Carbon-Rich Metallacarboranes. 14.¹ Synthesis and Structure of Mixed-Ligand Cobalt and Iron Complexes Derived from $(C_2H_5)_4C_4B_8H_8^{2-}$ and $(C_2H_5)_2C_2B_4H_5^{-}$

ZHU-TING WANG,² EKK SINN, and RUSSELL N. GRIMES*

Received June 26, 1984

The preparation of metallacarboranes having $Et_4C_4B_8H_8^{2-}$ and $Et_2C_2B_4H_4^{2-}$ ligands bound to a common metal center was explored via reactions of $Et_4C_4B_8H_8^{2-}$ ion with CoCl₂ or FeCl₂ in tetrahydrofuran followed by addition of $Et_2C_2B_4H_5^{--}$. In the cobalt reaction the main products were purple $(Et_2C_2B_4H_4)Co(Et_4C_4B_8H_7OC_4H_8)$ (6a) and red-brown $(Et_2C_2B_4H_3)Co(EtC_4B_8H_6OC_4H_8)$ (7) with small amounts of $(Et_4C_4B_8H_7)_2CoH$ (4b), $(Et_4C_4B_8H_7)_2Co_2$ (2b), $(Et_4C_4B_8H_8)_2CoH(OC_4H_8)$ (3b), and $Et_6C_6B_{12}H_{12}$ (8). The corresponding iron reaction gave primarily red $(Et_2C_2B_3H_4)Fe^{III}H(Et_4C_4B_8H_7)$ (11), with minor products $(Et_2C_2B_4H_4)$ - $Fe^{III}(Et_4C_4B_8H_8OC_4H_8)$ (9a,b) and $(Et_2C_2B_4H_3)Fe^{II}H_2(Et_4C_4B_8H_7)$ (10). From spectroscopic evidence, 4b, 7, 10, and 11 are proposed to have direct interligand bonds. An X-ray crystallographic study of 6a confirmed the presence of closo-CoC₂B₄ and nido-CoC₄B₈ cages joined at a common cobalt vertex, with a THF substituent on the larger cage. The 13-vertex CoC₄B₈ system has the shape of a 14-vertex closo polyhedron (bicapped hexagonal antiprism) with an equatorial vertex missing and, except for the metal location, is analogous to the structure reported earlier for $[(C_6H_5)_2PCH_2]_2NiMe_4C_4B_8H_8$. Both cage systems in the molecule conform to the skeletal electron-counting rules for polyhedral cages. Crystal data: $[(C_2H_5)_2C_2B_4H_4]Co[(C_2H_5)_4C_4-B_8H_2OC_4H_8]$, $M_r = 518$, space group $P2_1/c$, a = 11.418 (5) Å, b = 14.639 (3) Å, c = 17.487 (8) Å, $\beta = 100.74$ (3)°, V = 2872Å³, Z = 4, R = 0.057 for 2013 reflections having $F_0^2 > 3\sigma(F_0^2)$.

Introduction

As we report in the accompanying paper,¹ a number of structurally varied bis(carboranyl)metal complexes, in some of which the two ligands appear to be directly linked, can be obtained from $CoCl_2$ and the $Et_4C_4B_8H_8^{2-}$ ion in tetrahydrofuran (THF) solution. A logical extension of this study would be the construction of mixed-ligand complexes in which the Et₄C₄B₈H₈²⁻ ligand and the readily accessible Et₂C₂B₄H₄²⁻ unit are coordinated to a common metal center. Such species conceivably could be induced to undergo oxidative ligand fusion³ to give supra-icosahedral metallacarboranes such as $Et_6C_6B_{12}H_{12}$, a hypothetical 18-vertex system. Indeed, when one considers the large steric bulk of the $Et_4C_4B_8H_8^{2-}$ ion, fusion of a C_4B_8 with a C_2B_4 ligand appears more likely than does fusion of two C_4B_8 cages. This is borne out, on the one hand by the extreme facility with which $(C_2B_4)_2M$ complexes fuse to give C_4B_8 products³ and on the other by the high oxidative stability of $(C_4B_8)_2$ Co complexes¹ and their failure, thus far, to exhibit fusion. We do not suggest that steric considerations are the only ones involved, but it is reasonable to assume that they play a large role in fusion chemistry.

The synthesis of mixed-ligand complexes is frequently complicated by differences in reactivity of the ligands toward the metal ion.⁴ Optimization of yields in such circumstances may require extensive fine tuning of reaction conditions. In the present study this was not done, as the objective was to obtain quantities of representative mixed-ligand species sufficient for structural and chemical characterization.

