Acta 1983. ^c First-order rate constant.

an N₃⁻ anation rate constant k_1 (3.4 × 10⁻⁴ M⁻¹ s⁻¹) and an overall equilibrium constant k_1/k_{aq} , here represented as $K_{IS}K_{OS}$, of 229 M⁻¹, not too dissimilar from values for the corresponding NCS⁻ reaction.^{21,22} Similar N₃⁻ and NCS⁻ behavior has been observed previously in other comparable studies involving $Co(NH_3)_5H_2O^{3+,23}$ If $Cr(NH_3)_5OH^{2+}$ plays any significant role, it is more likely to be alongside that of $Cr(NH_3)_5N_3^{2+}$ in providing a possible pathway for NH₃ loss $(OH^{-} and/or N_{3}^{-} labilization)$, leading to the more extensive substitution by azide and the green coloration that is observed toward the end of kinetic runs.

The mechanistic assignment for substitution of Cr- $(NH_3)_5H_2O^{3+}$ continues to be of interest, and indeed concern.^{5,24} Table V is an updated summary of second-order rate constants $k_f (=K_{OS}k_{an})^{21}$ for the formation of $Cr(NH_3)_5 X^{n+}$, including k_1 and k_2 (and activation parameters) from this study. For the ten X ligands having a 1- charge a narrow $((0.69-7.82) \times 10^{-4} \text{ M}^{-1} \text{ s}^{-1})$ range of rate constants is observed. With the inclusion of supplementary runs for equilibration of Br^- with $Cr(NH_3)_5H_2O^{3+}$, and recomputation of activation parameters, we are now able to specify ΔH^* values in a narrow range (23.0-26.7 kcal mol⁻¹) for all but one of these reactions. This contrasts with the marked trend in aquation rate constants, $k_{\rm aq}$, of (0.11–102) × 10⁻⁴ s⁻¹ and the systematic trend in ΔH^* values of 18.3–24.3 kcal mol⁻¹ (Table VI); indicating some dependence on bond breaking. The slope of the plot of log k_{aq} against log $K_{IS}K_{OS}$ remains in the range 0.70-0.90, the exact value depending on the position of the Br⁻ point.⁵ A different procedure was used by Monsted²⁴ to evaluate $K_{IS}K_{OS}$ (0.019 M⁻¹), but this does not give a value in agreement with the kinetically determined $K_{\rm IS}K_{\rm OS}$ of 0.30 M^{-1} . Since the volume of activation of $-5.8 \text{ cm}^3 \text{ mol}^{-1}$ for H_2O exchange on $Cr(NH_3)_5H_2O^{3+}$ favors more an I_a process,²⁵

(21) Ramasami, T.; Sykes, A. G. Inorg. Chem. 1976, 15, 2885.

Table VI. Summary of Rate Constants and Activation Parameters for Aquation of Cr(III) Complexes $Cr(NH_3)_5 X^{n+}$, I = 1.0 M(Standard Deviations in Parentheses)

ligand X	$10^4 k_{aq}^{-1}$ (50°C), s ⁻¹	$\Delta H_{aq}^{+},$ kcal mol ⁻¹	$\Delta S_{\mathbf{a}\mathbf{q}}^{\dagger},$ cal K ⁻¹ mol ⁻¹	ref
N, ⁻	0.014	23.8 (0.2)	-11.6 (0.2)	this work
NČS-	0.011	24.3	-8.0	а
CCl,CO, ⁻	0.51	21.5	-11.3	4
CF,CO,	0.50	20.2	-13.9	b
DMF	1.79	20.2	-13.5	2
Cl-	1.75	20.7	-11	с
Br ⁻	12.5	19.0 (0.4)	-13.2(1.3)	21, d
[-	102	18.3	10.8	21

