Contribution from the Department of Chemistry, McMaster University, Hamilton, Ontario, L8S 4M1 Canada

Preparation of $O_2XeF_{2-x}(OTeF_5)_x$, $OXeF_{4-y}(OTeF_5)_y$, and $XeF_{4-y}(OTeF_5)_y$ (x = 0-2, y = 0-4) and Study by ¹²⁹Xe and ¹⁹F NMR and Raman Spectroscopy: The Oxygen Primary Isotopic Effect in the ¹²⁹Xe NMR Spectra of XeO₂F₂ and XeOF₄

GERHARD A. SCHUMACHER and GARY J. SCHROBILGEN*

Received July 13, 1983

A series of mixed fluoro/pentafluroorthotellurate (OTeF₅) derivatives of the xenon(VI) oxyfluorides XeOF₄ and XeO₂F₂, as well as those of XeF4, have been prepared and studied by ¹⁹F and ¹²⁹Xe NMR spectroscopy. The compound O₂Xe(OTeF5)2 has been prepared and isolated for the first time and, along with the previously reported $Xe(OTeF_5)_4$ and $XeO(OTeF_5)_4$ derivatives, has been characterized by low-temperature Raman spectroscopy. An oxygen-17 NMR study of the ¹⁷O/ ¹⁸O-enriched oxyfluorides XeO₂F₂ and XeOF₄ and their ¹⁸O/¹⁶O primary isotopic shifts in the ¹²⁹Xe NMR spectra are also reported.

Introduction

The effective group electronegativity of the OTeF₅ ligand has been shown to be only slightly less than that of $F.^{1,2}$ This group is capable of stabilizing nearly all of the same oxidation states as F including those of Xe(II),³⁻⁵ Xe(IV),⁶ and Xe(VI).⁷ Since the preparations of the first xenon derivatives containing the OTeF₅ group by Sladky,³⁻⁵ namely FXeOTeF₅, Xe(O- $TeF_5)_2$, and $OXeTeF_5^+AsF_6^-$, the OTeF₅ group has been shown to stabilize the +4 and +6 and oxidation states of xenon as the $Xe(OTeF_5)_4$,⁶ $OXe(OTeF_5)_4$, and $Xe(OTeF_5)_6^{7,8}$ compounds.

In the present work, we have undertaken to extend the range of known xenon(IV) and xenon(VI) derivatives containing the OTeF₅ group. Although the mixed series of xenon(VI) compounds $OXeF_{4-\nu}(OTeF_5)_{\nu}$ has been previously reported,⁸ we have repeated the preparation of this series and have more accurately characterized these species by multinuclear magnetic resonance spectroscopy. These studies have been extended to the preparation of the new series of xenon(IV) derivatives $XeF_{4-y}(OTeF_5)_y$. Until the present work, the chemistry of XeO_2F_2 has been limited to the preparation of the thermally unstable XeO_2F^+ cation⁹ and the $XeO_2F_3^{-10}$ anion. Consequently, we have extended the chemistry of the dioxide difluoride by preparing the OTeF₅ derivatives $O_2Xe(OTeF_5)_3$ and $O_2XeF(OTeF_5)$ in solution and by isolating and characterizing $O_2Xe(OTeF_5)_2$ as a pure solid at low temperature.

Discussion

NMR Spectroscopy. Xenon-129 NMR spectroscopy is one of the most powerful techniques in assessing the structures of new xenon derivatives in solution.^{11,12} The isotope is ideally

- (4) Sladky, F. Monatsh. Chem. 1970, 101, 1571.
 (5) Sladky, F. Monatsh. Chem. 1970, 101, 1578.

- (6) Lentz, D.; Seppelt, K. Angew. Chem., Int. Ed. Engl. 1978, 17, 356.
 (7) Lentz, D.; Seppelt, K. Angew. Chem., Int. Ed. Engl. 1979, 18, 66.
 (8) Jacob, E.; Lentz, D.; Seppelt, K.; Simon, A. Z. Anorg. Allg. Chem. 1981, 472, 7.
- Gillespie, R. J.; Schrobilgen, G. J. Inorg. Chem. 1974, 13, 2370.
- (10) Schrobilgen, G. J.; Gillespie, R. J. J. Chem. Soc., Chem. Commun.
- (11) Schrobilgen, G. J.; Holloway, J. H.; Granger, P.; Brevard, C. Inorg. Chem. 1978, 17, 980.

suited to NMR observation, having a nuclear spin of 1/2, natural abundance of 26.44%, and $D^c = 31.8$ ($D^c = natu$ ral-abundance sensitivity relative to natural-abundance 13 C). As a precise absolute frequency for the accepted ¹²⁹Xe standard $XeOF_4^{10,13}$ is not available in the literature, we have determined a value of 27.810 184 MHz for pure liquid XeOF₄ at 24 °C (quoted relative to the protons in neat Me₄Si at 24 °C, which are taken to resonate at precisely 100.000 000 MHz).

O₂Xe(OTeF₅)₂ and O₂XeF(OTeF₅). Dissolution of freshly prepared XeO_2F_2 in SO_2ClF followed by reaction with B(O- TeF_{5} according to eq 1 yields pure $O_2Xe(OTeF_5)_2$ when

$$XeO_2F_2 + 2B(OTeF_5)_3 \rightarrow 3O_2Xe(OTeF_5)_2 + 2BF_3 \qquad (1)$$

stoichiometric quantities of reactants are used. When an excess of XeO_2F_2 is allowed to react with $B(OTeF_5)_3$, a mixture of $O_2Xe(OTeF_5)_2$, $O_2XeF(OTeF_5)$, and XeO_2F_2 results.

