The heuristic outline of the molecular mechanics calculation (Scheme I) illustrates the use of  $\Delta d_{MM}$  to scale  $\Delta d_{MC}$  by eq 5 and the C-C distances by eq 7 and 8.  $R_{\rm C}$  corresponds to

$$R_{\rm C}^{0} = R_{\rm M}^{0} + (\cos \theta) d_{\rm MC}^{0}$$
(7)

$$R_{\rm C} = R_{\rm C}^0 + (\cos\theta)(\frac{1}{2}\Delta d_{\rm MM} + \Delta d_{\rm MC})$$
(8)

the average radius of the spherical surface containing the carbon atoms,  $R_{\rm M}$  is the average radius of the spherical surface containing the metal atoms, and the superscript corresponds to values for  $[Fe_4(CO)_{13}]^{2-}$ . The angle  $\theta$  (35.65°) between the threefold axis and one edge of a tetrahedron is used to project the M-C distances onto the radius by eq 7 and the changes in M-M and M-C distances onto the radius in eq 8. The ratio of  $R_{\rm C}/R_{\rm C}'$  is then the factor by which experimental C-C distances are scaled for any arbitrary value of the M-M distance, the prime superscript corresponding to the radius for  $[Fe_3Cr(CO)_{14}]^{2-}$ .

Once a value of the strain-free metal-metal distance,  $d_{MM}^0$ , is picked, the calculation of energies for a series of M-M distances,  $d_{\rm MM}$ , is performed by the procedure outlined in Figure 6. If the parameters are correctly chosen, the resulting total energy (Figure 6, curve 3) should reach a minimum at the observed iron-iron distance. In the present calculations, the  $d_0$  parameter in the C-C nonbonding potential was varied until the total energy minimum correspond to the value of  $d_{\rm MM}$ in  $[Fe_3Cr(CO)_{14}]^{2-}$  (2.64 Å).

Supplementary Material Available: Complete listings of bond angles and distances (Table XII), positional parameters (Table XIII), anisotropic thermal parameters (Table XIV), and observed and calculated structure factors (40 pages). Ordering information is given on any current masthead page.

> Contribution from the Christopher Ingold Laboratories, University College London, London WC1H 0AJ, U.K.

# Linear-Chain Halogen-Bridged Mixed-Valence Complexes of Palladium: Infrared, Electronic, Raman, and Resonance Raman Study

# ROBIN J. H. CLARK,\* VINCENT B. CROUD, and MOHAMEDALLY KURMOO

Received November 4, 1983

The electronic, infrared, and resonance Raman spectra of the linear-chain mixed-valence complexes  $[Pd^{II}(LL)_{2}][Pd^{IV}$ - $(LL)_2X_2$ [ClO<sub>4</sub>]<sub>4</sub>, where LL = 1,2-diaminoethane, 1,2-diaminopropane, and 1,3-diaminopropane and X = Cl and Br, are reported. The electronic spectra are characterized in the visible-near-infrared region by intense broad intervalence bands that decrease in wavenumber in the order Cl > Br. The infrared spectra are near-superpositions of those of the constituent ions. The resonance Raman spectra show long overtone progressions  $(v_1v_1)$  in the axial X-Pd<sup>IV</sup>-X symmetric stretching mode ( $\nu_1$ , which lies at  $\simeq 280$  cm<sup>-1</sup> for X = Cl and at  $\simeq 150$  cm<sup>-1</sup> for X = Br) and combination tones ( $\nu_1\nu_1 + \nu_n$ , where  $v_n$  may be either  $\delta(N-Pd-N)$  or  $v_2$ ,  $v_{as}$  (X-Pd<sup>IV</sup>-X)). The excitation profiles of the  $v_1$  and  $2v_1$  bands of the chlorides maximize on the low-energy side of the electronic band maxima, as determined by transmission spectral measurements. For the bromides, enhancement of several bands was observed with red excitation, but none of the excitation profiles reached a maximum even with the excitation line of lowest available wavenumber (799.3 nm  $\triangleq$  12 510 cm<sup>-1</sup>). The palladium complexes were found to have lower intervalence band maxima,  $v_1$  band excitation profile maxima, and  $v_1$  values than the analogous platinum complexes. The implications of these results are in agreement with those drawn from conductivity measurements, which indicate that the palladium complexes are the more conducting and thus the ones with the more delocalized valences.

### Introduction

Mixed-valence, linear-chain complexes of platinum and palladium are of interest owing to their potential as one-dimensional semiconductors.<sup>1-4</sup> The electronic, infrared, and resonance Raman (RR) spectra of the platinum complexes have been well documented, but little information is yet available on the analogous and potentially more interesting palladium complexes.<sup>5,6</sup> The present investigation is concerned with a spectroscopic study of some cation-chain palladium complexes of the sort



where LL = 1,2-diaminoethane (en), 1,2-diaminopropane (pn), and 1,3-diaminopropane (tn) and X = Cl and Br. The

- (1) Brown, D. B., Ed. "Mixed-Valence Compounds"; Reidel: Dordrecht, The Netherlands, 1982.
- Clark, R. J. H. Ann. N.Y. Acad. Sci. 1978, 313, 672.
- Aoki, R.; Hamaue, Y.; Kida, S.; Yamashita, M.; Takemura, T.; Furuta, Y.; Kawamori, A. Mol. Cryst. Liq. Cryst. 1982, 81, 301.
  (4) Miller, J. S., Ed. "Extended Linear Chain Compounds"; Plenum Press:
- New York, 1982, Vols. 1 and 2; Ibid. Plenum Press, New York, 1983; Vol. 3.
- Clark, R. J. H. Adv. Infrared Raman Spectrosc. 1983, 11, 95.
- Papavassiliou, G. C.; Layek, D.; Theophanides, T. J. Raman Spectrosc. 1980, 9, 69. (6)

structures of  $[Pd(en)_2][Pd(en)_2X_2][ClO_4]_4$ , X = Cl and Br, have been found to be similar to those of their platinum analogues.<sup>7,8</sup> They consist of stacks of nearly planar [Pd(en)<sub>2</sub>] units bridged by halide ions. Bridging by chlorine is unsymmetrical, producing an alternation of oxidation states, viz. Pd<sup>II</sup>---Cl-Pd<sup>IV</sup>-Cl---Pd<sup>II</sup>---Cl-Pd<sup>IV</sup>-Cl---, along the chain direction; bromine also bridges in an unsymmetrical fashion, though it tends to sit closer to the midpoint between successive Pd atoms. All the complexes are therefore class II mixedvalence species,9 and they have been found to be more conducting than their platinum analogues, the bromides being better conductors than the chlorides.<sup>3,10</sup>

