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Ab initio SCF calculations have been carried out for the Cr(CN)63- complex in its ground state, for a selected set of ligand 
field excited states, and for the average of ligand field states Av(d3). The frozen orbitals of Av(d3) can be used to calculate 
all the relevant states with one appropriate set of orbitals; this approach offers a convenient meeting point between the 
Hartree-Fock results proper and simple models such as crystal field theory. Numerically, the SCF results are only moderately 
successful: they generally reproduce the different excited states in the correct energy range, but quantitatively, certain 
excitation energies are up to 60% in error. Conceptually, the SCF calculations confirm certain approximations of crystal 
field theory, but the interpretation of the typical B, C, and Dq parameters are radically different from the classical interpretations. 

Introduction 
The experimental absorption spectrum of Cr(CN):- is very 

well-known, both in solution and in the solid state.'-* The 
ligand field bands have been analyzed at three different levels 
of approximation: crystal field theory,* extended Huckel 
t h e ~ r y , ~  and Xa-MO theory.'O Since the latter two treat- 
m e n t ~ ~ , ' ~  are essentially confined to the calculation of the lODq 
parameter, we will focus our attention on the more complete 
crystal field analysis. 

Table I shows the assignments proposed by Witzke: based 
on a purely octahedral symmetry. The t2B3 configuration gives 
rise to four different states, separated by multiples of the 
Racah parameters B and C; the ground state is predicted to 
be the nondegenerate 4A2 state. The 2E and 2T1 states are 
degenerate to first order in perturbation theory. This de- 
generacy can be traced back to the special rotational properties 
of purely atomic t2g orbitals ( t a l  - p" isomorphism"). It is 
removed by the higher order interactions between t 2 1  and 
t2;eg1, leading to a small but detectable energy splitting of 
610 cm-I. Two more intense spectral bands are assigned to 
spin-allowed transitions of the t2 - eB type; one of them, the 
4A2 - 4T2g transition, corresponcfs exactly to 1ODq. As shown 
in Table I, the five observed spectral bands can be reproduced 
quite satisfactorily by a semiempirical fitting of the three 
crystal field parameters lODq, B, and C. The numerical values 
of the three parameters are in the expected range, and-as 
a whole-the identification of the ligand field bands in Table 
I appears to be quite reasonable. 

In the present paper, we report the first detailed ab initio 
calculation9 of the ligand field spectrum of Cr(CN)?-. It is 
our purpose (i) to find out to what extent a large basis set 
Hartree-Fock calculation is able to reproduce the experimental 
dd spectrum for a typical strong-field complex and (ii) to gain 
additional insight into the nature of the approximations made 
by crystal field theory. 

Method of Calculation 
We adopted Roothaan's restricted Hartree-Fock method, as applied 

to open shells in its two-Hamiltonian formalism (7  orbitals).I2 In 
order to increase the rather limited applicability of Roothaan's original 
method, we used a slight generalization of the formalism by averaging 
the appropriate J and K integrals, whenever the energy expression 
did not have the required symmetry. In this way, the proper de- 
generacy could always be conserved, while at the same time obtaining 
the correct energy. This procedure yields exactly the same results 
as Roothaan's original proposal in those cases, where both methods 
can be applied-but the present procedure has a much wider range 
of applicability. In the evaluation of the integrals and the diago- 
nalization of the matrices, maximal advantage was taken of the 
molecular symmetry." The geometry of the Cr(CN)63 ion was taken 
to be perfectly octahedral with the Cr-C and C-N bond distances 
at 2.077 and 1.136 A, The calculations were carried 
out for the isolated molecular ion, neglecting the influence of the 
crystalline (or solvent) environment. 

For the chromium ion, we used a rather large (1 5s 1 l p  6d/ 12s 8p 
4d) GTO basis, as detailed in a previous paper;Ig for the ligand atoms, 
we used the (9s 5 p/5s 3 p) bases proposed by Huzinaga and Dun- 
ning.20 The combination of these two sets should constitute a 
well-balanced basis since the absolute error per orbital (deviation from 
the numerical Hartree-Fock result for an isolated atom) is then roughly 
the same for metal and ligand orbitals. 

The HartreeFwk calculations were performed for the ground state, 
for a selected set of ligand field excited states, and for the average 
of ligand field states of the c o m p l e ~ ~ ' - ~ ~  (Le., the average of all the 
states corresponding to the four configurations t2:, ta2eg1, tzgle 2, and 
e:). The latter calculation is denoted Av(d3) for A ~ ( t ~ / ~ e ~ / ! ) .  By 
using the orbitals of Av(d3), one can calculate (albeit not so accurately) 
all the relevant states with one appropriate set of orbitals; this fro- 
zen-orbital approach should constitute a convenient meeting point 
between the Hartree-Fock results and the simple models such as crystal 
field theory or extended Hiickel theory. Indeed, all these simple models 
use only one orbital set of the ground state and for all the excited 
states; on the other hand, the frozen-orbital calculations should also 
have a close relationship to the individual SCF-state calculations, 
having their roots in the same Hartree-Fock formalism and being 
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Table I .  Assignment of the Experimental Ligand Field Bands of CI(CN),~- after Witz.ke*' 

Vanquickenborne et al. 

cryst field optimal 
exptl state excited expressn first-order optimal 

band max transition confipn (first order) fi t  (set I )  fit (set 11) 

12460 4A + ' E  4 g: 9B + 3C 1 1  499 1 2 3 1 2  
13 070 4A,  + 'T, t' g3 9B t 3C 1 1  499 12679 

15B + 5C 19 165 19497 
1 ODq 26 700 26 700 

18 370 4A, -, 'T2 

32680 4A,  -, 4T, t2g eg lODq t 12B 32676 32679 
1 

26 700 4A,  --f 4T, t2g2eg1 

' Two different sets of semiempirical parameters were used to reproduce the spectrum. Set I is based on the first-order crystal field 
expressions: B = 498, C =  2339. D a  = 2670 cm". Set I1 is based on the complete interaction matrix of all ligand field states: B = 537, C= 
2690, Dq = 2670 ern-". All band positions are in cm-' . 