The ¹²⁹Xe NMR spectra of $XeO_2(OTeF_5)_2$ and $O_2XeF(O-1)$ TeF_5) are depicted in Figure 1a,b and their parameters are listed in Table I. The spectra of both compounds are consistent with a trigonal-bipyramidal arrangement about the xenon atom in which the formal double-bond oxygens occupy equatorial positions and the lone pair and the oxygen or fluorine ligand atoms occupy axial positions. The -74 °C ¹²⁹Xe spectrum of $O_2Xe(OTeF_5)_2$ in SO₂ClF consists of a multiplet (34-Hz line spacings) at 131.0 ppm from $XeOF_4$ with a set of satellites separated by 1684 Hz. The multiplet arises from coupling between ¹²⁹Xe and the equatorial fluorines on tellurium to give a partially resolved binomial nonet. The magnitude of this coupling is consistent with those previously observed for $OTeF_5$ groups bonded to xenon.^{2,6-8} It was not possible to resolve the long-range coupling between the axial fluorine on tellurium and xenon. The satellites are the result of a two-bond coupling between natural-abundance ¹²⁵Te (6.99%) and ¹²⁹Xe. The spectra of solutions prepared by using an excess of XeO_2F_2 consisted of a superposition of $O_2Xe(O TeF_5$)₂ signals and a new set of signals arising from O₂XeF-(OTeF₅). There was no evidence for free XeO_2F_2 , which was noted to be insoluble in SO₂ClF at the low temperatures at

Sladky, F.; Kropshofer, H. Inorg. Nucl. Chem. Lett. 1972, 8, 195.
 Birchall, T.; Myers, R. D.; de Waard, H.; Schrobilgen, G. J. Inorg.

Chem. 1982, 21, 1068.

Sladky, F. Monatsh. Chem. 1970, 101, 1559.

Schrobilgen, G. J. In "NMR and Periodic Table"; Harris, R. K., Mann, (12)B. E., Eds.; Academic Press: London, 1978; Chapter 14 and references therein.

⁽¹³⁾ Brevard, C.; Granger, P. "Handbook of High Resolution Multinuclear NMR"; Wiley: Toronto, 1982; pp 176 and 177.

Table I. ¹²⁹Xe and ¹⁹F NMR Parameters for XeF_{4-y}(OTeF₅)_y, OXeF_{4-y}(OTeF₅)_y, and O₂XeF_{2-x}(OTeF₅)_x (x = 0-2, y = 0-4)

	chem shift ^a		coupling const, Hz			
molecule	δ ¹²⁹ Xe	δ ¹⁹ F ^b	${}^{1}J_{129}$ Xe- 19 F	${}^{3}J_{129}$ Xe- 19 Fa	${}^{2}J_{129}$ Xe $-{}^{125}$ Te	
Xe(OTeF ₅) ₄	-646.5			66	1008	
$FXe(OTeF_5)_3$	-436.5	16.36	3506	66	1032 (E) ^d 1292 (A) ^d	
trans-F, Xe(OTeF,),	-215.9	10.95	3503	69	1166	
cis-F ₂ Xe(OTeF ₅) ₂	-242.6	-8.58	3714	69	1059	
$F'F_2Xe(OTeF_5)^e$	-25.5	5.87 (F) -11.98 (F')	3552 (F) 3733 (F')	71	1192	
XeF	202.9	-15.66	3817			
OXe(OTeF,)4	-204.1			52	1351	
$OXeF(OTeF_5)_3$	-157.0	111.27	1206	52		
trans-OXeF ₂ (OTeF ₅) ₂	-106.4	108.24	984	53	1535	
cis-OXeF ₂ (OTeF ₅) ₂	-117.8	112.59	1074	51	1536	
$OXeF'F_2(OTeF_5)^{f}$	-66.3	106.78 (F') 103.00 (F)	1148 (F') 931 (F)	53	1364	
OXeF ₄	-29.9	101.59	1131			
$O_2 Xe(OTeF_5)_2$	131.0			34	1684	
$O_2 XeF(OTeF_5)$	154.1		1046	37	1856	
O ₂ XeF ₂	171.0		1213			

^a IUPAC conventions have been used in reporting chemical shift data: *Pure Appl. Chem.* 1972, 29, 627; 1976, 45, 217. I.e., a positive chemical shift denotes a positive frequency and vice versa. ¹²⁹Xe and ¹⁹F spectra have been referenced relative to liquid XeOF₄ and CFCl₃ at 24 °C, respectively. ^b ¹⁹F chemical shifts represent fluorines directly bonded to xenon. ^c Separate ${}^{3}J_{129}Xe_{-1}{}^{9}F_{a}$ couplings between xenon and the axial fluorine on tellurium environments could not be resolved. ^d A and E in parentheses denote axial (OTeF₅ groups trans to each other) and equatorial (OTeF₅ group trans to F), respectively. ^e J_{F-F}' = 355 Hz. ^f J_{F-F}' = 83 Hz.

Figure 1. ¹²⁹Xe NMR spectra (69.561 MHz; SO₂ClF solvent; -74 °C): (a) $O_2Xe(OTeF_5)_2$ (A); (b) a mixture of $O_2XeF(OTeF_5)$ (B) and $O_2Xe(OTeF_5)_2$ (A). Lower case letters a and b denote ¹²⁵Te satellites belonging to $O_2Xe(OTeF_5)_2$ and $O_2XeF(OTeF_5)$, respectively.

which these spectra were obtained.

The ¹²⁹Xe NMR spectrum of $O_2XeF(OTeF_5)$ is a doublet of quintets with ¹²⁵Te satellites. The doublet results from the directly bonded spin-spin coupling between ¹²⁹Xe and ¹⁹F (1047 Hz), and its value is similar to that previously observed for XeO₂F₂ in HF solvent (1217 Hz).¹¹ The magnitude of the quintet coupling (37 Hz) is again consistent with those previously observed for OTeF₅ groups bonded to xenon, and the ¹²⁹Xe-¹²⁵Te coupling (1856 Hz) in O₂XeF(OTeF₅) represents the largest ¹²⁹Xe-¹²⁵Te coupling observed to date.

 $XeF_{4-y}(OTeF_5)_y$ and $OXeF_{4-y}(OTeF_5)_y$. NMR spectra of the title systems were obtained by mixing the fluoro compound with the corresponding tetrakis(pentafluoroorthotellurate) compound in CFCl₃. Ligand redistribution of F and OTeF₅

groups was rapid at room temperature, resulting in all five species anticipated for each series. The apparent low resolution and/or signal to noise ratio in a previous ¹²⁹Xe NMR study⁸ of the OXeF_{4-y}(OTeF₅)_y system did not permit the observation of ¹²⁹Xe⁻¹²⁵Te couplings in the spectra of the mixed species nor the directly bonded ¹²⁹Xe⁻¹⁹F' coupling in OXeF'F₂-(OTeF₅). We have, however, been able to observe the latter in our study of this system. Furthermore, we note that the ¹²⁹Xe⁻¹⁹F coupling reported for OXeF(OTeF₅)₃ (1082 Hz) is in error (corrected value 1206 Hz) and that the chemical shift assignments for *cis*- and *trans*-OXeF₂(OTeF₅)₂ are interchanged in the previous work.⁸