## **Experimental Section**

Preparations. Monomers.  $[Pd(LL)_2]Cl_2$  was prepared by the method of Bekaroglu et al.<sup>11</sup>  $[Pd(en)_2Cl_2][ClO_4]_2$  was obtained by a method different from that originally given by Mason;<sup>12</sup> chlorine gas was bubbled through an aqueous solution of  $[Pd(en)_2]Cl_2$  containing an excess of perchloric acid in an ice bath. Addition of cold absolute ethanol led to the slow precipitation of the yellow complex

- Beauchamp, A. L.; Layek, D.; Theophanides, T. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 1982, B38, 1158. Clark, R. J. H.; Croud, V. B.; Kurmoo, M.; Hursthouse, M., unpub-(7)
- lished results
- Robin, M. B.; Day, P. Adv. Inorg. Chem. Radiochem. 1967, 10, 247. Hamaue, Y.; Aoki, R.; Yamashita, M; Kida, S. Inorg. Chim. Acta 1981,
- (10)54, L13.
- (11) Bekaroglu, O.; Breer, H.; Endres, H.; Keller, H. J.; Gung, N. H. Inorg. Chim. Acta 1977, 21, 183.
- (12) Mason, W. R. Inorg. Chem. 1973, 12, 20.

Table I. Summary of Data on Complexes Studied

| complex                                       | cryst<br>color <sup>a</sup> | powder<br>color <sup>b</sup> | valence<br>max <sup>b</sup> /<br>cm <sup>-1</sup> | EP max <sup>c</sup> /<br>cm <sup>-1</sup> | $\omega_1^{\ c}/\mathrm{cm}^{-1}$ | x <sub>11</sub> c/cm <sup>-1</sup> | $\frac{I(2\nu_1)/I(\nu_1)^c}{(\lambda_0/nm)}$ | $prog (v_1)^c$   |
|-----------------------------------------------|-----------------------------|------------------------------|---------------------------------------------------|-------------------------------------------|-----------------------------------|------------------------------------|-----------------------------------------------|------------------|
| $[Pd(en)_2][Pd(en)_2Cl_2][ClO_4]_4$           | gold-green                  | purple                       | 17 800                                            | 13 000                                    | $273.9 \pm 0.3$                   | $-1.01 \pm 0.09$                   | 0.68 (676.4)                                  | $11\nu$          |
| $[Pd(pn), ][Pd(pn), Cl, ][ClO_A]_A$           | gold-green                  | purple                       | 20 000                                            | 14 700                                    | $279.9 \pm 0.3$                   | $-1.54 \pm 0.07$                   | 0.56 (676.4)                                  | 7v, <sup>1</sup> |
| $[Pd(tn), ][Pd(tn), Cl, ][ClO_A]_A$           | gold-green                  | purple                       | 17 000                                            | 13 300                                    | $283.4 \pm 0.2$                   | $-0.93 \pm 0.05$                   | 0.65 (676.4)                                  | $8\nu$           |
| $[Pd(en), ][Pd(en), Br, ][ClO_A]_A$           | gold                        | blue                         | 13500                                             | ≤12 500                                   | 152.5 <sup>d</sup>                |                                    | ~0.2 (752.5)                                  | $3\nu$           |
| $[Pd(pn)_{2}][Pd(pn)_{3}Br_{2}][ClO_{4}]_{4}$ | gold                        | blue                         | 14 800                                            | ≤12 500                                   | $150.6 \pm 0.3$                   | $-0.18 \pm 0.02$                   | 0.55 (752.5)                                  | 5v.              |
| $[Pd(tn)_2][Pd(tn)_2Br_2][ClO_4]_4$           | gold                        | blue                         | 13 500                                            | ≤12 500                                   | 143.4 <sup>d</sup>                |                                    | <0.2 (752.5)                                  | $3\nu_1$         |

<sup>a</sup> By reflection. <sup>b</sup> By transmission. <sup>c</sup> At ca. 80 K. <sup>d</sup>  $\nu$ , value.

 $[Pd(en)_2Cl_2][ClO_4]_2$ . Care must be taken not to chlorinate for too long, otherwise an orange, air-stable but unidentified solid is formed in large quantities. The palladium(IV) complex is stable if it is crystalline or if it is held in a solution containing an excess of halogen for periods of 12-24 h.

Mixed-Valence Complexes. The mixed-valence complexes [Pd- $(LL)_2$  [Pd(LL)<sub>2</sub>X<sub>2</sub>][ClO<sub>4</sub>]<sub>4</sub> were prepared by partial oxidation of  $[Pd(LL)_2]Cl_2$  with dihalogen in perchloric acid.<sup>13</sup> They were recrystallized by being dissolved in the minimum amount of warm water, to which perchloric acid was then added. Recrystallization can be repeated several times with only a slight loss of yield.

Large crystals of [Pd(en)<sub>2</sub>][Pd(en)<sub>2</sub>Cl<sub>2</sub>][ClO<sub>4</sub>]<sub>4</sub> were obtained by allowing a solution of  $[Pd(en)_2Cl_2][ClO_4]_2$  in dilute perchloric acid to decompose slowly over a few days in a refrigerator. Large crystals of the bromo complex were obtained by introducing bromine water into the bottom of a beaker containing a solution of  $[Pd(en)_2]Cl_2$  in perchloric acid and allowing the bromine to diffuse upward undisturbed over a few hours. Once formed, the mixed-valence complexes were found to be stable in air. Their purity was checked by elemental analyses for C, H, N, and halogen. Attempts to prepare analogous iodine-bridged complexes were unsuccessful.

Instrumentation. Electronic spectra were recorded at 295 K on a Cary 14 spectrometer. Samples were made up by dispersing the complexes in K[ClO<sub>4</sub>] disks.

Infrared spectra were recorded as wax disks of the complexes with a Bruker IFS 113V interferometer (700-20 cm<sup>-1</sup>). Spectra at ca. 80 K were obtained with the use of a RIIC liquid-nitrogen cryostat.