10 .00 ,  1 10.00 

- 

200 I 5.00 7.00 9.00 / 
Cr  

Figure 1. Contours of the It2, orbital of the Av(d') calculation in 
a plane, containing two bond axes. The coordination axes are 
graduated in atomic units; the values of the wave functions are in au-'I2. 

based on a very similar Hamilt~nian.~~ 
General Features of the Av(d3) Calculation 

The total energy obtained for the Av(d3) calculation was 
-1596.76591 Hartree, reflecting the rather high quality of the 
basis set.g Table I1 shows the orbital energies and their 
components for all the occupied orbitals; the last column 
contains qualitative indications on the nature of the MO's, 
obtainable from the LCAO coefficients or from a population 
analysis. 

When these results are compared with the classical picture 
offered by ligand field theory, the following points should be 
stressed: 

(1) All orbitals-without exception-fall into one of two 
categories: they are predominantly metal centered (metal 
character greater than 85%) or they are predominantly ligand 
centered (metal character smaller than 17%) with nothing in 
between. This result follows from a population analysis, but 
it finds additional support by a component analysis of the 
orbital energy. Indeed, all the orbitals with predominant ligand 
character have an interelectronic repulsion (ci in Table 11) on 
the order of 20 Hartree, whereas the orbitals with metal 
character-being significantly more localized-have ci greater 
than 35 Hartree. Also the kinetic energy of the metal valence 
orbitals is 3-5 times larger than the kinetic energy of the 
ligand-centered valence orbitals; similar trends are observed 
for the li terms. This very clear-cut distinction between two 
sets of orbitals to some extent supports the basic postulate of 
crystal field theory, where the complex is described as a 

(24) L. G. Vanquickenborne and L. Haspeslagh, Inorg. Chem., 21, 2448 
(1982). 

Figure 2. Contours of the 2t2, orbital of the Av(d3) calculation in 
a plane containing two bond axes. The coordination axes are graduated 
in atomic units; the values of the wave function are in 

10.00 

200 I 500 700 9.00 / 
Cr 

Figure 3. Contours of a 6e, orbital (d+,2 component) of the Av(d3) 
calculation in the xy plane (where the two coordinate axes contain 
two CN ligands). The coordinate axes are graduated in atomic units; 
the values of the wave functions are in 

perturbed metal ion and where the ligand orbitals are not 
explicitly considered. 

(2) The open-shell orbitals 2t2, and 6e, are essentially metal 
centered as they have 99% and 85% chromium 3d character, 
respectively. The a orbitals 1 tZ8 and 2tzg are shown in Figures 
1 and 2; they are clearly compatible with the classical idea 
of a bonding (1 tZg) and an antibonding (2t2,) pair of MO's. 
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Table 11. Energies and Energy Components for the Av(d3) = A ~ ( t " ~ e ~ / ~ )  Calculation (Hartxes)'' 

Inorganic Chemistry, Vol. 23, No. 12, 1984 1679 

qi 

-220.270 51 
-26.149 31 
-22.074 64 
-15.154 34 
-15.154 34 
-15.154 34 
-10.830 26 
-10.830 26 
-10.830 25 

-3.184 38 
-1.930 24 
-0.839 92 
-0.837 33 
-0.836 61 
-0.302 58 
-0.214 78 
-0.213 97 
-0.148 95 
-0.121 27 
-0.120 86 
-0.096 75 
-0.070 07 
-0.058 17 
-0.054 95 
-0.15263 
-0.045 72 

li 
-580.701 45 
-136.394 17 
-134.418 29 

-61.050 90 
-61.050 82 
-61.050 88 
-52.97741 
-52.977 22 
-52.977 76 
-53.287 90 
-50.184 32 
-24.085 32 
-24.094 04 
-24.097 33 
-25.175 73 
-22.692 72 
-23.614 83 
-20.890 01 
-24.058 63 
-22.355 15 
-21.380 82 
-21.244 49 
-21.241 88 
-22.236 82 
-41.883 77 
-42.093 99 

ti 
216.762 22 
50.067 86 
48.768 43 
22.123 68 
22.123 60 
22.123 65 
16.017 11 
16.016 94 
16.01744 
10.322 15 

8.952 18 
2.287 19 
2.310 36 
2.315 18 
1 SO3 80 
1.843 72 
1.949 72 
1.843 39 
1.872 76 
1.58804 
1.23841 
1.342 41 
1.400 39 
1.525 88 
5.635 11 
6.23949 

C i  

83.66 8 72 
60.177 00 
63.575 22 
23.772 88 
23.77287 
23.772 88 
26.130 04 
26.130 03 
26.130 07 
39.781 37 
39.301 90 
20.958 21 
20.946 35 
20.945 53 
23.369 34 
20.634 22 
21.45 1 14 
18.89767 
22.064 61 
20.646 25 
20.045 67 
19.83200 
19.783 33 
20.655 99 
36.096 03 
35.808 78 

dominant character 

lS(C1) 
2s(Cr) 
2p(Cr) 

3o(CN) } 

1 pure ligand 

E=-1596.765 91 L =-5501.485 80 T =  1599.262 03 C= 1465.426 76 
Lc=-5375.582 23 T,  = 1581.631 44 C,= 1359.61288 
L,=-125.903 57 To= 17.63059 Co= 2.12950 

Co,= 103.684 39 

" For the individual orbitals the orbital energy qi = li + ti t ci, where li ,  ti, and ci represent the electron attraction to the nuclei, the inter- 
electronic repulsion, and the kinetic energy associated with orbital i. Capital letters L, C, and T refer to the corresponding all-electron 
quantities: E = T + V =  T t L t C + N .  The subscripts o and c refer to the open and the closed shells, respectively; for instance, L = Lo + 
L,. The total internuclear repulsion N is 840.031 094 Hartree, and the virial ratio -V/T= 1.998 439. 

