Volume 23

Number 16

August 1, 1984

Inorganic Chemistry

© Copyright 1984 by the American Chemical Society

Communications

Photoelectron Study of Additivity and Ligand Field Effects on the Tungsten 5d Orbitals in $[W(CO)_{6-n}(PR_3)_n]$ Compounds

Sir:

Recently, Bursten¹ has formulated an additive model for rationalizing the shifts and splittings of the t_{2g} orbitals in d⁶ $[M(CO)_{6-n}L_n]$ (e.g. M = Cr, Mo, W; L = PR₃, CNR) complexes. On the basis of a qualitative molecular orbital picture, the ratios of the t_{2g} splittings should be 2:-1:1:0 for trans- $[M(CO)_4L_2]$, cis- $[M(CO)_4L_2]$, $[M(CO)_5L]$, and fac-[M- $(CO)_{3}L_{3}$ complexes, respectively, and a plot of the first IP vs. n should give a linear trend. These predictions have not yet been confirmed with use of photoelectron spectroscopy, but similar additive models have been used to rationalize the same ratios in a variety of spectra of d⁶ metal complexes: the electronic spectra of Co^{III} complexes,² Mössbauer and NQR quadrupole splittings in Fe^{II, 3,4} Ir^{III,5} and Co^{III6} complexes, and ⁵⁹Co NMR line widths of Co^{III} complexes.^{4,7} However, in photoelectron spectra, relaxation effects can sometimes be as important as ground-state effects in determining shifts and splittings. Indeed, for Cr(CO)₅L complexes, Hillier et al.⁸ claimed that relaxation effects dominate the t_{2g} splittings. In contrast, other papers^{1,9,10} have used ground-state arguments (the difference in π back-bonding between CO and L) to rationalize the t_{2g} splittings in M(CO)₅L and Re(CO)₅X complexes.

To confirm the additive model predictions, and to investigate the importance of relaxation shifts, we have measured the W 5d photoelectron spectra of $[W(CO)_6]$, $[W(CO)_5L]$ (L = PMe₃, PEt₃), cis- and trans-[W(CO)₄L₂], and fac-W(CO)₃L₃.

The complexes (Table I) were prepared by known methods,¹¹⁻¹⁴ and the purity was confirmed by melting points, IR, MS, and thin-layer chromatography. A satisfactory photoelectron spectrum of cis-[W(CO)₄(PEt₃)₂] could not be ob-

- (1) Bursten, B. E. J. Am. Chem. Soc. 1982, 104, 1299-1304.
- McClure, D. S. "Advances in the Chemistry of Coordination Compounds"; MacMillan: New York, 1961; pp 498-508. (2)
- (3) Bancroft, G. M.; Platt, R. H. Adv. Inorg. Chem. Radiochem. 1972, 15, 59-258.
- Bancroft, G. M. Coord. Chem. Rev. 1973, 11, 247-262. (4)
- Williams, A F.; Jones, G. C. H.; Maddock, A. G. J. Chem. Soc., Dalton (5) Trans. 1975, 1952-1957
- (6) Bancroft, G. M. Chem. Phys. Lett. 1971, 10, 449-451.
- Au-Yeung, S. C. F.; Eaton, D. R. Can. J. Chem. 1983, 61, 2431-2441.
- Higgenson, B. R.; Lloyd, D. R.; Connors, J. A.; Hillier, I. H. J. Chem. Soc., Faraday Trans. 2 1974, 70, 1418-1425. (8)

- (9) Hall, M. B. J. Am. Chem. Soc. 1975, 97, 2057-2065.
 (10) Yarbrough, L. W.; Hall, M. B. Inorg. Chem. 1978, 17, 2269-2275.
 (11) Strohmeier, W. Angew. Chem., Int. Ed. Engl. 1964, 3, 730-737.
 (12) Darensbourg, M. Y.; Conder, H. L.; Darensbourg, D. J.; Hasday, C. J. Am. Chem. Soc. 1973, 95, 5919-5924.
 (13) Kime D. Dermending, M. Y.; Conder, H. L.; Darensbourg, D. J.; Hasday, C. J. Am. Chem. Soc. 1973, 95, 5919-5924.
- (13) King, R. B.; Fronzaglia, A. Inorg. Chem. 1966, 5, 1837–1846.
 (14) Mathieu, R.; Lenzi, M.; Poilblanc, R. Inorg. Chem. 1970, 9, 2030–2034.