Results and Discussion

Reaction of Et₄C₄B₈H₈²⁻, CoCl₂, and Et₂C₂B₄H₅⁻. Since the $R_2C_2B_4H_5$ ions (R = H, alkyl) rapidly complex first-row transition-metal ions to form $(R_2C_2B_4H_4)_2MH_x$ products,^{3a,b} while the $R_4C_4B_8H_8^{2-}$ ions react somewhat more slowly, the disodium salt of the latter ion ($\mathbf{R} = \text{ethyl}$) was first treated for 2 h with CoCl₂ and subsequently allowed to react with $Na^+Et_2C_2B_4H_5^-$ in THF. This procedure gave a black product mixture, which on workup in air and chromatography on silica afforded a multitude of compounds (over 20 bands), most of which were in very low yields and were not isolated. The major isolable products are shown in Scheme I. The products (labeled according to the scheme of

the preceding paper,¹ with the addition of new structural classes 6 and 7) include several species of the desired mixed-ligand type and others that contain only C_4B_8 ligands. Compound **6a** was initially characterized from its mass spectrum, whose high-mass cutoff at m/e 521 (¹³C peak) and parent group profile match the formula given, its ¹¹B NMR spectrum (Table I), which indicates an absence of molecular symmetry planes or axes, and its infrared spectrum (Table II). The presence of a THF substituent was deduced from the intense grouping at m/e 448 in the mass spectrum (corresponding to the loss of an OC₄H₈ fragment) as well as the singlet resonance in the proton-coupled ¹¹B NMR spectrum. In order to establish the precise geometry of this prototype (C₂B₄)M(C₄B₈) complex, an X-ray structural analysis was undertaken and is reported below. The structure of 6a contains separate, nonlinked C_2B_4 and C_4B_8 ligands, represented schematically as class 6 in Figure 1.

Scheme I

$$(Et_2C_2B_4H_4)Co(Et_4C_4B_8H_7OC_4H_8) (6a) (purple, 8\%) (Et_2C_2B_4H_3)Co(Et_4C_4B_8H_6OC_4H_8) (7) (red-brown, 13\%) (Et_4C_4B_8H_7)_2Co_2 (2b) (golden, 4\%) (Et_4C_4B_8H_8)CoH(Et_4C_4B_8H_8OC_4H_8) (3b) (green, 1\%) (Et_4C_4B_8H_7)_2CoH (4b) (orange, 5\%) Et_6C_6B_{12}H_{12}(?) (8) (colorless, 1\%)$$

Complex 7 exhibits a mass spectrum with a cutoff at m/e 519, two units lower, than **6a**, although the intensity pattern in the parent region is similar; thus 7 appears to have two fewer hydrogen atoms than 6a and on this basis is formulated as given above and assigned a linked-cage structure of the class 7 type (Figure 1). Intense groupings with local cutoffs at m/e 423 and 332 correspond to net loss of BH + $B(OC_4H_8)$ and of $Co(Et_2C_2B_4H)$, respectively. The ¹¹B NMR spectrum of 7 is basically uniformative, with the resonances compressed into a small range of chemical shifts (Table I).

The orange product 4b, with a small spectral cutoff at m/e 579 and a pattern of intensities corresponding to that calculated for a C₂₄B₁₆Co species, is proposed to have a B-B-linked (C₄B₈)₂Co structure of the class 4 type as defined in Figure 1 of the preceding paper.¹ This assignment is supported by the presence of a singlet in the proton-coupled ¹¹B NMR spectrum, attributed to equivalent boron atoms involved in the direct interligand link and hence lacking attached hydrogens. Compound 2b was identified spectroscopically as the same linked dicobalt species obtained in the $Et_4C_4B_8H_8^{2-}$ -CoCl₂ reaction,¹ and the trace product 8 is tentatively assigned the formula $Et_6C_6B_{12}H_{12}$ from its mass spectrum. This

⁽¹⁾ Part 13: Wang, Z-T.; Sinn, E.; Grimes, R. N. Inorg. Chem. preceding paper in this issue.
(2) Visiting scholar from the Institute of Chemistry, Academica Sinica,

Beijing, China, 1981-1983.

^{(3) (}a) Grimes, R. N. Adv. Inorg. Chem. Radiochem. 1983, 26, 55 and references therein. (b) Maxwell, W. M.; Miller, V. R.; Grimes, R. N. Inorg. Chem. 1976, 15, 1343. (c) Venable, T. L.; Maynard, R. B.; Grimes, R. N. J. Am. Chem. Soc. 1984, 106, 6187.