Xenon-129 spectra of the representative $XeF_{4-y}(OTeF_5)_y$ series are depicted in Figure 2a–d, and the ¹⁹F NMR spectra of both series $XeF_{4-y}(OTeF_5)_y$ and $OXeF_{4-y}(OTeF_5)_y$ are depicted in Figure 3a,b. The less intense ¹²⁹Xe signals corresponding to the *cis*-difluorobis(pentafluoroorthotellurate) occur to low frequency of those belonging to the trans compound in both series of compounds. The ¹²⁹Xe NMR spectra of the OTeF₅ derivatives are also characterized by satellites arising from two-bond ¹²⁹Xe-¹²⁵Te couplings, directly bonded ¹²⁹Xe-¹⁹F couplings in derivatives containing fluorine directly bonded to xenon, long-range coupling between the equatorial fluorines on tellurium and ¹²⁹Xe, and a monatonic increase in shielding with increasing number of OTeF₅ groups in the latter two series (Table I).

We have previously determined the ¹²⁹Xe chemical shift difference $[\Delta \delta = \delta(F \text{ derivative}) - \delta(OTeF_5 \text{ derivative})]$ for XeF⁺ and XeOTeF₅⁺ (898 ppm/group), Xe(OTeF₅)₂ and XeF₂ (219 ppm/group), Xe(OTeF₅)₄ and XeF₄ (207 ppm/ group), and O=Xe(OTeF₅)₄ and XeOF₄(53 ppm/group).² Within each of the title series and the series O₂XeF_{2-x}(OTeF₅)_x and XeF_{2-x}(OTeF₅)_x, the ¹²⁹Xe chemical shifts are found to be additive (eq 2-5), yielding the chemical shift changes 207

- $\delta_{^{12}9Xe}(XeX_2) = -207n 1890 \quad R^2 = 0.964 \quad (2)$
- $\delta_{^{129}Xe}(XeX_4) = -211n + 195.0 \quad R^2 = 1.000 \quad (3)$
- $\delta_{129}_{Xe}(XeOX_4) = -43.9n 26.1 \quad R^2 = 0.998 \quad (4)$

$$\delta_{^{129}Xe}(XeO_2X_2) = -20.0n - 172.0 \quad R^2 = 0.922 \quad (5)$$

n = number of OTeF₅ groups

 R^2 = correlation coefficient

a

Figure 2. ¹²⁹Xe NMR spectra (69.561 MHz) of $XeF_{4-y}(OTeF_5)_y$ in CFCl₃ solvent (24 °C): (a) $Xe(OTeF_5)_4$; (b) $XeF(OTeF_5)_3$; (c) cis-XeF₂(OTeF₅)₂ (A), trans-XeF₂(OTeF₅)₂ (B) and accompanying ¹²⁵Te satellites a and b; (d) F'F₂XeOTeF₅. Asterisks denote ¹²⁵Te satellites.

ppm/group (XeX₂), 211 ppm/group (XeX₄), 44 ppm/group (XeOX₄), and 20 ppm/group (O₂XeX₂). These low-frequency changes with increasing number of OTeF₅ groups reflect the lower effective electronegativity of the OTeF₅ group compared to that of fluorine and support our earlier findings on the subject.²

We have also noted earlier the chemical shift change per group for XeX_4 and XeX_2 is nearly identical.² This appears to be in accord with a description of the XeX bonding, in a simplified MO description, for XeX_2 and XeX_4 in terms of one and two 3c-4e bonds (3-center 4-electron), respectively.¹⁴

(14) Rundle, R. E. J. Am. Chem. Soc. 1963, 85, 112.

Figure 3. ¹⁹F NMR spectra (235.362 MHz; CFCl₃ solvent; 24 °C): (a) XeF_{4-y}(OTeF₅)_y; (b) OXeF_{4-y}(OTeF₅)_y. Key for (a): XeF₄ (F); F'F₂XeOTeF₅ (C, D); cis-F₂Xe(OTeF₅)₂ (E); trans-F₂Xe(OTeF₅)₂ (B); FXe(OTeF₅)₃ (A); asterisk, impurity; (G) CFCl₃. Key for (b): OXeF₄ (F); OXeF'F₂(OTe₅) (D, E; cis-OXeF₂(OTeF₅)₂ (A); trans-OXeF₂(OTeF₅)₂ (C); OXeF(OTeF₅)₃ (B). Lower case letters denote ¹²⁹Xe satellites.

We have also noted that while the Xe-X bonds of XeOX₄ may be described in terms of two 3c-4e bonds, the difference value derived for XeOF₄ is small compared to corresponding values for XeX₂ and XeX₄. This effect increases with two oxygens in the single 3c-4e system XeO₂X₂, yielding a value of only 20 ppm/group. The formal Xe=O bond serves to diminish the difference in deshielding effects between OTeF₅ and F. The less electronegative OTeF₅ groups place more electron density onto the central xenon. Oxygen substitution permits withdrawal of much of the additional electron density, resulting in a smaller shielding difference for F and OTeF₅ ligands. This is supported by the lower Xe=O stretching frequencies for O₂Xe(OTeF₅)₂ and OXe(OTeF₅)₄ reported in a subsequent section dealing with the Raman spectroscopy of these compounds.

Fluorine-19 NMR spectroscopy reveals that the fluorines directly bonded to xenon in the series $XeF_{4-y}(OTeF_5)_y$ and $OXeF_{4-y}(OTeF_5)_y$ become progressively less shielded with increasing $OTeF_5$ substitution. This is consistent with the opposite deshielding trend observed in the xenon spectra.

Both the increase in ¹²⁹Xe shielding and the overall decrease in the ¹²⁹Xe-¹²⁵Te coupling constant as x or y increases in $O_2XeF_{2-x}(OTeF_5)_x$, $OXeF_{4-y}(OTeF_5)_y$, and $XeF_{4-y}(OTeF_5)_y$ are consistent with the increased covalency of the Xe-OTeF₅ bond. Since F is more electronegative than OTeF₅ and a Xe-F bond is more ionic than a Xe-OTeF₅ bond, increasing the number of Xe-OTeF₅ bonds in a compound causes a decrease in the covalency of the Xe-OTeF₅ bonds, offsetting the relatively ionic nature of the Xe-F bonds. As covalency decreases, so do the magnitudes of the couplings to ¹²⁹Xe. The decrease in the directly bonded ¹²⁹Xe-¹⁹F coupling with increasing x or y (Table I) results from the addition of relatively electropositive OTeF₅ groups, which increase the ionic character of the remaining Xe-F bonds, resulting in a decrease in ¹J_{127Xe-¹⁹F}.