Table I. Ionization Potentials, Spin-Orbit Coupling Constants (ζ), and t_{2g} Splittings (eV) for the [W(CO)_{6-n}(PR₃)_n] Compounds

compd	IP (±0.02)	ζ (±0.01)	b_2-e or b_2g-e_g (± 0.01)
[W(CO) ₆]	8.29, 8.58	0.19	0
$[W(CO)_{5}(PMe_{3})]$	7.45, 7.66, 7.92	0.17	0.31
$[W(CO)_{5}(PEt_{3})]$	7.40, 7.60, 7.83	0.17	0.29
cis- [W(CO) ₄ (PMe ₃) ₂]	6.72, 7.00, 7.25	0.19	-0.34^{a}
trans- $[W(CO)_4(PMe_3)_2]$	6.68, 6.90, 7.34	0.19	0.51
trans- $[W(CO)_4(PEt_3)_2]$	6.60, 6.83, 7.28	0.20	0.52
fac $[W(CO)_3(PMe_3)_3]$	6.31, 6.60	0.19	0

^a This splitting was approximated by using $\zeta = 0.19$ eV and a double-group interaction of 0.04 eV.

tained due to isomerization to the trans isomer on sublimation in the photoelectron gas cell. All other complexes gave good He I photoelectron spectra with use of techniques previously described.^{15,16} The spectra were fitted to Lorentzian–Gaussian line shapes with use of an iterative procedure.¹⁷

Figure 1 shows the W 5d spectra for some of the substituted $[W(CO)_6]$ species. $[W(CO)_6]$ and $fac-[W(CO)_3(PMe_3)_3]$ show a doublet of intensity $\sim 2:1$ due to the spin-orbit splitting of the t_{2g} molecular orbital level of mainly W 5d character.¹⁸ The other spectra show three peaks due to the splitting of the t_{2g} level in C_{4v} or D_{4h} symmetry,^{19,20} combined with the spin-orbit splitting of the e (or e_g) MO. When L is a poorer π acceptor than CO (as is the case for our compounds), the b_2 (or b_{2g}) MO has a larger IP than the e (or e_g) MO in [W- $(CO)_{5}L$ and trans- $[W(CO)_{4}L_{2}]$, with the opposite order in cis-[W(CO)₄L₂].¹ The large splitting in the trans-[W-(CO)₄(PMe₃)₂] spectrum (Figure 1c) immediately confirms the above ordering of b_{2g} and e_g . Moreover, it is apparent from the spectra in Figure 1 that, qualitatively, the magnitude of the splittings agrees with the theoretical predictions:¹

trans-
$$[W(CO)_4L_2] > cis-[W(CO)_4L_2] \approx [W(CO)_5L] > fac-[W(CO)_5L_3]$$

Table I summarizes the binding energies and also gives the calculated spin-orbit coupling parameters (ζ) and the t_{2g}

- (15) Coatsworth, L. L.; Bancroft, G. M.; Creber, D. K.; Lazier, R. J. D.; Jacobs, P. W. M. J. Electron Spectrosc. Relat. Phenom. 1978, 13, 395-403.
- (16) Bancroft, G. M.; Bristow, D. J.; Coatsworth, L. L. Chem. Phys. Lett. 1981, 81, 344-348.
- (17) Bancroft, G. M.; Adams, I.; Coatsworth, L. L.; Bennewitz, C. D.; Brown, J. D.; Westwood, W. D. Anal. Chem. 1975, 47, 586-589.
 (18) Higgenson, B. R.; Lloyd, D. R.; Burroughs, P.; Gibson, D. M.; Orchard,
- A. F. J. Chem. Soc., Faraday Trans. 2 1973, 69, 1659–1668. As pointed out by Ballhausen,²⁰ the symmetry groups of both cis and
- (19)trans are in practice D_{4h} . Ballhausen, C. J. "Introduction to Ligand Field Theory"; McGraw-Hill:
- (20)New York 1962; p 107.