Raman spectra were recorded on a Spex 1401 or a Spex 14018/R6 spectrometer. Exciting radiation was provided by Coherent Radiation Models CR3, CR500K, and CR3000K lasers. Samples were in the form of single crystals (usually  $\sim$ 3 mm long), pressed disks of the pure complexes, or pressed disks of the complexes dispersed in K[ClO<sub>4</sub>]. Laser powers were usually less than 50 mW for K[ClO<sub>4</sub>] disks and about 5-10 mW for crystals and for pressed disks of the pure complex. A Dewar assembly using liquid nitrogen was used for measurements at ca. 80 K<sup>14</sup> and an Air Products Displex cryostat for those at ca. 10 K. Spectra were calibrated by reference to the emission spectrum of neon or to the Rayleigh line. Excitation profile measurements were made on samples held at ca. 80 K, with the  $a_1$  band of  $[ClO_4]^-$  as internal intensity standard. Intensities were corrected for the spectral response of the instruments.

#### Electronic Spectra

Crystals of the complexes show remarkable dichroism, the chlorides being blue with the electric vector of the transmitted light parallel to the z (chain) axis and colorless when perpendicular to it. The bromides are likewise dark blue and light yellow, respectively. The crystals have a strong metallic sheen, which is lost when they are ground to a powder. The colors of the crystals and powders are given in Table I.

The transmission spectra (Figures 1 and 2) show strong absorption in the visible/near-infrared region. The spectrum in each case is dominated by a strong, broad band ( $\sim 5000$ cm<sup>-1</sup> fwhm) which is slightly asymmetric by virtue of a shoulder or ill-defined band on the high-energy side. Both bands are halogen dependent, decreasing in wavenumber on



Figure 1. Electronic spectra (295 K) and excitation profiles (ca. 80 K) of the  $\nu_1$  (and in some cases  $2\nu_1$ ) bands of (a)  $[Pd(en)_2][Pd (tn)_2$  [Pd $(tn)_2$ Cl<sub>2</sub>] [ClO<sub>4</sub>]<sub>4</sub>.

going from chloride to bromide (Table I). The strong band of lower energy, polarized along the chain axis, is assigned to the  $Pd^{IV} \leftarrow Pd^{II}$  intervalence transition by analogy with the corresponding band of analogous platinum complexes.<sup>5</sup>

The wavenumbers of the intervalence band maxima increase (in terms of the equatorially coordinated amines) in the order en  $\leq$  tn < pn. This suggests, by analogy with earlier results on linear-chain platinum complexes,<sup>15,16</sup> that the Pd<sup>II</sup>---Pd<sup>IV</sup> chain distance and thus the degree of valence localization increases in the same order; the out-of-plane methyl group in the pn case doubtless accounts for the position of pn in this series.

#### Infrared Spectra

The infrared spectra of the monomers,  $[Pd(LL)_2]Cl_2$  and  $[Pd(en)_2Cl_2][ClO_4]_2$ , and of the mixed-valence complexes  $[Pd(LL)_2][Pd(LL)_2X_2][ClO_4]_4$  have been recorded at 80 K from 600 to 20 cm<sup>-1</sup>. The assignments of the bands are based on those of previously reported complexes.<sup>19-21</sup> The mixedvalence complexes are regarded as being in class II,<sup>9</sup> and their infrared spectra are expected, and found, to consist essentially of the superpositions of the infrared spectra of the constituent complexes. Such differences as exist are expected to be mainly due to the change in force constant of the axial Pd<sup>IV</sup>-X bond

- Watt, G. W.; Klett, D. S. Inorg. Chem. 1966, 5, 1128.
- (20) Berg, R. W.; Rasmussen, K. Spectrochim. Acta Part A 1973, 29A, 319.
   (21) Powell, D. B.; Sheppard, N. Spectrochim. Acta 1961, 17, 68.

Matsumoto, M.; Yamashita, M.; Kida, S. Bull. Chem. Soc. Jpn. 1978, (13)51.2334

<sup>(14)</sup> Clark, R. J. H.; Turtle, P. C. Inorg. Chem. 1978, 17, 2526.

<sup>(15)</sup> Clark, R. J. H.: Kurmoo, M.; Keller, H. J.; Keppler, B.; Traeger, U. J. Chem. Soc., Dalton Trans. 1980, 2498

<sup>(16)</sup> Matsumoto, N.; Yamashita, M.; Ueda, I.; Kida, S. Mem. Fac. Sci.,

<sup>(10)</sup> Mutsubio, (x), annashita, M., Oda, H., Rida, S. Mem. Pat. St., Kyushu Univ., Ser. C 1978, 11, 209.
(17) Endres, H.; Keller, H. J.; Martin, R.; Traeger, U.; Novotny, N. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 1980, 36, 35.
(18) Matsumoto, N.; Yamashita, M.; Kida, S. Bull. Chem. Soc. Jpn. 1978,

<sup>51. 3514.</sup> 



Wavenumber / 10<sup>3</sup> cm<sup>-1</sup>

Figure 2. Electronic spectra (295 K) and excitation profiles (ca. 80 K) of (a) the  $\nu_1$  and  $2\nu_1$  bands of  $[Pd(en)_2][Pd(en)_2Br_2][ClO_4]_4$ , (b) the  $\nu_1$  and  $\delta(N-Pd-N)$  bands of  $[Pd(pn)_2][Pd(pn)_2Br_2][ClO_4]_4$ , and (c) the  $\nu_1$  and 163.8-, 190.1-, and 201.8-cm<sup>-1</sup> bands of  $[Pd(tn)_2][Pd(tn)_2Br_2][ClO_4]_4$ .



Figure 3. Approximate description of the bending modes,  $\delta$ (N-Pd-N), of the monomers (a and b) and of the mixed-valence complexes (c-f).

consequent upon the interaction with the Pd<sup>II</sup> centers and to changes in the amine modes as a result of hydrogen-bond formation with the perchlorate counterion. However, further differences are observed due to a change in space group on going from the monomer to the mixed-valence complex. As an illustration, the effect of this on the in-plane (chelate)  $\delta$ (N-Pd-N) modes (Figure 3) follows. The space group of  $[Pd(en)_2]Cl_2$  is  $P\overline{1}$  (Z = 1),<sup>22</sup> and hence the Bravais unit cell contains only one [Pd(en)<sub>2</sub>]<sup>2+</sup> unit and two Cl<sup>-</sup> ions. The symmetry is isomorphous with  $C_i$ , with the molecular symmetry being approximately  $C_{2h}$ . Therefore, no correlation field splitting is predicted and the number of intramolecular vibrations for the complex in the crystal is the same as that for the isolated ion. Factor group analysis for the in-plane (chelate),  $\delta$ (N-Pd-N) modes predicts one Raman-active (a<sub>g</sub>) (Figure 3a) and one infrared-active  $(a_u)$  mode (Figure 3b). Table II shows that only one band is assigned to this mode in the infrared spectrum of the monomers.