Both trifluoro compounds, $F_3Xe(OTeF_5)$ and $OXeF_3(O-TeF_5)$, exhibit fluorine-fluorine spin-spin coupling between F' and F in their respective F'XeF₂ groups. These couplings

Table II. 129 Xe and 17 O NMR Parameters for XeF₄ and XeO₂F₂^a

	chem s	shift ^b	coupling const, Hz		
molecule	$\delta^{129} \mathrm{Xe}^{c}$	δ ¹⁷ 0 ^d	$^{1}J_{129}$ Xe- 19 F ^C	J_{129} Xe- ¹⁷ O ^d	
XeOF	23.7	316.3	1146	704	
XeO_2F_2	171.0	302.5	1213	521	

^a NMR spectra were recorded in HF solvent. ^b ¹²⁹Xe and ¹⁷O spectra have been referenced relative to liquid XeOF₄ and H₂O at 24 °C, respectively. ^c Recorded at -50 °C. ^d Recorded at 24 °C; J_{129} Xe-¹⁷O could not be observed in the ¹²⁹Xe spectrum of XeO₂F₂ recorded at 24 °C owing to broadening arising from fluorine exchange with HF solvent.

are 355 and 83 Hz, respectively, and bear no clear relationship to the analogous couplings in XeF_3^+ (174 Hz) and $XeOF_3^+$ (103 Hz).¹⁵

¹⁷O and ¹²⁹Xe NMR Spectra of ^{17,18}O-Enriched XeO₂F₂ and XeOF₄. In the course of our present studies of the derivatives of XeO₂F₂, we have noted the absence of ¹⁷O data for this oxyfluoride. The ¹⁷O NMR studies of XeOF₄¹⁶ and XeO₆⁴⁻¹⁷ have been reported previously. In addition, there is a paucity of primary isotopic shift data for NMR-active heavy elements bonded to various ligand isotopes, and none had been observed previously for ¹²⁹Xe.

An HF solution containing XeF_6 and ^{17,18}O-enriched water in the mole ratio $XeF_6:H_2O = 1:1.22$ gave a mixture of $XeOF_4$ and XeO_2F_2 and their respective isotopic isomers. The ¹²⁹Xe and ¹⁷O NMR parameters for both oxyfluorides are represented in Table II. The 24 °C ¹²⁹Xe NMR spectrum gave a well-resolved 1:4:6:4:1 XeOF₄ quintent while that of XeO₂F₂ consisted of a severely broadened 1:2:1 triplet ($\omega_{1/2} \approx 750$ Hz). Broadening in the latter case presumably arose from fluorine exchange with the solvent. Each of the quintet lines of $XeOF_4$ $(J_{129}_{Xe^{-19}F} = 1131 \text{ Hz})$ was further split into two lines of essentially equal intensity (Figure 4a). The high- and lowfrequency branches (41-Hz spacing at 5.8719 T) were assigned to $Xe^{16}OF_4$ and $Xe^{18}OF_4$. The $Xe^{17}OF_4$ contribution was observed as a partially quadrupole-collapsed set of overlapping 1:1:1:1:1:1 sextets centered on each pair of ¹⁶O/¹⁸O quintet lines $(J_{129}_{Xe^{-17}O} = 704 \text{ Hz})$ (Figure 4b). Cooling of the solution to -50 °C led to quadrupole collapse of the Xe¹⁷OF₄ multiplet into the spectral base line. However, the fluorine exchange responsible for broadening in the XeO_2F_2 portion of the spectrum was slowed sufficiently at this temperature to permit the observation of a well-resolved 1:2:1 triplet arising from ¹²⁹Xe-¹⁹F coupling (1213 Hz) and additional splittings on each triplet branch attributed to primary isotopic shifts arising from ¹⁶O- and ¹⁸O-containing species. Contributions arising from isomers containing one or two ¹⁷O atoms were not observed due to severe quadrupole relaxation, leading to broadening and collapse of the ¹²⁹Xe-¹⁷O sextets into the base line. Consequently, only three equally spaced lines (37 Hz at 5.8719 T) were observed on each branch of the triplet; these are assigned in order of decreasing frequency to $Xe^{16}O_2F_2$, $Xe^{16}O^{18}OF_2$, and $Xe^{18}O_2F$ and have calculated relative intensities of 1.00:2.03:1.03, respectively, which are in accord with the observed relative intensities (Figure 4c). The magnitude of the $^{16}O/^{18}O$ isotopic shift is proportional to the number of ^{16}O atoms in the XeO_2F_2 molecule that have been substituted by ¹⁸O. This trend has also been noted recently for the ⁹⁹Tc resonance in TcO_4^{-} (¹⁶O/¹⁷O/¹⁸O substitution).¹⁸ The ¹⁷O NMR spectrum of this solution at 24 °C yielded values for

Figure 4. ¹²⁹Xe (69.561 MHz) and ¹⁷O (33.909 MHz) spectra of ¹⁷O-(26.5%) and ¹⁸O- (37.0%) enriched preparations of XeOF₄ and XeO₂F₂ recorded in HF solvent: (a) ¹²⁹Xe NMR spectrum of XeOF₄ at -50 °C, where a and b denote Xe¹⁶OF₄ and Xe¹⁸OF₄, respectively; (b) ¹²⁹Xe NMR spectrum of XeO₂F₂ at -50 °C, where a-c denote Xe¹⁶O₂F₂, Xe¹⁶O¹⁸OF₂, and Xe¹⁸O₂F₂, respectively; (c) ¹²⁹Xe NMR spectrum of XeOF₄ at 24 °C depicting ¹⁷O couplings; (d) ¹⁷O NMR spectrum of an XeOF₄ (A)/XeO₂F₂ (B) mixture at 24 °C, where a and b denote ¹²⁹Xe satellites.

the ${}^{129}Xe^{-17}O$ spin-spin couplings and ${}^{17}O$ chemical shifts of both XeOF₄ and XeO₂F₂ (Figure 4d; Table II).