Figure 1. He I photoelectron spectra of the W 5d region in (a) $[W(CO)_5PMe_3]$, (b) $cis-[W(CO)_4(PMe_3)_2]$, (c) $trans-[W(CO)_4(PMe_3)_2]$, and (d) $fac-[W(CO)_3(PMe_3)_3]$.

Figure 2. Plot of the W 5d IP vs. *n* for the series $W(CO)_{6-n}(PMe_3)_n$ for n = 0-3. The IP's (without spin-orbit splitting) are given for the unsplit t_{2g} level (n = 0, 3), the b_{2g} and e_g levels for n = 1 and n = 2 (trans), and the b_2 and e levels (×) for n = 2 (cis).

splittings with use of Hall's equations.⁹ The spin-orbit parameters (0.17-0.20 eV) are the same as those obtained for a number of other [W(CO)₅L] compounds.¹⁰ More importantly, the ratio of the t_{2g} splittings is 1.0:-1.1:1.7:0 for [W- $(CO)_5L$], cis- $[W(CO)_4L_2]$, trans- $[W(CO)_4L_2]$, and fac-[W- $(CO)_{3}L_{3}$], respectively—in rather good agreement with the theoretical predictions. The smaller than predicted trans splitting is due to two possible effects. First, the π -acceptor abilities of the CO ligands in the [W(CO₅L] and cis species will, on average, be greater than the CO π -acceptor ability in the trans compound. Trans-cis quadrupole splittings in Fe^{II} Co^{III}, and Ir^{III} compounds are usually less than 2:-1,³⁵ although the quadrupole splitting is determined by both π -acceptor and σ -donor effects. Second, relaxation effects could readily cause this effect, which would result from very small differences in relaxation energies of <0.1 eV.

Finally, a plot of IP for the W 5d levels vs. *n* shows a good linear correlation (Figure 2), and the first IP's of cis and trans isomers are very similar as predicted by Bursten.¹ Because the phosphines are better σ donors than CO, the W t_{2g} peaks are chemically shifted to lower IP as *n* increases. This plot

once again shows that differential relaxation effects are very small.

In conclusion, this work confirms the general validity of a ground-state treatment for explaining the shifts and splittings of the W t_{2g} levels in W(CO)_{6-n}L_n compounds. These splittings and shifts should now be more useful for studying structure and bonding in d⁶ low-spin systems.

Acknowledgment. We are very grateful to I. Schmidt, J. Forrest, and L. L. Coatsworth for experimental assistance. G.M.B. and R.J.P. wish to acknowledge NSERC (Canada) for operating grants.

Registry No. [W(CO)₆], 14040-11-0; [W(CO)₅(PMe₃)], 26555-11-3; [W(CO)₅(PEt₃)], 21321-31-3; *cis*-[W(CO)₄(PMe₃)₂], 16104-05-5; *trans*-[W(CO)₄(PMe₃)₂], 30513-08-7; *trans*-[W(CO)₄(PEt₃)₂], 51154-69-9; *fac*-[W(CO)₃(PMe₃)₃], 30513-09-8.

Department of Chemistry	G. Michael Bancroft*
University of Western Ontario	Lisa Dignard-Bailey
London, Ontario, Canada N6A 5B7	Richard J. Puddephatt

Received March 28, 1984

Bimetallic Porphyrins: Synthesis and Rapid Intramolecular Electron Transfer of meso-Tritolyl[N-(pentaammineruthenio)pyridyl]porphyrin

Sir:

Interest in electron transfer reactions has increasingly focused on reactions in which the reactants are held at a fixed distance or orientation.¹⁻¹⁰ Such studies are particularly

Classic examples are provided by the work on mixed-valence systems, cf.: Taube, H. In "Tunneling in Biological Systems"; Chance, B., Ed.; Academic Press: New York, 1980.

⁽²⁾ Meyer, T. Acc. Chem. Res. 1978, 11, 94.