A remarkable feature of the 2t2, orbital is that the nodal 
surface between Cr and C is quite close to the carbon nucleus 
(at -0.25 A). 

The more covalent nature of the 6e, orbital (85% Cr, 15% 
CN) is also apparent from Figure 3. The nodal surface, at 
-2.3 au from the metal nucleus, is characteristic of the an- 
tibonding nature of the 6e, orbital; it is situated more nearly 
midway between the metal and the ligands. 

On the whole, the open shells correspond to the expected 
picture of slightly antibonding metal-centered orbitals, where 
the u interactions are significantly stronger than the a in- 
teractions. 

(3) The cyanide ligand is a u donor; as for the a interactions, 
it is usually considered to have a-donor and (weaker) r-ac- 
ceptor properties. If we carry out a separate SCF calculation 
on the CN- ion (using the same basis set as in the complex), 
the relevant a orbitals are found to be of the form roughly 
summarized by 

a(CN-) - 0.62[2p(C)] + 0.78[2p(N)] ( la )  

a*(CN-) - 0.87[2p(C)] - 0.50[2p(N)] ( lb)  
and the 2tZg MO of the complex can be approximated as 

0.99[3d(Cr)] - O.l2[a(CN-),] + 0.09[a*[(CN-)6]] (2) 
where for instance 2p(C6) is the appropriate linear combination 
of 2p orbitals on the six carbon atoms. Equation 2 suggests 
that the a-donor and the a-acceptor properties of the cyanide 
ion are nearly equal in Cr(CN)63-. The signs of the LCAO 
coefficients correspond to what could be expected on simple 
grounds: antibonding (-) combination with a(CN-); bonding 
(+) combination with a*(CN-). The very small electron 
density at the carbon atoms in 2t2, is obviously connected to 
this particular arrangement. 

2t2, - 0.99[3d(Cr)] + o.o0[2P(c6)] + 0.14[2p(N,)] - 

If the ligand were a pure a donor, one would expect a nodal 
plane between Cr and C and not between C and N;  if the 
ligand were a pure a acceptor, one would expect a nodal plane 
between C and N and not between Cr and C. Figure 2 sug- 
gests that the a-donor properties dominate, albeit only slightly; 
this is the reason why the nodal plane is so close to the carbon 
nucleus. 

The near-balance between a-donor and a-acceptor prop- 
erties seems to be confirmed by the considerations of Sano et 
a1.,I0 who report a net d?r population of 2.97 electrons (rather 
than 3). A more detailed analysis of orbital populations and 
difference density plots will be published in a subsequent paper. 

(4) The orbital energy sequence is not particularly revealing; 
the fact that the open-shell 2t2 MO is a rather deep-lying 
orbital does not prevent the d-d transitions from having the 
lowest energy. Orbital energy differences Aq are not directly 
or simply related to the corresponding state energy differences 
AE. This fact has been observed and discussed b e f ~ r e ; * ~ . ~ ~  it 
hardly affects the ligand field picture of transition-metal 
complexes. Although the spectrum will be discussed in more 
detail in the next sections, one additional comment might be 
useful at this point. If the ci repulsion terms of Table I1 are 
further analyzed, the Jii integrals are found to be on the order 
of 0.8 Hartree for the metal-centered orbitals vs. 0.2 Hartree 
for the ligand-centered orbitals. This very large energy dif- 
ference is one of the reasons why Aq and A E  are not even 
qualitatively similar. 

(5) Only two MO's are purely (100%) ligand orbitals: the 
basis set contains no metal functions of tl, or tau symmetry. 
The Itl, and ltZu orbitals are just different linear combinations 

(25) J. Demuynck, A. Veillard, and G. Vinot, Chem. Phys. Lerr., 10, 522 
(1971). 

(26) A. J. H. Wachters and W. C. Nieuwpoort, Phys. Reu. B Solid Stare, 
5, 4291 (1972). 



1680 Inorganic Chemistry, Vol. 23, No. 12, 1984 

Table 111. Griffith and Racah Parameters as a Function of 
Certain J a n d  K Integrals' 

a = Jtt = J,, = J r r =  Jtt, 

j =  Kc,= 2 g- -2  ,r=K,,' = 

e = Joe  = J,, = J,, 
f = KO, =Keel  

c = (3'/'/2)(Jet - J E g )  = (3'/'/2)(J0, - JEV) 

g = KO{ = K 0 q  

A + 4B + 3C 

3B + C 
A + 4 B + 3 C  
4 8  + C 
2B 3l" 

B + C  

b = J { q = J  r - J  t J t t  A - 2 B + C  

d = JEt = J,, 

h = (3'"/2)(KEt - K 0 c )  = (3"'/2)(KE, - KO,) 

A - 2 B t C  

B3l" 
B Keel - Kttt  = f - j 

Kef c 
' As usual," 0 and E are the two eg orbitals, transforming like z' 

and x' -y ' ,  respectively; g,  ,, and r are the three t, orbitals, 
transforming like yz, xz, and x y ,  respectively. 

Table IV. Interelectronic Repulsion within the Open Shells as a 
Function of the Griffith and the Racah Parameters for a Selected 
Set of States and Averages of States' 

'hg(t3) 3b - 3j 3A - 15B 
'Eg(t3) 3b 3A - 6 8  + 3C 
'T,,(t3) 3A - 6B + 3C a + 26 - 2j 
*Tag(t3j a + 2b 3A + 5C 
4T,g(t'e1 
4T,g(t2e' 

Av(t3) 3/5(a + 4b- 2j) 3A - 6B + 3C 

b + 2d - 2g- (4/3"')h - j 
b + 2d + (4/3"')c - 2g- j  

3.4 - 15B 
3A - 38 

Av(t*e') 

Av(t'e') 

' i 5 ( a  + 4b - 2j) + 2d + (2/3l'')c - 3A - 4 8  + 2C 

e -  ' i 3 f  + 2d + (2/3'/')c-g- 3A - I4/,B + '/,C 
g - (1/3"'jh 

(1 /3 "')h 

(a + 4b - 2j) + ' I 5 ( e  - 5 / 3 f l  + 
Av(e3) 3e-5f 3A - 8B + 4C 

Av(d3) 3A - l4I1B + '/,C 
4/5(2d + (2/31/2)C-g- (1/3"')h) 