The isotopic shifts 0.29 and 0.26 ppm/amu, respectively, for XeOF₄ and XeO₂F₂ are comparable to those previously reported for TcO₄⁻ in the ⁹⁹Tc spectrum (0.22 ppm/amu),¹⁸ and the direction of the oxygen isotopic shifts (low frequency with increasing oxygen mass) in these examples is consistent with the smaller mean vibrational amplitude expected for the heavier oxygen isotope, leading to a more shielded central xenon or technetium atom.¹⁹

⁽¹⁵⁾ Gillespie, R. J.; Schrobilgen, G. J. Inorg. Chem. 1974, 13, 2370.

⁽¹⁶⁾ Shamir, J.; Selig, H.; Samuel, D.; Reuben, J. J. Am. Chem. Soc. 1965, 87, 2359.

⁽¹⁷⁾ Reuben, J.; Samuel, D.; Selig, H.; Shamir, J. Proc. Chem. Soc., London 1963, 270.

⁽¹⁸⁾ Franklin, K. J.; Lock, C. J. L.; Sayer, B. G.; Schrobilgen, G. J. Am. Chem. Soc. 1982, 104, 5303.

⁽¹⁹⁾ Jameson, C. J. Bull. Magn. Reson. 1980, 3, 3.

Table III. Raman Frequencies and Tentative Assignments for $O_2 Xe(OTeF_5)_2$, $OXe(OTeF_5)_4$, and $Xe(OTeF_5)_4^a$

frequency, cm ⁻¹			f	requency, cm			
$\frac{O_2 Xe}{(OTeF_5)_2 b}$	OXe- (OTeF ₅) ₄	Xe- (OTeF ₅) ₄	approx description	$\frac{O_2Xe}{(OTeF_5)_2^{b}}$	OXe- (OTeF 5)4	Xe- (OTeF ₅) ₄	approx description
889 (0.5) 880 (21)			$\nu_{asym}(XeO_2)$	335 (4) 328 (9)	337 (3) 329 (2)	348 (1) 341 (4)	$\delta(F'TeF_4),$
	887 (34) 873 (1)		ν (XeO)		325 (8) 320 (11)	332 (10) 320 (6)	out of plane of sym
830 (3)				317 (10)	314 (4)	312 (2)	$\delta(F'TeF_4),$
824 (2) 822 (10) 820 (100)			$\nu_{\rm sym}({\rm XeO}_2)$	310 (10)	308 sh 306 (12)	306 (16)	δ_{sym} (TeF ₄), out of plane
770 (17) 767 sh 764 (10) 743 (17)	778 (3) 754 (1) 744 (16) 741 sh	785 (10) 747 (15) 729 (2) 721 (8)	ν_{asym} (TeF ₄), sym to plane of sym ν_{asym} (TeF ₄).	293 (2)	297 (2) 294 (2) 282 (3) 271 (5)	294 (3)	$\delta(\text{TeF}_4)$, in-plane scissors
731 sh 726 (15) 723 (14)	729 (22) 725 (7)		asym to plane of sym	260 (5) 248 (37)	262 (2) 256 (1)	246 (6) 239 (65)	$\delta_{asym}(TeF_4),$ sym to plane of sym
717 (17) 712 sh 710 (19)	718 (8) 714 (31) 707 (22)	717 (16) 710 sh 707 (27)	ν(TeF')	236 (7)	238 (33) 232 (26) 226 (15)	233 (4) 230 (43) 220 (5)	$\delta_{asym}(TeF_4),$ asym to plane of sym
706 sh 699 (6)	704 sh 701 (3)	700 (13)	()	214 (3)	213 (2) 206 sh 202 (9)	206 (4) 200 (1)	$\delta(OTeF_4)$, out of plane
687 (2)	668 (100)	691 sh		194 (1)	190 (1)		$\delta(OTeF_4)$, in plane
673 (2) 664 (31) 659 sh	662 (9) 658 (31)	689 (12) 661 (56)	$\nu_{\mathbf{sym}}(TeF_4)$, breathing	138 (12) 131 (63)	148 (16) 135 (37) 129 (82)	143 (45) 129 (62)	δ(XeOTe)
650 (11) 633 (15) 624 (3) 620 sh 604 (3)	650 (6) 632 (4) 621 (1)	644 (23) 638 (5) 635 (6)	v_{sym} (TeF ₄), out of phase	107 (4) 90 (4) 82 (2) 77 (1) 67 sh	115 sh 110 (9) 104 (9) 93 (6) 91 sh	112 (6) 92 (12) 79 (22) 73 (11) 62 (7)	lattice modes
500 (1) 465 (7) 456 (99) 450 sh 440 (12) 435 (5)	485 (28) 481 (16) 452 (3) 433 (58) 419 sh 415 (34)	439 (29) 432 (100) 417 (33)	v _{sym} (XeOTe) v _{asym} (XeOTe)	60 (10) 56 (6) 47 (17) 41 (6)	84 (8) 86 sh 77 sh 72 (9) 68 sh 54 (11)	55 (17) 51 (18) 46 (22)	
370 (2) 354 (3) 349 (6) 344 (16)	376 (4) 357 (7) 352 (3)		δ(O -Xe= O)		45 (18) 42 sh		

^a Raman spectra were recorded on FEP sample tubes at -196 °C with use of the 5145-A exciting line. FEP lines have been deleted. Values in parentheses denote intensities; sh denotes a shoulder. ^b Modes arising from the XeO₂ group were assigned by comparison with the frequencies for XeO₂F, which were redetermined for the solid at -196 °C in the present work: ν_6 (b₁), 879 (33); ν_1 (a₁), 852 (100); $v_{6}(b_{2}), 578(0.2); v_{2}(a_{1}), 535(29); v_{3}(a_{1}), 344(3); v_{7}(b_{1}), 318(4); v_{9}(b_{2}), 314(6); v_{5}(a_{2}), 222(1); v_{4}(a_{1}), 202(2).$

Raman Spectroscopy. $Xe(OTeF_5)_4$, $OXe(OTeF_5)_4$, and $O_2Xe(OTeF_5)_2$. Although the major features of the Raman spectra of $Xe(OTeF_5)_4$ and $OXe(OTeF_5)_4$ have been reported previously,⁶⁻⁸ no detailed report of their assignments has been published. Moreover, the spectra reported in the present study were recorded at low temperature and are considerably better resolved than the previously reported spectra. The Raman spectra of the title compounds are complicated by strong vibrational coupling among OTeF5 ligands and among stretches and bends associated with the XeOTe linkage.²⁰ Thus, it is not possible to provide unambiguous assignments of all the observed vibrationl bands. Rather, we have made tentative assignments based upon the previously assigned spectra of $Xe(OTeF_5)_2$,²⁰ $XeOF_4$,²¹ XeO_2F_2 ²² (see Table III, footnote b), and TeF_5Cl.²³ These assignments and their approximate descriptions are given in Table III.