^a Adamson, A. W.; Wilkins, R. G. J. Am. Chem. Soc. 1954, 76, 3379. ^b Davies, R.; Evans, G. B.; Jordan, R. B. Inorg. Chem. 1969, 8, 2025. ^c Duffy, N. V.; Earley, J. E. J. Am. Chem. Soc. 1967, 89, 272. ^d From data at 40, 50, and 60 °C; previous values $\Delta H_{aq}^{\dagger} = 20.9 \text{ kcal mol}^{-1}$, $\Delta S_{aq}^{\dagger} = -7.2 \text{ cal K}^{-1} \text{ mol}^{-1}$.²¹

Table VII. Summary of Outer-Sphere Association Constants (50 °C) Obtained from Kinetic Studies, I = 1.0 M (LiClO₄)

	K_{OS}, M^{-1}	ref		$\begin{array}{c} K_{\mathbf{OS}},\\ \mathbf{M}^{-1} \end{array}$	ref
H ₃ PO ₄	0.32	5	H,PO,-	0.33	6
H ₃ PO ₂	0.13	6	HC,O ⁻	1.16	8
NH ₃ ⁺ CH ₂ CO ₂	0.55	7	$C_{2}O_{4}^{2}$	4.5	8
H ₂ PO ₄	1.8	5	• •		

intermediate I_a and I_d behavior remains the most acceptable interpretation of all the data currently available.

No evidence was obtained in the present study (Figure 2) for positive intercepts indicating equilibrium kinetics. This observation is supported by the $K_{IS}K_{OS}$ of 229 M⁻¹ determined from forward and back rate constants (k_1/k_{aq}) . Also there was no evidence for downward curvature with increasing $[N_3]_T$, suggesting significant outer-sphere association of N_3 to $Cr(NH_3)_5H_2O^{3+}$ ($K_{OS} \le 0.1 M^{-1}$). It is of considerable interest that the instances in which K_{OS} has been determined from the kinetics are with incoming groups containing O atoms capable of H bonding to the NH₃ ligands (Table VII). The values listed are consistent with calculations based on an electrostatic model,²⁶ although this model does not explain why, with other incoming groups of similar charge, K_{OS} is at a lower level. Moreover, the careful work by Ferrer has demonstrated that whereas $H_2PO_4^-$ associates with $Cr(NH_3)_5H_2O^{3+}$ ($K_{OS} = 1.8 \text{ M}^{-1}$),⁵ with $Co(NH_3)_5H_2O^{3+}$, under identical conditions, no ion pairing is detectable ($K_{OS} \leq 0.10 \text{ M}^{-1}$).²⁷ This difference in behavior of $3d^3$ and $3d^6$ ions suggests that one reason $Co(NH_3)_5H_2O^{3+}$ and the Ni^{2+} and Co^{2+} aqua ions exhibit I_d behavior is that K_{OS} is at a much lower level due to the higher t_{2g} orbital occupancy, thus making an I_a process more difficult.

Acknowledgment. We wish to thank the National Autonomous University of Mexico (UNAM) for financial support (to S.C.-B.).

Registry No. N_3^- , 14343-69-2; Cr(NH₃)₅H₂O³⁺, 15975-47-0; Cr(NH₃)₅N₃²⁺, 22317-10-8; Br⁻, 24959-67-9; HN₃, 7782-79-8.

259.

⁽²²⁾ Van Eldik, R.; Palmer, D. A.; Kelm, H. Inorg. Chem. 1979, 18, 1520.

⁽²³⁾ See e.g.: Haim, A. Inorg. Chem. 1970, 9, 426.

⁽²⁴⁾ Monsted, L. Acta Chem. Scand., Ser. A 1978, 32A, 377.

Swaddle, T. W.; Stranks, D. R. J. Am. Chem. Soc. 1972, 94, 8357. (25)

 ⁽²⁶⁾ See e.g.: Kustin, K.; Swinehart, J. H. Prog. Inorg. Chem. 1970, 13, 135.
 (27) Coronas, J. M.; Vicente, R.; Ferrer, M. Inorg. Chim. Acta 1981, 49,