' The definitions of the parameters are given in Table 111. 

of the 12 r(CN-) MO's. Therefore, the energy difference 
q(ltl,) - q(ltzu) = 0.32 eV is essentially due to interligand 
interactions. 
Ligand Field States in the Frozen-Orbital Approximation 

Crystal field theory is one particular form of a frozen-orbital 
approximation, where the open shell is supposed to be made 
up of pure 3d orbitals. In that case, the d-d repulsion energies 
can be parametrized by only three Racah parameters A,  B, 
and C (see also Table I, fourth column). In general, however, 
if the open shell is allowed to expand toward the ligands, giving 
rise to molecular orbitals of the type 

one needs 10  parameters in order to describe the 3&3d 
3d = Cl(3d) + c Z ~ C N )  (3) 

Vanquickenborne et al. 

e' 
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LA 

Figure 4. Schematic energy level diagram of the ligand field average 
(d3), the four txeSx configuration averages, and a number of relevant 
states. All energies are calculated by using the frozen eigenvectors 
of the SCF equations for the Av(d3) situation. 

open-shell repulsion" (see Table 111). The use of these 10 
Griffith parameters u, b, c, ..., j is not very practical as there 
are nearly always less experimental bands than parameters. 
However, from the present point of view, it is obviously useful 
to compare the frozen-orbital calculations to the Griffith 
parameterization scheme. Table IV shows the open-shell re- 
pulsion energy expressions for the six observed states and for 
the appropriate averages. The Racah parameter expression 
in Table IV can be seen as a particularization of the Griffith 
expressions for atomic 3d functions. Indeed, in the latter case, 
the 1 0  Griffith parameters are no longer independent: u = 
e, b = d, a - b = 2j, etc. 

Figure 4 and Table V show the energy level diagram and 
the numerical results based on the frozen orbitals of the Av(d3) 
SCF calculation. 

(1) Within any given configuration, the E differences are 
equal to the C differences and to the C, differences. Obviously, 
the energy differences of Table V are determined by the ex- 

Table V. Energy of a Number of Selected States and State Averages, Based on the Frozen Orbitals of Av(d3) = A ~ ( t ~ ' ~ e ' ' ~ ) ~  
AE AH AL AT 

4A2g 0 

'E, 
'T2g 

'Tl g 20 095 
20 111 
33 502 

'T2 g 22 845 
4T, g 34 191 
Av(t: 20 101 
Av(t e ) 40501 
Av(t'e2j 63568 
Av(e3) 89 301 
Av(d3) 45 647 

0 
0 
0 
0 

86 507 
86 507 

0 
86 507 

173 014 
259521 
103 808 

0 
20 095 
20111 
33 502 

-63 662 
-52 316 

20 101 
-46 006 

-109 446 
-170219 

-58 161 

0 
0 
0 
0 

-46 136 
-46 136 

0 
-46 136 
-92 272 

-138407 
-55 363 

0 
0 
0 
0 

132 643 
132 643 

0 
132643 
265 286 
379 928 
159 171 

0 
20 095 
20 111 
33 SO2 
-9 128 

2 218 
20 101 

8 528 
-378 

-6 617 
7 280 

ACOC A L O  AT0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 

-54534 -46 136 132643 
-54534 -46 136 132643 

0 0 0 
-54534 -46 136 132643 

-109 068 -92 272 265 286 
-163 602 -138 407 397 928 

-65 441 -55 363 159 171 
' All energies and energy components (cm-') are given with respect to the 'Azg ground state. The conversion to the conventional zero of 

energy can be made by means of Table 11. As usual E = T + V = T + L + C + N =  H + C + N; also L = Lo + L,, etc., where the subscripts o 
and c refer to the open and closed shells, respectively. 
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pressions given in Table IV, using the calculated values of the 
Griffith integrals for Av(d3). 

For the t3 configuration, 2E, and 2T1, are very nearly de- 
generate (their energy difference is only 18 cm-'). In the 
purely atomic crystal field theory, both states have exactly the 
same open-shell repulsion energy, given by 3A - 6B + 3C. In 
frozen-orbital MO theory, Table IV shows that their energy 
difference is given by a - b - 2j. The numerical value in 
Hartree of these integrals is as follows for Av(d3): 

a = Jtt = 0.79034 b = Jttt = 0.729 32 
(4) 

The fact that the energy difference between a-b and 2 j  
amounts to only 8 X Hartree or 18 cm-' is an additional 
indication of the nearly pure metal 3d character in the 2t2, 
open shell: for atomic 3d orbitals Jtt - Jtt: equals exactly 2Ktt, 
for symmetry reasons. Since the deviations in the complex 
are almost negligible, the ligand field spectrum (or at least 
part of it) can be treated quite satisfactorily as if the open shells 
were completely metal centered. 

j = K t r  = 0.03055 

In crystal field theory, one has 
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Table VI. Comparison of the Experimental Absorption Bands 
and the Frozen-Orbital SCF Calculations of Table V 
(Energies in cm-' ) 

A similar expression can be written in MO theory by taking 
the weighted average of the open-shell repulsion in 2E, and 
2Tl,. If one denotes this average by 2X and if the subscript 
o refers to the open shell, one finds 

C,(2X) = Z/5C,(2E,) + 3/5C,(2Tl,) = Y5(a + 4b - 2j) 

and as a consequence 

Because of eq 4, E(2Eg) N E(2TI,) e E(2X) and, therefore, 
the ratio 3/5 is found back in the E ,  C, and C, columns of 
Table V. 

