Supplementary Material Available: Spectroscopic and physical characterization of 4, 5, and 7 (4 pages). Ordering information is given on any current masthead page.

Visiting Professor, University of Utah, 1983. Permanent address: (16) Université Paul Sabatier, 31062 Toulouse Cedex, France.

Department of Chemistry University of Utah Salt Lake City, Utah 84112 Hiroshi Nakazawa William E. Buhro Guy Bertrand¹⁶ J. A. Gladysz*

Received June 8, 1984

Photochemical Isomerization of $[Cp^*MoS(\mu-S)]_2$ (Cp^{*} = η^{5} -(CH₃)₅C₅) to Cp^{*}₂Mo₂(μ -S₂)(μ -S)₂ and $[Cp*MoS]_2(\mu-S_2)$

Sir:

As part of our continuing study^{1,2} of the ligand-to-metal charge-transfer (LMCT) photochemistry of organometallic sulfide complexes, we investigated the reactivity of the $[Cp^*MoS(\mu-S)]_2$ complex. This molecule is one of three known isomers with the formula Cp*₂Mo₂S₄, the others being formulated as $Cp_2Mo_2(\mu-S_2)(\mu-S)_2$ and $[Cp^*MoS]_2(\mu-S_2)$. The $[Cp^*MoS(\mu-S)]_2$ and $Cp^*_2Mo_2(\mu-S_2)(\mu-S)_2$ isomers have been structurally characterized, and their structures are shown as I and II, respectively.³ The $[Cp^*MoS]_2(\mu - S_2)$ complex has

not been structurally characterized, but the structure III has

been proposed on the basis of chemical reactivity.³ In this communication we report the stepwise photochemical interconversions of the three isomers.

Irradiation ($\lambda > 450$ nm) of [Cp*MoS(μ -S)]₂ in chloroform solution (~ 2 mM) causes a color change from orange to green.⁴ An NMR spectrum of the green solution shows two new resonances in the Cp^{*} region at δ 2.21 and 2.03, corresponding to isomers II and III, respectively. In addition, monitoring the reaction by electronic absorption spectroscopy shows that the intense $[Cp^*MoS(\mu-S)_2]$ band at 446 nm (Figure 1a) decreases in intensity while new bands appear at 620 and 790 nm (Figure 1b-d, Figure 2). Similar electronic spectral changes are observed in benzene, acetonitrile, and tetrahydrofuran solutions. Infrared spectroscopy is less in-

Figure 1. Electronic absorption spectral changes upon photolysis (λ > 450 nm) of $[Cp^*MoS(\mu-S)]_2$ (I) in chloroform solution (a) before irradiation (0.26 mM), (b) after 2-min irradiation, (c) after 7-min irradiation, and (d) after 15-min irradiation (absorbance $\times 2$ at $\lambda <$ 470 nm).

formative, but it shows a decrease in the $\nu(Mo=S)$ band of the starting material at 486 cm^{-1.3} A comparison of the spectral and color changes described above to the data in Table I shows that all of the changes are consistent with the photochemical conversion of isomer I to isomers II and III. The quantum yield of disappearance for isomer I ($\lambda = 436$ nm) in the reaction above is $1 \times 10^{-3.7}$

In order to determine which isomer results from the irradiation of isomer I, we synthesized isomers II and III^{3b} and irradiated each. The electronic spectrum of each isomer is shown in Figure 2. When II is irradiated ($\lambda > 450$ nm) in chloroform-d, the NMR spectral changes are consistent with the initial formation of III (Φ (disappearance, 436 nm) = 3 $\times 10^{-3}$).⁸ Continued irradiation eventually yields small amounts of I. Isomer III initially yields I on irradiation (λ > 450 nm) (Φ (appearance, 436 nm) = 2 × 10⁻³).⁹ Prolonged irradiation of the reaction solution eventually yields some of

- (5) Perrin, D. D.; Armarego, W. L.; Perrin, D. R. "Purification of Laboratory Chemicals"; Pergamon Press: Oxford, England, 1966. Wegner, E. E.; Adamson, A. W. J. Am. Chem. Soc. 1966, 88, 394
- The photochemistry of I is wavelength dependent. When a 5.4×10^{-4} (7)M solution of I in CHCl₃ is irradiated in the two lowest energy ab-M solution of 1 in Criticia is initiated in the two rows: Single ac-sorption bands ($\lambda > 700$ nm, ~ 2 h), there was a very slight decrease in the absorbance at 750 nm, but the bands due to isomer II did not appear. However, irradiation of I in CHCl₃ at wavelengths ranging from $\lambda > 610$ to $\lambda > 330$ nm leads to the efficient formation of II (~5 min; $\lambda > 330$ nm; ~ 15 min, $\lambda > 610$ nm).
- The thermal conversion of isomer II to III requires stirring at 45 °C for 3 days.^{3b} A control reaction showed that there is no thermal conversion of II to III under the conditions used in our photochemical experiment.4
- The extinction coefficient of isomer III at 446 nm is approximately two-thirds that of isomer I (see Table I). Thus as III is irradiated and I grows in, the absorbance increases at 446 nm.