The assignments of OTeF₅ group frequencies are based mainly on the assignments for the related C_{4v} molecule Te-F₅Cl.²³ Although the vibrational spectrum of the OTeF₅⁻ anion has been assigned,²⁴ the net negative charge leads to a substantial drop in the Te-F stretching force constants and a large increase in the Te-O stretching force constant. It is assumed that values of the OTeF₅ stretching and bending force constants in the title compounds will not be significantly different from those of TeF_5Cl . The assignments in Table III were consequently derived by correlating the relevant vibrational modes of TeF₅Cl under C_{4v} symmetry to those of the OTeF₅ group in the title compounds under reduced symmetry. This approach has been used successfully to assign the vibrational spectra of the XeOTeF₅⁺ cation and Xe(OTeF₅)₂.²⁰

The strongly coupled symmetric and asymmetric Te-O-Xe stretching frequencies of these derivatives occur in the range 415-500 cm⁻¹ in accord with previous assignments for XeO- TeF_5^+ (481 cm⁻¹),²⁰ FXeOTeF₅ (457 cm⁻¹),⁴ and Xe(OTeF₅)₂ $(434 \text{ cm}^{-1})^{20}$ (average values are given for vibrationally coupled

⁽²⁰⁾ Keller, N.; Schrobilgen, G. J. Inorg. Chem. 1981, 20, 2118.
(21) Classen, H. H.; Chernick, C. L.; Malm, J. G. In "Noble Gas Compounds"; Hyman, H. H., Ed.; University of Chicago Press: Chicago, IL, 1963; p 287. Classen, H. H.; Gasner, E. L.; Kim, H.; Houston, J. L. J. Chem. Phys.

^{1968, 49, 253.}

⁽²³⁾ Brooks, W. V. F.; Eshaque, M.; Law, C.; Passmore, J. Can. J. Chem. 1976, 54, 817.

and/or factor group split lines). Very strong bands are observed at 129 and 148 cm⁻¹, which are assigned to strongly coupled Xe-O-Te bending modes. The corresponding modes occur at 132 cm⁻¹ in Xe(OTeF₅)₂ and at 174 cm⁻¹ in the $XeOTeF_{5}^{+}$ cation.

Both $OXe(OTeF_5)_4$ and $O_2Xe(OTeF_5)_2$ exhibit strong Xe=O stretching modes above 800 cm⁻¹. The Xe=O stretch of $OXe(OTeF_5)_4$ shows an additional weak splitting that may be attributed to a factor group effect. Like XeO_2F_2 (Table III, footnote b), $O_2Xe(OTeF_5)_2$ exhibits two intense Xe=O stretching frequencies that are assigned to the symmetric and asymmetric XeO₂ stretching frequencies. Without polarization measurements, it is not clear which one of the two Xe=O stretching bands belong to the totally symmetric species, but like XeO_2F_2 , we have assigned the lower frequency band to the totally symmetric mode on the basis of the observed Raman intensities. Additional weak lines are observed in the region of each line, which are again assigned to factor group splittings. As we have already noted in the discussion pertaining to the NMR spectroscopy of these derivatives, the less electronegative $OTeF_5$ groups place more electron density onto the central xenon. In the vibrational spectra of $OXe(OTeF_5)_4$ and O_2 - $Xe(OTeF_5)_2$, this is manifested by an overall reduction of their Xe=O stretching frequencies relative to those of their parent fluorine derivatives: $XeOF_4$, 920 cm⁻¹; $OXe(OTeF_5)_4$, 880 cm^{-1} ; XeO₂F₂, 852, 879 cm⁻¹; O₂Xe(OTeF₅)₂ 820, 875 cm⁻¹.

Experimental Section

Apparatus and Materials. Manipulations were carried out under anhydrous conditions on vacuum lines constructed of 316 stainless steel, nickel, Teflon, and FEP. All preparative work was carried out in 9-mm o.d. lengths of FEP tubing heat sealed at one end and connected through 45° SAE flares to Kel-F valves.

Xenon tetrafluoride and xenon hexafluoride were prepared from xenon (Linde, CP grade) and fluorine (Air Products) according to the methods described by Malm and Chernick.^{25,26} The ligand-transfer reagent $B(OTeF_5)_3$ was prepared as previously described by Sladky et al.²⁷ Sulfuryl chloride fluoride (Columbia Organic Chemicals) and trichlorofluoromethane (Du Pont) were purified as described previously. Enriched water, used in the preparation of $^{17}O/^{18}O$ -enriched XeOF₄ and XeO₂F₂ contained 26.5% ¹⁷O and 37.0% ¹⁸O (ORIS, Saclay, France). Pure liquid XeOF₄ was made by the direct combination of water vapor with XeF₆ previously condensed in an evacuated 2-L nickel vessel (6-mm walls). In a typical preparation, 0.4573 g (24.25 mmol) of H_2O was condensed onto the vessel walls above XeF_6 (6.227 g, 25.38 mmol). The vessel was warmed to room temperature and allowed to stand for 4 h before being agitated (caution! danger of explosion). The vessel was allowed to remain at room temperature for another 8 h before the products, HF and $XeOF_4$, and excess XeF_6 were vacuum distilled into a Kel-F tube containing NaF (previously dried under vacuum at 300 °C for 24 h). Pure XeOF₄ was distilled from this storage vessel as required.