(2) For an interconfigurational transition, corresponding to 
a t2, - e, excitation, AE = AC + AH, where AC = ACo + 
AC, and AH = AT + AL (the subscripts o refer to the open 
shells, c to the closed shells, and oc to the interactions between 
open and closed shells). For the three possible t - e ex- 
citations under consideration (t2: - t2,2egi, tz,2eg?'- t2>e,2, 
and t2,1eg2 - e:) H, L, T, and C, change by a constant 
amount, given by 

h(e,) - h(t2,) = 86507 cm-' 

&e,) - l(t2,) = -46 136 cm-I 

t(e,) - t(t2,) = 132643 cm-' 

c,(eg) - c,(t2,) = -54534 cm-' 

(7) 

as can be verified from Table V and from Table 11. 
The open-shell repulsion difference AC, depends on the 

particular states under consideration. For the 4A2g(t3) - 
4Tz,(t2ei) transition, it is given by 

AC, = -2b + 2d - 2g - (4/3'l2)h + 2 j  = -9128 cm-' (8) 

It is interesting to compare this result to the crystal field 
expression where the 4A2, - 4T2g transition is simply given 
by lODq, since the open-shell repulsion in both studies is 
identical (3A - 15B) and hence AC, = 0 at the crystal field 
level. In fact, eq 8 shows that, at the frozen MO level, the 
open-shell repulsion is 9128 cm-' smaller in the excited state. 
Only when b = d a n d j  - g = (2/31/2)h (the freeion situation) 
will eq 8 go to zero. The reason why the discrepancy between 

frozen- 
expt orbital SCF 

(from calm (from calcn (from 
transition Table I) Table V) Table VII) 

4Azg+PEg 12460 20111 20461 
4A2g+1TIg  13070 20095 20 446 
4A1g+ 'TZg 18370 33502 33642 
4A,g + 4T1g 26 700 22 845 23051 
4A1g-+ 4T,g 32680 34 191 34 696 

the crystal field and the MO picture is much more severe here 
than for the intra t3 transitions is directly related to the dif- 
ferential covalency of 2t2, and 6e,: since the e, open shell is 
more covalent than the t2, open shell, the e,-repulsion integrals 
deviate more from a free-ion situation than the t2,-repulsion 
integrals. Since eq 8 contains both pure t2, integrals and mixed 
e,-t2, integrals, its deviation from zero is more pronounced. 

In the spirit of crystal field theory it appears reasonable to 
call lODq the sum of all those components of E(4T2,) - E(4A2g) 
that are not due to ACo: 

lODq(F0) = AL + AT + AC, 

AE = E(4T2,) - E(4A2g) = 

where FO stands for frozen  orbital^.^' Numerically, 1ODq- 
(FO) is found to be 31 973 cm-', leading to a A E  value of 
22 845 cm-' in eq 9. A comparison of eq 7 and 9 shows that 
the only positive contribution to lODq(F0) is AT. 

This is a somewhat curious conclusion, especially in view 
of the crystal field picture, where one expects lODq to consist 
of the supposedly increased repulsion between the d electrons 
and the ligands. Therefore, crystal field theory suggests a 
positive contribution of AC, and a AT contribution of zero. 
In order to understand the results of Table V, it is useful to 
consider the energy components of the open-shell orbitals in 
Table 11. The repulsion (ci) is seen to be smaller in the 6e, 
orbital than in 2t3 (because of the decreased covalency in 2t2,), 
but at the same time, the one-electron energy (hi = li + ti) of 
6e, is larger than for 2t2,; the dominant term is the kinetic 
energy ri. The latter fact suggests that the 6 4  orbital is more 
contracted than 2t2,. This paradoxical conclusion can be 
reconciled with the enhanced 6e, covalency by a closer in- 
spection of the LCAO coefficients of the open-shell orbitals. 
Then it appears that the 3d part of the MOs is definitely more 
contracted for 6e,: the coefficients for the two most compact 
3d basis functions are larger, and the coefficients for the two 
most diffuse 3d basis functions are smaller than in 2t2,. As 
a result of the more strongly antibonding properties of 6e,, 
the 3d part is more contracted, the orbital as a whole is 
characterized by regions of larger curvature, and its kinetic 
energy (A operator) is larger. 

The picture emerging from these considerations is quite 
different from the crystal field ideas: the reason why a t2, - 
e, transition is an energy-demanding process is not due to 
increased electron-ligand repulsion, but rather to a metal 3d 
contraction and the corresponding increased orbital curvature. 

(3) Table VI shows a comparison of the A E  values calcu- 
lated from Table V with the experimental data, taken from 
Table I. The interconfigurational transitions (t2, - e,) are 

lODq(F0) - 26 + 2d - 2g - (4/31/2)h + 2 j  (9) 

It has been noted by J. P. Dah1 and C. J. Ballhausen, Adu. Quanrum 
Chem., 4, 170 (1968), that E(4T2,) - E(4A24) = ~ ( 6 e , ; ~ T ~  ) - 7- 
(2t2,;4Az ), where e.g. 7(6ee;'T2,) is the 6e,-orbital energy in $e 'T2 
state. Tiis equation holds indeed true if one works in a frozen-orbita! 
approximation. However, it is specific for the two states under con- 
sideration, and a general equation of the type AE = A7 is certainly not 
valid. Therefore, we prefer to work with eq 9. 
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Table VII. Results of SCF Calculations on the 4 A , ,  Ground State of Cr(CN),3'" 

Vanquickenborne et al. 

~~ ~ ~ ~~ ~ 

closcd-shell components open-shell components interaction components 

E '  =-1596.976 65 

L'=-5501.740 11 L,'=-5374.633 89 Lo' =-127.106 21 
N =  840.031 09 

T'  = 1598.863 27 
C' = 1465.869 10 

T,' = 1581.501 41 
C,' = 135 8.883 26 

To' = 17.361 86 
C,' = 2.152 95 C,,' = 104.832 87 

' The total energy E' and its components are given in Hartrees; T'  is the kinetic energy, L '  is the electron-nucleus attraction energy, and C' 
is the interelectronic repulsion component; o refers to the open and c to the closed shells. The primes are used to distinguish the SCF results 
from the fi-ozcn-orbital calculations. 