Table II. Wavenumbers  $(\tilde{\nu}/cm^{-1})$  and Assignments of Bands Observed in the Infrared Spectra of Some Palladium Monomers in the Range 650-20 cm<sup>-1</sup> a,b

|                           |                           | $[Pd^{IV}(en), CL]$              |                                              |
|---------------------------|---------------------------|----------------------------------|----------------------------------------------|
| $[Pd^{II}(pn)_{2}]Cl_{2}$ | $[Pd^{II}(en)_{2}]Cl_{2}$ | [ClO <sub>4</sub> ] <sub>2</sub> | assignt                                      |
| 630 w                     | 645 w                     |                                  |                                              |
|                           |                           | 625 vs                           | $ClO_{A}^{-}, \nu_{A}$                       |
| 593 vw                    |                           | 599 m 🕠                          |                                              |
|                           | 581 s                     | 582 s                            |                                              |
| 557 w                     | 559 w                     | 549 w                            |                                              |
| 536 w                     |                           | 539 s                            | Pd–N str                                     |
| 532 w                     |                           | (                                |                                              |
|                           | 520 s                     | 523 s                            |                                              |
|                           |                           | 507 m                            |                                              |
| 487 w                     |                           | 480 s                            |                                              |
| 470 w                     | 474 s                     |                                  |                                              |
| 467 m                     |                           | 466 m                            | ring bends                                   |
| 456 w                     |                           |                                  |                                              |
| 437 w                     |                           | )                                |                                              |
|                           |                           | 382 s                            | $\nu_2$ antisym<br>(Cl-Pd <sup>IV</sup> -Cl) |
| 380 w                     | 377 s                     | 369 sh                           | ring torsional<br>mode                       |
| 342 w                     |                           | 333 w )                          |                                              |
| 321 w                     |                           | (                                | ring bends                                   |
| 312 w                     |                           | (                                |                                              |
| 295 s                     | 287 s, br                 | 283 vs )                         | in-plane $\delta$ (N-Pd-N)                   |
| 279 w                     |                           |                                  | - ( ,                                        |
| 265 w                     |                           |                                  |                                              |
| 249 w                     | 248 w                     | 237 w                            |                                              |
|                           | 226 w                     | 218 w                            |                                              |
|                           |                           | 214 w                            |                                              |
| 184 m                     | 199 w                     | 190 w                            |                                              |
| -                         | 176 s                     | 176 w                            |                                              |
| 160 vs                    | 162 s                     | 159 m                            |                                              |
|                           |                           |                                  |                                              |

<sup>a</sup> Obtained as wax disks of the complexes at ca. 80 K. <sup>b</sup> Also, bands appear for  $[Pd(pn)_2]Cl_2$  at 75 w cm<sup>-1</sup>, for  $[Pd^{II}(en)_2]Cl_2$  at 105 w, 80 m, and 30 vw cm<sup>-1</sup>, and for  $[Pd^{IV}(en)_2Cl_2][ClO_4]_2$  at 151 w, 136 w, 118 w, 115 w, 110 w, 104 w, 86 w, 75 w, 62 w, and 57 w cm<sup>-1</sup>.

The space group of  $[Pd(en)_2][Pd(en)_2Cl_2][ClO_4]_4$  and  $[Pd(en)_2][Pd(en)_2Br_2][ClO_4]_4$  is *Ibam* (Z = 2),<sup>7,8</sup> there being two X-Pd<sup>IV</sup>-X--Pt<sup>II</sup> units per unit cell. The symmetry is isomorphous with  $D_{2h}$ . The line-group symmetry<sup>23</sup> of such a linear-chain complex is approximately  $C_{2h}$  and that of the site

<sup>(23)</sup> Tobin, M. J. Chem. Phys. 1955, 23, 891.

Table III. Wavenumbers and Assignments of Bands Observed in the Infrared Spectra of  $[Pd(LL)_2][Pd(LL)_2Cl_2][ClO_4]_4$  in the Range 600-20 cm<sup>-1</sup> a, b

|           | <b>⊅</b> /cm <sup>-1</sup> |           |                                                 |
|-----------|----------------------------|-----------|-------------------------------------------------|
| en        | pn                         | tn        | assignt                                         |
| 590 w     |                            |           |                                                 |
| 578 m     |                            |           | 1                                               |
| 553 m     | 556 w                      |           | Pd-N str                                        |
| 538 m     | 542 s                      | 542 w     |                                                 |
| 514 m     |                            | 519 w     |                                                 |
|           |                            | 501 s     | 1                                               |
| 480 w     |                            |           | /<br>} ring bends                               |
| 474 w     | 476 w                      |           | Ting bends                                      |
| 470 m     | 470 m                      | 465 m     | $ClO_4^-, \nu_2$                                |
| 458 w     | 460 w                      | 460 w     | 1                                               |
| 447 w     | 450 s                      | 453 w     | 1                                               |
| 429 w     | 432 s                      |           | ring bends                                      |
| 394 w, br | 395 w, br                  | 385 s     |                                                 |
| 377 w     |                            | 370 m     | )                                               |
| 364 m     | 362 s                      | 358 m     | $\nu_{2}$ , antisym Cl-Pd <sup>IV</sup> -Cl str |
|           | 352 w                      | 354 w     | \                                               |
| 334 w     | 340 s                      | 346 m     | ring bends                                      |
|           | 312 s                      | 321 w     | <b>\$</b>                                       |
|           | 298 sh                     | 299 w     |                                                 |
| 289 s     | 284 vs                     | 287 s     | in-plane $\delta(N-Pd-N)$                       |
|           | 270 vs                     | 284 sh    |                                                 |
| 249 s     | 250 m                      | 262 s     | in-plane δ(N-Pd-N)                              |
|           |                            | 246 w     |                                                 |
|           |                            | 228 w     |                                                 |
| 188 m     | 184 m                      | 196 w, br |                                                 |
|           |                            | 176 w, br |                                                 |
| 165 m     | 164 m                      | 170 w     | Cl-Pd <sup>IV</sup> -Cl bend?                   |