The preparation of gram quantities of XeO_2F_2 , its derivatives, and their subsequent manipulation is hazardous. Xenon dioxide difluoride is best prepared in anhydrous HF solution by the interaction of XeF_6 with a stoichiometric amount of water. In a typical preparation, 1.3178 g (5.37 mmol) of XeF₆ was sublimed into a preweighed FEP reaction vessel outfitted with a Kel-F valve. Anhydrous HF (\sim 7 mL) was distilled onto XeF_6 , and the latter dissolved. The vessel was then introduced into a drybox and the solution frozen at -196 °C. The vessel was briefly opened, and with use of a calibrated microsyringe, 194 μ L (10.8 mmol) of water was frozen on the reaction vessel walls 3-4 cm above the frozen HF solution. The vessel was closed and removed from the drybox while still cold. After reevacuation of the vessel at -196 °C, the frozen solution was rapidly warmed to room temperature by immersing this region of the vessel in water while allowing the water frozen on the walls to thaw slowly. When the HF

solution was near room temperature, the tube was rapidly inverted by using a remote manipulator. Rapid mixing was continued until all white solid material, initially precipitated in the early stages of mixing, had dissolved. The tube and contents were immediately cooled to -80 °C, and the HF was removed under vacuum. Pumping was continued for an additional 3 h to ensure complete removal of HF. The vessel was briefly warmed to room temperature, pumped on to remove traces of XeOF₄ and HF still remaining, and reweighed for preparations requiring an exact stoichiometry.

 $O_2Xe(OTeF_5)_2$. A vessel containing freshly prepared XeO₂F₂ was cooled to -196 °C and SO₂ClF solvent distilled onto it. The sample was briefly warmed to -80 °C in order to completely wet the XeO₂F₂. The frozen mixture was again taken into a drybox and maintained at -196 °C while a stoichiometric amount of B(OTeF₅)₃ was transferred into the vessel. The entire sample was resealed and evacuated at -196 °C. In a typical reaction, 1.0294 g (5.114 mmol) of XeO_2F_2 was combined with 2.4767 g (3.408 mmol) of B(OTeF₅)₃ in ~ 6 g of solvent. The vessel was warmed to -80 °C and pressurized to 1 atm with dry N_2 with the vessel open to the free volume of the vacuum manifold. Slow warming and agitation resulted in reaction with smooth evolution of BF3. The reaction mixture was maintained below 0 °C to avoid the formation of $Xe(OTeF_5)_2$ from the decomposition

$$O_2 Xe(OTeF_5)_2 \rightarrow Xe(OTeF_5)_2 + O_2$$
 (6)

Pure $O_2Xe(OTeF_5)_2$ was isolated by pumping the SO₂ClF sample at -80 °C overnight. The solid sample was never warmed above this temperature.

 $Xe(OTeF_5)_4$ and $OXe(OTeF_5)_4$. The preparative procedures for both derivatives were identical with that used to prepare $O_2Xe(OTeF_5)_2$ except that previously dried CFCl₃ was used as the solvent medium. Typical preparations involved the following quantities of reactants and solvents: XeF₄, 0.4598 g (2.218 mmol); B(OTeF₅)₃, 2.2462 g (2.246 mmol); CFCl₃, ~5 g; XeOF₄, 0.6727 g (3.013 mmol); B(O-TeF₅)₃, 2.9186 g (4.017 mmol); CFCl₃, ~4 g.

Nuclear Magnetic Resonance Spectroscopy. All spectra were recorded unlocked (field drift <0.1 Hz/h) on a Bruker WM-250 superconducting spectrometer using a 10-mm probe (broad banded over the frequency range 23-103 MHz) tuned to 69.561 and 33.909 MHz to observe ¹²⁹Xe and ¹⁷O, respectively. Fluorine-19 spectra were obtained on the same probe using the ¹H decoupler coils retuned to 235.361 MHz as the observe coils. Free induction decays were typically accumulated in a 32K memory. Spectral width settings of 50 and 100 kHz were employed, yielding data point resolutions of 3.0 and 6.1 Hz and acquisition times of 0.328 and 0.164 s, respectively. No relaxation delays were applied. The number of free induction decays accumulated varied with concentration and sensitivity of the nucleus under consideration, with 2000 scans being typical for ¹⁹F, 10000-30000 scans being typical for ¹²⁹Xe, and 5000 scans being typical for ¹⁷O (26.5% enrichment). Pulse widths corresponding to bulk magnetization tip angles, θ , of approximately 90° were 0.5 (¹⁹F), 22 (¹²⁹Xe), and 80 µs (¹⁷O). Line broadening parameters used in exponential multiplication of the free induction decays were 4-5 Hz.

The respective nuclei were referenced to neat samples of CFCl₃ (¹⁹F), XeOF₄ (¹²⁹Xe), and H₂O (¹⁷O) at 24 °C. In the chemical shift convention used, a positive sign signifies a chemical shift to high frequency of the reference compound and vice versa.

Variable-temperature studies were carried out with use of a Bruker temperature controller. Temperatures were measured with a copper-constantan thermocouple inserted directly into the sample region of the probe and were accurate to ± 1 °C.

Laser Raman Spectroscopy. A Spectra-Physics Model 164 argon ion laser giving up to 900 mW at 5145 Å was used to excite the Raman spectra. The spectrometer was a Spex Industries Model 14018 double monochromator equipped with 1800 groves/mm holographic gratings. An RCA C31034 phototube detector in conjunction with a pulse-count system consisting of pulse amplifier, analyzer, and rate meter (Hamner NA-11, NC-11, and N-708A, respectively) and a Texas Instruments Model FSOZWBA stripchart recorder were used to record the spectra. The spectrometer was periodically calibrated by recording the discharge lines from an argon lamp over the spectral range of interest; the Raman shifts quoted are estimated to be accurate to ± 1 cm⁻¹. Slit widths depended on the scattering efficiency of the sample, laser power, etc., with 100 μ m being typical.

Cylindrical sample tubes were mounted vertically. The angle between the incident laser beam and the sample tube was 45°, and

⁽²⁵⁾ Malm, J. G.; Chernick, C. L. Inorg. Synth. 1966, 8, 254.
(26) Chernick, C. L.; Malm, J. G. Inorg. Synth. 1966, 8, 258.
(27) Sladky, F.; Kropshofer, H.; Leitzke, O. J. Chem. Soc., Chem. Commun. 1973, 134.

Raman-scattered radiation was observed at 45° to the laser beam or 90° to the sample tube. Low-temperature spectra were recorded by mounting the sample vertically in an unsilvered Pyrex glass Dewar filled with liquid nitrogen.

Acknowledgment. We thank the Natural Sciences and Engineering Research Council of Canada for financial support of this work.