Table VIII. SCF Energy and I t s  Components for the Six Observed States" 

AE' AH' AC' AL' A T '  AC,' AC,,' AL,' AT,' AC,' AL,' AT,' 

4 A 2 g  0 0 0 0 0 0 0 0 0 0 0 0 
2T,g  20446 73267 -52821 109547 -36280 7422 -193941 321360 -100738 133700 -211815 64458 
2Eg 20461 73648 -53 187 109896 -36249 7376 -194731 322222 -100696 134169 -212328 64444 
=T2g 33642 124689 -91047 185812 -61 124 10352 -340800 560485 -172118 239402 -374675 110994 

4T2g 23051 90458 -67412 -11085 101543 -8474 -45480 -57454 134905 -13453 46369 -33361 
4T,g 34696 98681 -63998 18007 80674 -4889 -163552 141405 72782 104453 -123400 7892 

" All energies are expressed in cm-' and are referred to the 4A2g  ground state as zero point. The conversion to the conventional zero of 
energy can be made by usine the results of Table VII. The mimed symbols have the same meaning as the corresponding unprimed (frozen- 
orbital) symbols in Table V: 

rather well reproduced, although the AE value is apparently 
somewhat too small. For the intraconfigurational t3 - t3 
transitions on the other hand, the calculated values are too 
high: the experimental numbers are only about 60% of the 
calculated numbers. The fact that the order of the 2E, and 
the 2T1, states is not correctly reproduced is inherent to the 
Hartree-Fock level of approximation; as stressed already in 
the Introduction, the somewhat lower position of 2E is due to 
configuration interaction effects, especially with the 2E(t2?eg1) 
state. 

SCF Calculations for the Individual States 
Table VI1 shows the total SCF energy E'and its components 

for the 4A2, ground state. Table VI11 shows the energy dif- 
ferences between ground and ligand field excited states. For 
the SCF energy and its components, we use primed symbols 
in order to stress the distinction with the frozen-orbital cal- 
culations. The difference between Tables V and VI11 reflects 
the relaxation effects accompanying the transition from the 
frozen-orbital approximation to the complete SCF calculations. 
In the latter case, the orbitals are modified so as to minimize 
the energy of the specific state under consideration, and not 
just the average d3 situation. In Table VIII, every state is 
characterized by its own optimized orbitals. 

As could be expected from previous ~ o r k , ~ ~ , ~ ~ * ~ ~  the total 
relaxation energies AE'- AE are almost negligibly small (of 
the order of a few hundred cm-l). Therefore, as far as total 
energies are concerned (the only readily observable quantities), 
the frozen-orbital calculations are nearly as good (or as bad) 
as the ASCF calculations. 

However, the relaxation effect on the energy components 
is seen to be dramatical. The most striking result is that AC' 
is negative for the three intraconfigurational (t3) transitions, 
whereas the corresponding AC are positive. So, whereas the 
frozen-orbital calculation (and ligand field theory) situate the 
t3 doublets at  higher energy only because of higher intere- 
lectronic repulsion, the SCF results reveal that the repulsion 
decreases with higher E': 

C'(4A2g) > C'(2T,) > C'(2Eg) > C'(2T2g) (10) 

The reason why the doublets are higher in energy than the 
ground state apparently lies in the one-electron terms, espe- 

(28) T. F. Soules, J. W. Richardson, and D. M. Vaught, Phys. Rev. B Solid 
State, 3, 2186 (1971). 

cially in the electron-nucleus attraction contribution. 
These observations are reminiscent of the situation in iso- 

lated metal atoms or ions, where exactly the same inequalities 
have been reported.24 As discussed in ref 24, it is quite 
probable that these results are not an artifact of the SCF 
solutions but that they are valid for the exact solutions as well. 
The similarity between eq 10 and the corresponding ine- 
qualities in free ions is an alternative manifestation of the fact 
that the Cr3+ ion behaves-at least to some extent-as a 
separated entity within the Cr(CN)63- complex. 

The nature of the relaxation process in an intraconfigura- 
tional transition can be rationalized in the following way: let 
us start off from the 4A2g ground state in its SCF description 
of Table VII. If the frozen orbitals of this ground state were 
used to describe the excited states, the t2g3 doublets would be 
found at AE = AC = AC, above the ground state, whereas 
AL = AT = 0. Since the original orbitals were derived to 
minimize the 4A2g energy, they will not be strictly optimal for 
the excited doublets. The fact that AC, has been increased 
without changing AT and/or AL clearly violates the virial 
theorem, and the balance between L, T, and C has to be 
restored by a change in the orbital shape. As was already 
shown for free metal ions, the relaxation will always tend to 
oppose the originally induced change (here ACo > 0). This 
can be accomplished by expanding the open-shell orbitals; the 
subsequent decrease of nuclear screening causes the core or- 
bitals to contract. As a consequence, C, and T, increase, while 
C,, C,, and To decrease; the electron-nucleus attraction terms 
L, being negative, exhibit the opposite behavior. 

This is precisely the evolution obtained from a comparison 
of Tables V and VIII. The prime mover of the relaxation 
process, the Co increase, entails the whole series of component 
shifts shown in Figure 5. It is well to stress that AC,l remains 
positive in Table VIII, albeit reduced by a factor of about 3. 
The dominant contribution to AC' (making it negative) is seen 
to be AC,': the expansion of the open-shell valence orbitals 
and the contraction of the closed-shell core induces a very large 
decrease in C,'. As a net consequence the relaxation over- 
compensates the original change in C, decreasing C' rather 
than increasing it. It is also evident from the table that the 
magnitude of the individual component shifts can be quite 
impressive (up to 500 000 cm-') whereas the total relaxation 
energy in all cases amounts to practically zero. This is of 
course related to the fact that the variational principle-for 
arbitrary orbital changes 6q-guarantees the vanishing of 6E, 
but not of any of its  component^.^^ 
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Table IX. Comparison of Certain Racah and/or Griffith 
Parameters for the Free Cr3+ Ion (Denoted by a Subscript f) and 
the Cr(CN),'- Complex (values in cm-') 7 

f 
TC E N C o n s t a n t  ? 