<sup>a</sup> See footnote to Table II. <sup>b</sup> Also bands appear for LL = en at153 m, 115 w, 84 w, and  $70 \text{ w} \text{ cm}^{-1}$ , for LL = pn at 152 m, 128 w, and 84 w, br cm<sup>-1</sup>, and for LL = tn at 144 w, 137 w, 125 w, 110 w, and 88 w, br cm<sup>-1</sup>.

group is likewise  $C_{2h}$ . Line group analysis for the in-plane (chelate)  $\delta(N-Pd-N)$  modes predicts four Raman-active (2  $a_g + 2 b_{1g}$ ) and four infrared-active (2  $b_{2u} + 2 b_{3u}$ ) modes, leading to correlation field splittings (not necessarily resolved) (Figure 3c-f).

Tables III and IV show that, for the mixed-valence complexes, two bands can be assigned to the in-plane (chelate)  $\delta$ (N-Pd-N) modes.

The general trends noted in the infrared spectra of the mixed-valence complexes are that (a)  $\nu(Pd-Cl) > \nu(Pd-Br)$ , (b)  $\nu(Pd-X)$  in the mixed-valence complexes  $< \nu(Pd-X)$  in the constituent monomers,<sup>24</sup> and (c)  $\delta$ (N-Pd-N) is less sensitive than the chelate ring modes to changes in the amine. The  $v_2$  (antisymmetric X-Pd<sup>IV</sup>-X stretch) band is observed at 382 cm<sup>-1</sup> for  $[Pd(en)_2Cl_2][ClO_4]_2$  and between 358 and 364 cm<sup>-1</sup> for the mixed-valence chloro complexes. This drop in wavenumber on bridging is larger than that observed for the platinum analogoues,<sup>25</sup> a result which indicates that there is greater interaction between Pd<sup>II</sup> and Cl than between Pt<sup>II</sup> and Cl in chain complexes. The  $\nu_2$  band has been found to display chlorine isotopic splitting for the platinum complexes.<sup>2</sup> However, the analogous palladium complexes do not show any splitting even at 80 K and the highest resolution possible, an observation which is a consequence of the larger number of isotopes of significant abundance for Pd than Pt and of their lower mass. A band at ca. 230 cm<sup>-1</sup> is attributed to the  $\nu_2$ fundamental of the chain bromides.

#### **Raman and Resonance Raman Spectra**

The Raman and RR spectra of the mixed-valence complexes were recorded for single crystals (where possible) and for

| Table IV.   | Wavenumbers and            | Assignments    | of Bands  | Observed in         |
|-------------|----------------------------|----------------|-----------|---------------------|
| the Infrare | d Spectra of [Pd(L         | L), ] [Pd(LL). | ,Br,][ClO | $D_{A}]_{A}$ in the |
| Range 600-  | $-20 \text{ cm}^{-1} a, b$ |                |           |                     |

| -                                |                                                    |                                    |                                                      |
|----------------------------------|----------------------------------------------------|------------------------------------|------------------------------------------------------|
|                                  | 𝒴/cm <sup>-1</sup>                                 |                                    | <u></u>                                              |
| en                               | pn                                                 | tn                                 | assignt                                              |
| 587 m<br>578 m                   |                                                    |                                    |                                                      |
| 552 w, br<br>533 m<br>515 m      | 553 w<br>538 w                                     | 538 w<br>513 w<br>500 s            | Pd-N str                                             |
| 485 w, br                        |                                                    |                                    | 1                                                    |
| 478 w                            |                                                    |                                    | ring bends                                           |
| 473 w<br>470 m<br>457 w<br>446 w | 471 m<br>457 w                                     | 465 w<br>455 w                     | $\int ClO_4^-, \nu_2$                                |
| 440 w<br>404 s (asym             | 430  w<br>434  w<br>1 to low $\widetilde{\nu}$ sid | e)                                 |                                                      |
| 383 s<br>368 sh                  | 392 m, br<br>348 w<br>342 w                        | 382 w<br>372 vw<br>355 vw<br>345 w | ring bends                                           |
| 323 w<br>309 w<br>284 w          | 324 w<br>311 m                                     | 327 w                              |                                                      |
| 276 m<br>256 m                   | 278 m<br>258 m                                     | 278 m<br>258 m                     | in-plane $\delta$ (N-Pd-N)                           |
| 237 m<br>211 vw<br>185 sh        | 227 m                                              | 226 vs                             | ν <sub>2</sub> , antisym Br−Pd <sup>1</sup> V−Br str |
| 180 m<br>169 w<br>140 w. br      | 162 sh<br>146 s                                    | 180 w, br<br>168 w<br>125 w        |                                                      |
| 109 m                            | 115 m                                              | 109 w                              | Br-Pd <sup>IV</sup> -Br bend?                        |

<sup>a</sup> See footnote to Table II. <sup>b</sup> Also bands appear for LL = en at 89 w, 81 w, 75 w, and 69 w cm<sup>-1</sup>, for LL = pn at 90 m, 81 sh, 75 m, and 69 m cm<sup>-1</sup>, and for LL = tn at 89 w and 72 w cm<sup>-1</sup>.



Resonance Raman spectra of (a) [Pd(en)<sub>2</sub>][Pd-Figure 4. (en)<sub>2</sub>Cl<sub>2</sub>][ClO<sub>4</sub>]<sub>4</sub>, (b) [Pd(pn)<sub>2</sub>][Pd(pn)<sub>2</sub>Cl<sub>2</sub>][ClO<sub>4</sub>]<sub>4</sub>, and (c) [Pd- $(tn)_2$  [Pd(tn)<sub>2</sub>Cl<sub>2</sub>] [ClO<sub>4</sub>]<sub>4</sub> as K[ClO<sub>4</sub>] disks at ca. 80 K ( $\lambda_0 = 647.1$ nm, spectral slit width  $\sim 2 \text{ cm}^{-1}$ ).

polycrystalline disks (pure or material mixed with  $K[ClO_4]$ ) at ca. 80 and 10 K. The spectra are shown in Figures 4 and 5, and the wavenumbers and assignments are given in Tables V-VIII.