Bruce, A. E.; Bruce, M. R. M.; Tyler, D. R. J. Am. Chem. Soc., in press. (a) Bruce, A. E.; Bruce, M. R. M.; Sclafani, A.; Tyler, D. R., submitted (2) for publication in Organometallics. (b) Bruce, M. R. M.; Kenter, A.;

Tyler, D. R. J. Am. Chem. Soc. 1984, 106, 639-644. (a) Rakowski Dubois, M.; Dubois, D. L.; VanDerveer, M. C.; Halti-wanger, R. C. *Inorg. Chem.* **1981**, 20, 3064-3071. (b) Brunner, H.; Meier, W.; Wachter, J.; Guggolz, E.; Zahn, T.; Ziegler, M. L. Or-

ganometallics 1982, 1, 1107-1113.

⁽⁴⁾ All preparative and photochemical reactions were done under an argon or nitrogen atmosphere. Solvents were dried with the appropriate drying agent and distilled under nitrogen.⁵ Literature methods were used to synthesize isomers I, ^{3a} II, and III.^{3b} Electronic absorption spectra were recorded on a Cary 17 spectrophotometer in 1-cm quartz cuvettes of \sim 3-mL cell volume. ¹H NMR spectra were obtained on a Varian XL 200 or a Bruker WM 250 instrument. Infrared spectra were obtained on a Perkin-Elmer 983 spectrophotometer equipped with a Perkin-Elmer data station. A 200-W Oriel high-pressure mercury arc lamp was used for the photochemical experiments. Corning glass cutoff filters (3-72, $\lambda > 450$ nm; 3-70, $\lambda > 490$ nm; 2-61, $\lambda > 610$ nm; 3-68 + 7-39, $\lambda >$ 700 nm) and a 436-nm interference filter from Edmund Scientific were used to isolate the wavelengths of irradiation. For quantum yield measurements, solutions were irradiated at room temperature in 1.0-cm quartz cells and were stirred during irradiation. Each isomer was irradiated at 436 nm, and the spectral change was monitored at 446 nm for I and III and at 800 nm for II. The lamp intensity was measured by Reinecke's salt actinometry.⁶ Photochemical experiments monitored by proton NMR or infrared were done as follows. (a) ¹H NMR: 1-2mM solutions of each isomer in CDCl₃ were irradiated (directly in the NMR tube) in an ice-water bath for short time intervals (1-5 min). The spectrum was recorded after each irradiation. Typical irradiation times were 12 min for I, 25 min for II, and 14 min for III. (b) Infrared: A 2 mM solution of I in CHCl₃ was irradiated for 12 min in a 6 mm path length polyethylene cell.

complex (color)	¹ H NMR, $^{\delta}CH_{3}^{\alpha}$	$\lambda_{\max}, \operatorname{nm} (\epsilon, \operatorname{M}^{-1} \operatorname{cm}^{-1})^{b}$	IR, cm^{-1}	
			Mo=S	Mo-S-Mo
[Cp*MoS(µ-S)] ₂ (1, orange-brown)	2.07	900 (50) sh 740 (170) sh	488 s	447 m ^c
		740(170) sh 600(610) sh		
		485 (2740) sh		
		446 (5980)	486 s	445 m ^d
		335 (10 250)		
$[Cp*_{2}Mo_{2}(\mu-S_{2})(\mu-S)_{2}]$ (II, blue)	2.21	803 (1500)		420 w^c
		630 (2000)		
		550 (760) w sh		
		440 (670) sh		
		330 (3030) sh		
$[Cp*MoS]_{2}(\mu-S_{2})$ (III, green-brown)	2.03	800 (40) w sh	485 s	442 w ^c
		635 (420)		
		550 (590)		
		49 0 (1730) w sh		
		446 (3580)		
		390 (3170) w sh		
		365 (4790) w sh		
		335 (8210) sh		

^a CDCl₃ solution, internal reference (CH₃)₄Si. ^b CHCl₃ solution. ^c KBr pellet, this work and ref 3. ^d CHCl₃ solution, polyethylene cell.

Figure 2. Electronic absorption spectra of (a) $Cp^*_2Mo_2(\mu-S_2)(\mu-S)_2$ (II), 0.22 mM in chloroform, and (b) $[Cp^*MoS]_2(\mu-S_2)$ (III), 0.24 mM in chloroform.

isomer II. The sequence of reactions is thus best described by eq 1, although it should be noted that the occurrence of

$$\begin{array}{c} I \xrightarrow{h_{\nu}} II \xrightarrow{h_{\nu}} III \\ \downarrow & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$$

the photochemical back-reactions (e.g. $II \rightarrow I$) cannot be excluded by our observations. The important point, however, is that irradiation of any isomer eventually yields the other two isomers.

The photochemical isomerization of I to II is logical when viewed as resulting from an LMCT excited state involving the terminal sulfur: the Mo atoms are reduced from oxidation state V to IV and the S^{2-} ligands are oxidized and form a disulfide bridge. Theoretical and experimental studies are under way in our laboratory to elucidate the exact mechanisms of the isomerization reactions.¹⁰

Acknowledgment is made to the Procter and Gamble Co. for the support of this work through a University Exploratory Research Grant.

(10) We found that the analogous complex [(η²-CH₃C₃H₄)MoS(μ-S)]₂ undergoes a similar photochemical isomerization on the basis of electronic absorption, infrared, and ¹H NMR spectral changes.

Department of Chemistry	Alice E. Bruce
Columbia University	David R. Tyler*
New York, New York 10027	•

Received August 16, 1984