Figure 5. Direction of the relaxation effects for the different energy 
components. The initial (unrelaxed) situation corresponds to the 
frozen-orbital description of an excited t2: doublet (using the 4A2g 
orbitals); the final (relaxed) situation corresponds to the SCF solution 
for the specific doublet. The dominant components are in boxes. 

In eq 6 ,  it was shown that-for frozen orbitals2E, and 2Tlg 
are very nearly degenerate and that the other two energy 
differences are in the ratio 315. Since AE' N AE, the same 
conclusions hold true at the ASCF level. It is not obvious how 
these same conclusions could be rationalized in a simple way, 
on the basis of the ASCF results alone. In this sense, the more 
approximate frozen-orbital calculation definitely has its merits. 

A curious result from Table VI11 is that the ratio 315 de- 
scribes not only the "ratios but also the global component 
ratios 

AE,' AT,' AC,' AL,' 3 
E -  (1 1) - E -  = - = -  

AE( AT( AC( AL( 5 

If the molecule were calculated at its equilibrium geometry, 
the virial theorem would impose the condition E'= -T'and 
the first part of eq 11 would automatically be satisfied. In 
fact, as exemplified in Table VII, E'does not quite equal -T', 
indicating that the SCF minimum does not coincide exactly 
with the experimental geometry. Yet, for the four t22 states, 
the equilibrium distances will quite probably by very close 
together, and the sum E' + T' will be of the same sign and 
the same order of magnitude in all cases. As a consequence 
AT,'IAT( N AE,'IAE{, and also AV,' f AV( E 315.  As for 
the electron-nucleus attraction terms, it can be shown24 on 
the basis of the Hellmann-Feynmann theorem that AL,'/ AL( 
E AE,'/AE(, and therefore also ACL/AC( E 3/5. One 
remarkable consequence is that 

ACa AC,' 
N -  - 

AC, AC,' 

although the primed and the unprimed quantities are of op- 
posite sign! 

Somewhat similar considerations can be applied when 
comparing the states belonging to the t2,Ze configuration. If 8 the 1)T2g orbitals are used to describe the T1, state and if the 
orbitals are then allowed to relax to their optimal shape, the 
qualitative component shifts of Figure 5 can again be observed. 
But in this particular case, the C shift is not so large so as to 

(29) The analysis in the text uses the frozen orbitals of 'A2 , whereas Table 
V is based on the frozen orbitals of Av(d3). It is afso true that the 
relaxation energy components are strongly dependent on the orbitals one 
relaxea from. But this dependence very nearly disappears when one 
considers relaxation energy di/ferences. Therefore, the discussion in the 
text is valid for the numbers in Table V as well. 

semiempirical values 
(first-order expressions) SCF value (Av(d3 )) 

Cr3+ Cr(CNIG3- Cr3+ Cr(CN), 3- 

Bf=980 B=498 Bf=1174 B ~966' 
C f =  3410 C =  2339 Cf= 4400 C 24084' 

a f =  195514 a = 173454 

jf= 7810 j = 6705 
ef = 195514 e = 163179 
ff= 8969 f = 7216 

bf =  179894 b = 160062 

' In MO theory, the B and C parameters for the complex cannot 
be given a rigorous meaning, since their definition requires a 
spherical symmetry; their numerical values were obtained by fit- 
ting the SCF results to the crystal field expressions. 

overcompensate for the original change: the relevant C dif- 
ference in Table V is 2218 + 9128 = 11 346 cm-', whereas 
the corresponding C' difference in Table VI11 is 67412 - 
63 998 = 3414 cm-l. This is quite a significant decrease, but 
at least AC'remains positive; apparently this has to do with 
the fact that the addition of 11 346 cm-I to the 4Tzg state 
represents a smaller perturbation than the addition of 20 095 
or 33 502 cm-' to the 4A2g ground state. 

The relaxation effects for the interconfigurational transitions 
are definitely smaller than for the intraconfigurational tran- 
sitions. This is due to the fact that a tlg - e, excitation 
modifies both the one- and the two-electron energy compo- 
nents, even at the frozen-orbital level (Table V). As a con- 
sequence, the induced deviation from the virial theorem is 
much less pronounced, and the forces restoring the proper virial 
ratio are smaller. Clearly, the shifts schematized in Figure 
5 do not apply to this case. As a matter of fact, the frozen- 
orbital analysis of Table V offers a rather acceptable quali- 
tative description of the electronic excitation act. Therefore, 
also at the SCF level, the reason why 4T2g is higher in energy 
than 4A2g (the classical 1004 transition) is solely due to kinetic 
energy contributions; it is not due to potential energy effects, 
as migh be extrapolated from the crystal field picture. 
Qualitatively similar results were obtained by Wachters and 
Nieuwpoort26 for the NiF,& complexes. The conclusion that 
the lODq excitation essentially amounts to an increase in 
kinetic energy-due to a 3d-orbital contraction-might be a 
general feature of octahedral transition-metal complexes. 
The Nephelauxetic Effect 

The Racah B and C parameters, derived from a crystal field 
analysis, are generally smaller than the corresponding Racah 
parameters of the isolated free ion. If the first-order param- 
eters for the free ion30 are taken to be Bo - 980 cm-' and Co - 3410 cm-', Tables I and IX show that the semiempirical 
nephelauxetic ratio is of the order of 0.5-0.7, indicating a very 
significant reduction of the free-ion values. 

From a more theoretical point of view, the comparison can 
most easily be made with the frozen-orbital calculations. Table 
IX shows that the Racah B and C parameters for the free ion 
are rather well reproduced by the Av(d3) SCF calculation, 
although the theoretical values are some 10% too high. For 
the Av(d3) calculations of the complex, the Racah parameters 
cannot be properly defined and only the Griffith parameters 
have a rigorous meaning. The B and C values listed in the 
table are approximate values that could be obtained from an 
averaging process over the Griffith parameters. As a matter 
of fact, the numerical values of Table IX were simply obtained 
by fitting the SCF results to the crystal field expressions, thus 

(30) C. E. Moore, Narl. Bur. Srand. (US.) Circ., No. 467 (1952). 
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yielding "theoretical" B and C values. The fact that such a 
fit was reasonably accurate is again related to the predominant 
d character of open-shell orbitals in the complex. 