Resonance Raman spectra for the three chloride complexes (Figure 4) are dominated by long overtone progressions in  $v_1$ , the totally symmetric Cl-Pd<sup>IV</sup>-Cl stretching mode. Other

<sup>(24)</sup> Nakamoto, K. "Infrared and Raman Spectra of Inorganic and Coordination Compounds", 3rd ed.; Wiley: New York, 1978; p 166. Allen, S. D.; Clark, R. J. H.; Croud, V. B.; Kurmoo, M. Philos. Trans.

<sup>(25)</sup> R. Soc. London, in press.

### Mixed-Valence Complexes of Pd

Table V. Wavenumbers, Relative Intensities, Fwhm, and Assignments of Bands Observed in the RR Spectrum of  $[Pd(en)_2][Pd(en)_2Cl_2][ClO_4]_4^a$ 

| $\widetilde{\nu}/\mathrm{cm}^{-1}$ | $\frac{I(\boldsymbol{v}_1 \boldsymbol{v}_1)}{I(\boldsymbol{v}_1)}$ | $\frac{\Delta \widetilde{\nu}_{1/2}}{\mathrm{cm}^{-1}}$ | assignt                                           |
|------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------|
| 197.6                              |                                                                    |                                                         | δ(N-Pd-N)                                         |
| 272.0                              | 1.00                                                               | 12.1                                                    | $\nu_1, \nu_s(\text{Cl-Pd}^{1} \vee -\text{Cl})$  |
| 330.7                              |                                                                    |                                                         | " " (CL PdIV CI)                                  |
| 542.4                              | 0.68                                                               | 73.3                                                    | $v_2, v_{as}(C) - ru - c)$                        |
| 8091                               | 0.08                                                               | 38.8                                                    | $\frac{2\nu_1}{3\nu}$                             |
| 1073.3                             | 0.35                                                               | 54                                                      | $4\nu$                                            |
| 1271.6                             |                                                                    |                                                         |                                                   |
| 1291.1                             |                                                                    |                                                         | $\delta_t(H-C-H)$                                 |
| 1339                               | 0.29                                                               | 70                                                      | $5\nu_1$                                          |
| 1394                               |                                                                    |                                                         | δ <sub>s</sub> (H-C-H)                            |
| 1566                               |                                                                    |                                                         | $\nu_1 + \delta_t$                                |
| 1584                               | 0.21                                                               | . 00                                                    | $\delta_{s}(H-N-H)$                               |
| 1834                               | 0.21                                                               | 90                                                      | $\nu_1$                                           |
| 1854                               |                                                                    |                                                         | $2\nu_1 + \delta_t$<br>$\nu_1 + \delta_1 (H=N=H)$ |
| 1863                               | 0.15                                                               | 100                                                     | $7\nu$ .                                          |
| 1931                               |                                                                    |                                                         | 1                                                 |
| 2100                               | 0.10                                                               | 120                                                     | 8v1                                               |
| 2350                               | ~0.06                                                              | >120                                                    | $9v_1$                                            |
| 2630                               | ~0.03                                                              | >120                                                    | $10v_1$                                           |
| 2880                               | ~0.01                                                              | >120                                                    | $11\nu_{1}$                                       |

<sup>a</sup> Obtained as a K[ClO<sub>4</sub>] disk at ca. 80 K with 647.1-nm excitation. Slit widths were  $180/220/180 \ \mu m \ (\sim 2 \ cm^{-1})$ .

Table VI. Wavenumbers, Relative Intensities, Fwhm, and Assignments of Bands Observed in the RR Spectrum of  $[Pd(pn)_2][Pd(pn)_2Cl_2][ClO_4]_4^a$ 

|                            | $I(\boldsymbol{v}_1 \boldsymbol{v}_1)/$ | $\Delta \widetilde{v}_{1/2}$ |                                                |
|----------------------------|-----------------------------------------|------------------------------|------------------------------------------------|
| <i>v</i> /cm <sup>-1</sup> | $I(v_1)$                                | cm <sup>-1</sup>             | assignt                                        |
| 195                        |                                         |                              | $\delta(N-Pd-N)$                               |
| 233.3                      |                                         |                              |                                                |
| 276.7                      | 1.00                                    | 13.5                         | $\nu_1, \nu_{s}(Cl-Pd^{IV}-Cl)$                |
| 325                        |                                         |                              |                                                |
| 362                        |                                         |                              | $\nu_2$ , $\nu_{as}$ (Cl-Pd <sup>IV</sup> -Cl) |
| 551.3                      | 0.56                                    | 27.5                         | $2\nu_1$                                       |
| 606                        |                                         |                              | $\nu_1 + 325$                                  |
| 628.1                      |                                         |                              |                                                |
| 634.7                      |                                         |                              |                                                |
| 821.4                      | 0.41                                    | 45                           | $3\nu_1$                                       |
| 922.5                      |                                         |                              |                                                |
| 1087                       | 0.29                                    | 61                           | $4\nu_1$                                       |
| 1121                       |                                         |                              |                                                |
| 1219                       |                                         |                              |                                                |
| 1255                       |                                         |                              |                                                |
| 1354                       | 0.17                                    | 86                           | $5\nu_{\perp}$                                 |
| 1396                       |                                         |                              | •                                              |
| 1607                       | ~0.10                                   | ~100                         | $6\nu$                                         |
| 1874                       | < 0.10                                  | >100                         | $7\nu_1$                                       |
|                            |                                         |                              | 4                                              |

<sup>a</sup> Obtained as a K[ClO<sub>4</sub>] disk at ca. 80 K with 647.1-nm excitation. Slit widths were  $100/120/100 \ \mu m \ (\sim 1 \ cm^{-1})$ .

subsidiary progressions,  $v_1v_1 + v_n$ , are also apparent. These  $v_n$  modes have been identified as  $\delta(N-Pd-N)$ ,  $v_2(Cl-Pd^{1V}-Cl)$ , and ligand modes (see Tables V-VIII). The harmonic band wavenumbers  $(\omega_1)$  and anharmonicity constants<sup>26</sup> are listed in Table I; the likely accuracies of such values, and the constraints on them, are discussed elsewhere.<sup>27a</sup>