Registry No. Xe(OTeF₅)₄, 66255-64-9; FXe(OTeF₅)₃, 91002-50-5; trans-F₂Xe(OTeF₅)₂, 91002-51-6; cis-F₂Xe(OTeF₅)₂, 91108-44-0; F₃Xe(OTe₅), 91002-52-7; XeF₄, 14989-42-5; OXe(OTeF₅)₄, 68854-32-0; OXeF(OTeF₅)₃, 68854-36-4; trans-OXeF₂(OTeF₅)₂, 68889-95-2; cis-OXeF2(OTeF)2, 68854-35-3; OXeF3(OTeF5), 91108-43-9; OXeF4, 13774-85-1; O₂Xe(OTeF₅)₂, 91002-53-8; O₂XeF(OTeF₅), 91002-54-9; O₂XeF₂, 13875-06-4; ¹⁸O, 14797-71-8; ¹⁷O, 13968-48-4; ¹²⁹Xe, 13965-99-6.

> Contribution from the Richard B. Wetherill Laboratory, Purdue University, West Lafayette, Indiana 47907

Addition Compounds of Alkali-Metal Hydrides. 24. A General Method for Preparation of Potassium Trialkoxyborohydrides. A New Class of Reducing Agents

HERBERT C. BROWN,* JIN SOON CHA,¹ and BEHROOZ NAZER¹

Received January 23, 1984

The generality of the synthesis of potassium trijsopropoxyborohydride, stabilized toward disproportionation by storing over excess potassium hydride, was examined with seven additional organoborates of varying steric requirements. The reaction of trimethoxy- and triethoxyborane with potassium hydride proceeded readily at room temperature, but the products could not be stabilized by the presence of excess potassium hydride. Triphenoxyborane reacted readily, even at -10 °C, and stabilization was achieved. Tri-sec-butoxy- and tricyclopentoxyborane required refluxing in THF for 12-24 h, and the products were stabilized over potassium hydride. Finally, the reactions of tris(2-methylcyclohexoxy)- and tri-tert-butoxyborane were even slower, requiring a number of days for completion. Both products were stabilized toward disproportionation over potassium hydride. Indeed, potassium tri-tert-butoxyborohydride was quite stable toward disproportionation without excess potassium hydride. The stereoselectivities of these reagents in the reduction of representative cyclic ketones were examined. The stereoselectivities varied in an erratic manner with the steric requirements of the alkoxy group and did not approach the stereoselectivities previously achieved with lithium trissec-butylborohydride and lithium trisiamylborohydride.

Recently we reported an improved method for preparation of potassium triisopropoxyborohydride (K(IPBH)) from triisopropoxyborane and potassium hydride² (eq 1). Moreover,

$$(i-\Pr O)_{3}B + KH \rightarrow K(i-\Pr O)_{3}BH$$
 (1)

K(IPBH), thus prepared, is stable toward disproportionation at room temperature when maintained over a small excess of potassium hydride.

The reagent, K(IPBH), is a very mild reducing agent and, unlike sodium and potassium borohydrides, shows a high degree of stereoselectivity toward cyclic ketones.³

K(IPBH) readily transfers hydride to dialkylhaloboranes or trialkylboranes to produce the corresponding dialkylboranes and trialkylborohydrides, respectively^{4,5} (eq 2 and 3).

$$R_2BX + K(i-PrO)_3BH \rightarrow R_2BH + KX + (i-PrO)_3B \quad (2)$$

$$R_{3}B + K(i-PrO)_{3}BH \rightarrow KR_{3}BH + (i-PrO)_{3}B \quad (3)$$

It also provides a valuable procedure for the synthesis of cis-vinylboronic esters⁶ (eq 4).

- (1) Postdoctoral research associate on Grant ARO-DAAG-29-82-K-0047
- supported by the U.S. Army Research Office.
 (2) Brown, H. C.; Nazer, B.; Sikorski, J. A. Organometallics 1983, 2, 634.
 (3) Brown, H. C.; Cha, J. S.; Nazer, B.; Kim, S. C.; Krishnamurthy, S.;
- Brown, C. A. J. Org. Chem. 1984, 49, 885.
 (a) Kulkarni, S. U.; Lee, H. D.; Brown, H. C. J. Org. Chem. 1980, 45, 4542.
 (b) Brown, H. C.; Sikorski, J. A.; Nazer, B.; Kulkarni, S. U.; Lee, (4)
- H. D., manuscript in preparation.
- Brown, C. A.; Hubbard, J. H. J. Am. Chem. Soc. 1979, 101, 3964.
- (6) Research in progress with T. Imai.

Table I. ¹¹B NMR Spectra and Physical Properties of Trialkoxyboranes

trial k oxy bora n e	¹¹ B NMR chem shift, ^a δ	bp, °C (<i>P</i> , torr)	<i>n</i> ²⁰ D
trimethoxyborane	18.3	68.5-70 (748)	1.3555
triethoxyborane	17.8	43 (40)	1.3732
triisopropoxyborane	17.5	60 (42)	1.3741
tri-sec-butoxyborane	17.5	99-99.5 (29)	1.3941
tri-tert-butoxyborane	15.6	85 (42)	1.3871
tricyclopentoxyborane	17.8	132-133 (3.7)	1.4571
tris(2-methylcyclohexoxy)- borane ^b	18.6	162-164 (0.4)	
triphenoxyborane ^c	16.8 ^d	232-234 (2.8)	

^a All chemical shifts are reported relative to $BF_3 \cdot OEt_2$ with chemical shifts downfield from BF₃ OEt₂ assigned as positive. ^b Very viscous liquid. ^c Solid, mp 99-101 °C. ^d In THF.

These unique characteristics of K(IPBH) stimulated us to investigate other members of the potassium trialkoxyborohydride family. Accordingly, we undertook a study to develop a general procedure for the synthesis of potassium trialkoxyborohydrides in tetrahydrofuran (THF) with representative trialkoxyboranes of different steric requirements and to examine their stereoselectivities in the reduction of cyclic ketones.

Results and Discussion

Trialkoxyboranes were prepared from the corresponding alcohols and borane-methyl sulfide complex (BMS) according to the published procedure with a slight modification⁷ (eq 5).

$$3ROH + BH_3 \cdot SMe_2 \xrightarrow{\Delta} (RO)_3B + 3H_2^{\dagger} + SMe_2$$
 (5)

(7) Brown, C. A.; Krishnamurthy, S. J. Org. Chem. 1978, 43, 2731.