Clearly, the SCF calculations predict all interelectronic 
repulsion parameters to be smaller in the complex than in the 
free ion. The reasons are apparently related to the covalency 
of the complex, as originally invoked by J~rgensen .~ '  The 
global reduction of the parameters may be described roughly 
by a factor 0.85, suggesting a significant "central-field 
covalency". The difference between the reduction of the a(J,,) 
and the e(J,) parameters reflects the greater covalency of the 
da  orbital ("symmetry-restricted covalency"). 

Qualitatively, the calculations thus reproduce the experi- 
mental finding that /3 < 1; but, quantitatively, the reduction 
factor of -0.85 is not very satisfactory when compared to the 
semiempirical value of -0.6. As stressed before, the agree- 
ment does not improve at the ASCF level, since the total 
energies hardly change upon relaxation. 

Conceptually, the classical interpretation of the nephe- 
lauxetic effect can be maintained only at the frozen-orbital 
level of approximation: the open-shell repulsion is smaller in 
the more voluminous orbitals of the complex. But, at the 
ASCF level, the excitations within one given open shell do not 
correspond to an increase of the open-shell repulsion-neither 
in Cr3+ nor in the complex. In this sense, the nephelauxetic 
effect is only remotely connected to the open-shell repulsion. 

(31) C. K. Jmgensen, "Modern Aspects of Ligand Field Theory", Elsevier, 
Amsterdam, New York, 1971. 

Conclusions 
Many features of classical crystal field theory are confirmed 

by detailed ab initio SCF calculations. Most notably the metal 
ion is found to behave more or less as an isolated entity within 
the complex; the open-shell orbitals are of predominant metal 
3d character and are slightly antibonding with the ligands. 

Conceptually, however, the crystal field picture is modified 
rather thoroughly at several points. More specifically, the 
intraconfigurational transitions from the 4A2g(ta3) ground state 
to the excited t2g3 doublets are found to be accompanied by 
a decrease in interelectronic repulsion and an increase in the 
one-electron terms. The interconfigurational transition cor- 
responding to the classical lODq excitation is found to cor- 
respond to a decrease in the potential energy and an increase 
in kinetic energy. Both conclusions are in conflict with the 
crystal field picture. 

Numerically, the Hartree-Fock calculations are only 
qualitatively satisfactory; especially, the intraconfigurational 
transitions are calculated too high. Since the basisset used 
in this work is of rather high quality, the only method to 
improve the quantitative results would be to include extensive 
configuration interaction and/or the effect of the second co- 
ordination sphere. 
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The solution equilibria in benzene of arylphosphine complexes of the type L,Cu,X, (L = Ph3P, MePh,P; X = C1, Br, I; 
m:n = 3:1,4:2, 3:2,2:2,4:4) have been investigated by using UV spectrometry and vapor pressure osmometry. The halogen 
appears to have only a minor effect on the dissociation. A detailed analysis of the chloride complexes shows that ligand 
dissociation of the L3CuC1 complexes is also accompanied by dimerization of the coordinately unsaturated copper(1) complexes 
through halogen bridging. However, the dimeric and tetrameric species formed by halogen bridging are found to be significant 
species in solution only when the ratio of L to CuCl is less than 3:l. An equilibria system is proposed with equilibrium 
constants derived from the modeling of the experimental data. The constants for the single ligand dissociation from (Ph3P)3CuCl 
and (MePh2P)$uC1 are 2 X and 2 X lo4, respectively. With the much greater dissociation of the Ph3P complex, 
the (Ph3P),CuC1 species is the dominant form in a benzene solution made from the solid-state (Ph3P)3CuCI complex. Solution 
profiles of different ratios of L to CuCl are generated to show how various species present in solution vary with concentration. 
The stability of the L,,,Cu,,Cl, complexes (Ph3P << MePh,P) toward ligand dissociation is attributed to greater steric interactions 
of Ph3P in comparison to MePh2P. 

Introduction 
Detailed crystal structures have been determined for com- 

plexes of the general formula L,Cu,& (L = R3P (R = alkyl 
or aryl); X = C1, Br, I; m:n = 3:1, 4:2, 3:2, 2:2, 4:4).'" 
Representations of the various structures are shown in Figure 
1. The complete series of structures (a-f) have not been 
isolated for any one given ligand. The preferred crystal 

Jardine, F. H. Ado. Inorg. Radiochem. 1975, 17, 1 1  5 .  
Gill, J .  T.; Mayerele, J. J.; Welcker, P. S.; Lewis, D. F.; Ucko, D. A.; 
Barton, D. J.; Stevens, D.; Lippard, S. J. Inorg. Chem. 1976,15, 1155. 
Lewis, D. F.; Lippard, S. J.; Welcker, P. S. J .  Am. Chem. SOC. 1970, 
92. 3805. 

structure of a given complex of this type appears to be governed 
by the steric size of the ligand. For bulky ligands such as 
triphenylphosphine or tricyclohexylphosphine, substantial in- 
tramolecular steric repulsions (R- -R and R- -X) have been 
suggested to hinder the approach of the halogen to the metal 
atom prohibiting effective formation of halogen b r i d g i ~ ~ g . ~ . ~  

Structural integrity is not necessarily retained when these 
complexes are placed in solution.'-9 Attempts to identify and 
determine the relative concentrations of the various species 
present in the solution phase have met with little success. The 
formation of polynuclear species through halogen bridging in 
conjunction with ligand dissociation causes many experimental 

Churchill, M. R.; Kalra, K. L. Inorg. Chem. 1974, 13, 1065. 
Churchill, M. R.; Rotella, F. J. Inorg. Chem. 1979, 18, 166. 
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681. 1969, 133. 
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