Chlorine isotopic splitting is expected for the  $v_1$  mode (unlike  $v_2$ ) since the Q<sub>1</sub> normal coordinate does not involve motion of the central metal atom. For a linear Pd<sup>IV</sup>Cl<sub>2</sub> unit a triplet band structure (9:6:1) is expected. The  $v_1$  band of a single crystal of [Pd(en)<sub>2</sub>][Pd(en)<sub>2</sub>Cl<sub>2</sub>][ClO<sub>4</sub>]<sub>4</sub> held at ca. 10 K was resolved



Figure 5. Resonance Raman spectra of (a) [Pd(en)<sub>2</sub>][Pd- $(en)_{2}Br_{2}[ClO_{4}]_{4}$ , (b)  $[Pd(pn)_{2}][Pd(pn)_{2}Br_{2}][ClO_{4}]_{4}$ , and (c) [Pd-Partial equation (Closed Content of Closed $(tn)_2][Pd(tn)_2Br_2][ClO_4]_4$  as K[ClO\_4] disks at ca. 80 K ( $\lambda_0 = 752.5$ nm, spectral slit width  $\sim 2.5$  cm<sup>-1</sup>).

Table VII. Wavenumbers, Relative Intensities, Fwhm, and Assignments of Bands Observed in the RR Spectrum of  $[Pd(tn)_2][Pd(tn)_2Cl_2][ClO_4]_4^a$ 

| <i>v</i> ∕cm <sup>-1</sup> | $\frac{I(v_1 v_1)}{I(v_1)}$ | $\frac{\Delta \widetilde{v}_{1/2}}{\mathrm{cm}^{-1}}$ | assignt                                             |
|----------------------------|-----------------------------|-------------------------------------------------------|-----------------------------------------------------|
| 206.3                      |                             |                                                       | (NI DA NI)                                          |
| 200.5                      | 1.00                        | 10.2                                                  | $(\mathbf{I} - \mathbf{I} \mathbf{U} - \mathbf{N})$ |
| 460.0                      | 1.00                        | 10.2                                                  | $\nu_1, \nu_s(CI-IU - CI)$                          |
| 400.0                      |                             |                                                       | p(ru=N)                                             |
| 400.4<br>561.6             | 0.65                        | 21.2                                                  | $v_1 + o(n - ru - n)$                               |
| 740                        | 0.05                        | 21.2                                                  | $2\nu_1$                                            |
| 740                        |                             |                                                       | $\nu_1 + \nu(ru - N)$                               |
| 770.1                      |                             |                                                       | $2\nu_1 + o(N - P u - N)$                           |
| 820                        | 0.40                        | 20.0                                                  | 2                                                   |
| 839.2                      | 0.40                        | 29.8                                                  | $3\nu_1$                                            |
| 842                        | 0.00                        | 25.2                                                  | 4                                                   |
| 1113.4                     | 0.26                        | 35.3                                                  | $4\nu_1$                                            |
| 1218.9                     |                             |                                                       |                                                     |
| 1287                       |                             |                                                       |                                                     |
| 1312                       |                             | - /                                                   | $\delta_t(H-C-H)$                                   |
| 1387                       | 0.21                        | 56                                                    | $5\nu_1$                                            |
| 1499                       |                             |                                                       |                                                     |
| 1595                       |                             |                                                       | $\nu_1 + \delta_t$                                  |
| 1663                       | 0.12                        | 69                                                    | $6\nu_1$                                            |
| 1777                       |                             |                                                       |                                                     |
| 1873                       |                             |                                                       | $2\nu_1 + \delta_t$                                 |
| 1934                       | 0.07                        | 80                                                    | $7\nu_1$                                            |
| 2047                       |                             |                                                       |                                                     |
| 2146                       |                             |                                                       | $3\nu_1 + \delta_t$                                 |
| 2197                       | 0.05                        | 100                                                   | $8\nu_1$                                            |
| 2337                       |                             |                                                       |                                                     |
| 2410                       |                             |                                                       | $4\nu_1 + \delta_t$                                 |
| 2465                       | 0.03                        | 120                                                   | $9\nu_1$                                            |

<sup>a</sup> Obtained as a K[ClO<sub>4</sub>] disk at ca. 80 K with 647.1-nm excitation. Slit widths were  $150/200/150 \ \mu m \ (\sim 1.5 \ cm^{-1})$ . <sup>b</sup> The 1218.9-cm<sup>-1</sup> band is possibly a  $\delta$  (H–C–H) twist.

into a triplet at 275.8 w, 272.7 s, and 267.6 m cm<sup>-1</sup>. Using the model described by Allen et al.<sup>25</sup> and choosing the 364-cm<sup>-1</sup> infrared band as  $\nu_2$  and the 272.7 cm<sup>-1</sup> Raman band as  $\nu_1$ - $(Pd^{35}Cl_2)$  to describe the force field, we calculate  $\nu_1$ - $(Pd^{35}Cl^{37}Cl)$  to be 268 cm<sup>-1</sup>, cf. observed value 267.6 cm<sup>-1</sup>;

Herzberg, G. "Infrared and Raman Spectroscopy of Polyatomic Molecules"; Van Nostrand: Princeton, 1945; p 265. (a) Clark, R. J. H.; Stewart, B. Struct. Bonding (Berlin) 1979, 36, 1. (b) Siebrand, W.; Zgierski, M. Z. Excited States 1979, 4, 1. (26)

<sup>(27)</sup> 

Table VIII. Wavenumbers and Assignments of Bands Observed in the RR Spectra of  $[Pd(LL)_2][Pd(LL)_2Br_2][CIO_4]_4^a$ 

| $\widetilde{\nu}/\mathrm{cm}^{-1}$ | assignt                          | ṽ/cm⁻¹ | assignt                     |  |  |  |
|------------------------------------|----------------------------------|--------|-----------------------------|--|--|--|
| LL = en                            |                                  |        |                             |  |  |  |
| 152.5                              | $\nu_1, \nu_8(Br-Pd^{IV}-Br)$    | 343.5  | $\nu_1 + \delta (N-Pd-N)$   |  |  |  |
| 188. <b>9</b>                      | $\delta(N-Pd-N)$                 | 432    | $\nu_1 + 276.5$             |  |  |  |
| 236.9                              | $\nu_2, \nu_{as}(Br-Pd^{IV}-Br)$ | 464    | $3\nu_1$                    |  |  |  |
| 276.5                              |                                  | 541    |                             |  |  |  |
| 301                                | $2\nu_1$                         | 622    |                             |  |  |  |
| 306                                | -                                | 630    |                             |  |  |  |
|                                    | LL =                             | = pn   |                             |  |  |  |
| 150.1                              | ν.                               | 390.2  | $\nu_1 + \nu_2$             |  |  |  |
| 191.3                              | $\delta(N-Pd-N)$                 | 449.3  | $3\nu$ ,                    |  |  |  |
| 240.3                              | V.                               | 499.6  | $2\nu_{1} + \delta(N-Pd-N)$ |  |  |  |
| 300.3                              | $2\nu$ .                         | 599.6  | $4\nu$                      |  |  |  |
| 345.2                              | $\nu_1 + \delta(N-Pd-N)$         | 747    | $5\nu_1$                    |  |  |  |
|                                    | LL=                              | = tn   |                             |  |  |  |
| 143.4                              | ν.<br>                           | 353    | $\nu_1 + 201.8$             |  |  |  |
| 163.8                              |                                  | 375    | .1                          |  |  |  |
| 190.1                              | $\delta$ (N-Pd-N)                | 424    | 3v,                         |  |  |  |
| 201.8                              |                                  | 446    | $2\nu_{1} + 163.8$          |  |  |  |
| 225                                | V <sub>2</sub>                   | 456    | $\nu(\dot{P}d-N)$           |  |  |  |
| 257                                | •                                | 592    | $3\nu_1 + 163.8$            |  |  |  |
| 281.6                              | $2\nu_1$                         | 609    | •                           |  |  |  |
| 305                                | $\nu_1 + 163.8$                  | 629    |                             |  |  |  |
| 331.3                              | $v_1 + \delta(N-Pd-N)$           |        |                             |  |  |  |

<sup>a</sup> Obtained as K [ClO<sub>4</sub>] disks at ca. 80 K with 752.5-nm excitation. Slit widths were  $250/300/250 \ \mu m \ (\sim 2.5 \ cm^{-1})$ .

 $\nu_1(Pd^{37}Cl_2)$  is too weak to be observed experimentally. Although the discrepancy of 0.4 cm<sup>-1</sup> is within experimental error, the agreement is not as good as that obtained for the platinum analogues, for which chlorine isotopic splitting has been observed for both  $\nu_1$  and  $\nu_2$ .<sup>25</sup> The alternative choice of the band at 275.8 cm<sup>-1</sup> instead of that at 272.7 cm<sup>-1</sup> for  $\nu_1$ -(Pd<sup>35</sup>Cl<sub>2</sub>) is clearly incorrect, since it gives a poor fit to the model and is relatively too weak. In the case of the pn and tn complexes, measurements were only possible on polycrystalline disks, as attempts to grow large crystals were unsuccessful. Measurements made under these conditions result in only poor resolution of the (albeit asymmetric)  $\nu_1$  band.

It is worth noting that the  $\nu_1$  band for the encomplex shows a wavenumber dependence on the exciting line and that the relative intensities of the isotopomer bands also change. For the pn and tn complexes this was only detected as changes in the shape of the band with change of exciting line.

For the bromide complexes, RR spectra were only obtained for the pn complex as resonance could not be achieved for the en and tn complexes even with the exciting line of lowest energy at our disposal (799.3 nm  $\approx 12510$  cm<sup>-1</sup>) (Figure 5). The spectrum of the pn complex is likewise dominated by a progression in  $\nu_1$  (up to  $5\nu_1$  maximum) and a combination tone progression  $\nu_1\nu_1 + \delta(N-Pd-N)$ . For the en and the complexes several fundamentals were observed to give rise to overtones and combination tones. Unlike the ph complex, for which the band assignments were unambiguous, those for the en and th complexes were less so. The  $\nu_1$  band was assigned to the one showing maximum enhancement at or near resonance.

#### **Excitation Profiles**

The excitation profiles (EP) of the  $\nu_1$  and  $2\nu_1$  bands of the chlorides and several bands of the bromides at ca. 80 K have been constructed (Figures 1 and 2). The EP for  $\nu_1$  and  $2\nu_1$  of the chlorides maximize on the low-energy side of the electronic band maxima, a situation typical of halogen-bridged platinum complexes.<sup>28</sup> In the case of the tn complex a shoulder is observed on the high-energy side. The EP of all the strong bands of the bromides show continuous enhancement from 20 000 to 12 500 cm<sup>-1</sup> with no sign of any maxima being reached.

The large enhancement of  $\nu_1$  and its overtones on excitation within the contour of the intervalence band is consistent with the large change in the Pd<sup>IV</sup>-X bond length expected on transforming the chain from the ground state, --Pd<sup>II</sup>---X-Pd<sup>IV</sup>-X--Pd<sup>II</sup>--, to the excited state, -Pd<sup>III</sup>-X-Pd<sup>III</sup>-X-Pd<sup>III</sup>-. The small enhancement of the other modes is mainly due to slight changes in the geometry accompanying this transformation.

The EP maxima for the chlorides have the same trend as the intervalence band maxima, viz. en  $\simeq$  tn < pn.

### Conclusion

The mixed-valence halogen-bridged complexes of palladium have been found to display optical properties similar to those of platinum. The  $\nu_2$  band wavenumber of isolated  $[M-(en)_2X_2]^{2+}$  is lowered more for palladium than platinum on the formation of linear-chain complexes --- $[M(en)_2]$ --- $[M-(en)_2X_2]$ --- $[M(en)_2]$ ---. The intervalence band maxima, EP maxima, and  $\nu_1$  values of the palladium complexes are all lower in wavenumber than those of the corresponding platinum complexes. Since conductivity in these materials is believed to be phonon-assisted,<sup>3</sup> low  $\nu_1$  values and low intervalence transition energies would indicate higher conductances for the complexes of palladium than for the platinum. These conclusions are in complete agreement with the conductance data of Kida et al.<sup>3,10</sup>

Acknowledgment. The authors thank Dr. S. D. Allen for FTIR measurements on the monomers, Johnson-Matthey Ltd. for the loan of chemicals, and the SERC for financial support.

<sup>(28)</sup> Clark, R. J. H.; Kurmoo, M. J. Chem. Soc., Dalton Trans. 1983, 761.