⁽a) Hosmane, N. S.; Grimes, R. N. Inorg. Chem. 1980, 19, 3482. (b) Borodinsky, L.; Grimes, R. N. Inorg. Chem. 1982, 21, 1921. (4)

Table I. 115.8-MHz 11B FT NMR Data

compd	solvent ^a	δ (J, Hz) ^{b, c}	rel area
$(Et_4C_4B_8H_8)_2(OC_4H_8)CoH (3b)$	D	35.6 (s), 8.9 (126), 1.9 (168), -6.7 (149), -8.5, d -15.6 (152), -25.5 (159), -43.7 (149)	equal areas
$(Et_4C_4B_8H_7)_2CoH$ (4b)	D	33.6 (s), 19.8 (107), 8.8 (144), 1.7 (165), $[-6.9 (150), -8.8^{d}],^{e}$ $-15.7 (157), [-23.6,^{d}-25.4 (148)],^{e}$ -43.9 (147)	1:1:1:1:7:1:3:1
$(Et_2C_2B_4H_4)Co(Et_4C_4B_8H_7OC_4H_8) (6a)$	D	$\begin{array}{c} 11.8, {}^{d,e} \stackrel{g}{9}.2 \ (s), {}^{e} \ 6.1, {}^{d,e} \ 1.4 \ (131), \\ -3.8 \ (126), -12.0, {}^{d} \ -17.8 \ (130), \\ -23.1 \ (163), -24.5 \ (137), -32.3 \ (128) \end{array}$	1:2:2:1:1:1:1:1:1:1
$(\operatorname{Et}_{2}\operatorname{C}_{2}\operatorname{B}_{4}^{i}\operatorname{H}_{3})\operatorname{Co}(\operatorname{Et}_{4}\operatorname{C}_{4}\operatorname{B}_{8}^{i}\operatorname{H}_{6}^{i}\operatorname{OC}_{4}\operatorname{H}_{8}^{i})(7)$ $(\operatorname{Et}_{2}\operatorname{C}_{2}\operatorname{B}_{4}^{i}\operatorname{H}_{4})\operatorname{Fe}(\operatorname{Et}_{4}\operatorname{C}_{4}\operatorname{B}_{8}^{i}\operatorname{H}_{8}^{i}\operatorname{OC}_{4}^{i}\operatorname{H}_{8}^{i})(9b)^{f}$	A C	[-2.9, d -7.6 (114)], e -22.5 (133) 63.0, $\sim -3, -71.7, -194.3$	9:3 ~3:4:2:0.2
$(\operatorname{Et}_{2}\operatorname{C}_{2}\operatorname{B}_{4}^{J}\operatorname{H}_{3})\operatorname{FeH}_{2}(\operatorname{Et}_{4}\operatorname{C}_{4}\operatorname{B}_{5}^{J}\operatorname{H}_{7})(10)^{g}$	С	33.1 (138), 23.1 (154), 19.1 (119), 16.8 (177), $[11.4 (s), 10.7^d]$, ^e -0.4 (110), -5.1 (156), -9.1 (139), -11.5 (165), -14.4 (139), -21.5 (157), -26.0 (147)	2:2:2:1:4:4:2:1:2:2:1:1
$(Et_2C_2B_3H_4)FeH(Et_4C_4B_8H_7)(11)^f$	А	41.0, -14.3, -47.8	~2:2:1

^a Legend: A = acetone; C = CH₂Cl₂; D = CDCl₃. ^b Legend: s = singlet (no B-H coupling). ^c Chemical shifts relative to BF₃·O(C₂H₅)₂. ^d J value not measurable. ^e Superimposed or overlapped peaks. ^f Paramagnetic compound; broad peaks, B-H coupling not observed. ^g Mixture of isomers.

Table II. Infrared Absorptions (cm⁻¹)^{a,b}

- **3b** 2980 vs, 2940 s, 2890 m, 2525 s, 1730 m, 1650 w, br, 1460 m, 1375 s, 1348 w, 1330 w, 1270 w, 1255 w, 1160 m, 1130 m, 1080 m, 1040 w, 990 w, 950 s, 900 w, 860 w
- 4b 2980 s, 2940 s, 2880 s, 2570 vs, 2360 w, 1650 w, br, 1475 w, 1455 s, 1380 s, 1310 m, 1235 w, 1170 w, 990 m, 940 m, 920 m, 680 s
- 6a 3655 m, 2980 vs, 2945 vs, 2890 s, 2580 vs, 1735 m, 1465 s, 1385 s, 1310 s, br, 1280 w, 1190 w, 1140 w, br, 940 w, 925 m
- 7 2980 s, 2950 s, 2890 m, 2580 m, 1720 s, 1550 m, br, 1450 m, br, 1365 s, 1270 m, 1220 s, 1100 w, 1010 m, br
- 9a 3020 vs, 2990 vs, 2950 vs, 2900 m, 2800 w, 2580 vs, 2160 w, 1730 vs, 1710 vs, 1430 vs, br, 1360 vs, br,
- 1225 vs, 1095 s, 910 s 11 2995 s, 2955 s, 2900 m, 2560 s, 2380 w, 1725 m, 1520 w, 1470 m, 1390 m, 1340 w, br 1245 m, 1200 m, 940 w, br
- ^a Key: vs = very strong; s = strong; m = medium; w = weak; br = broad. ^b CCl₄ solution vs. CCl₄.

Figure 1. Schematic representations of structure types of (C_2B_4) Co- (C_4B_8) complexes (For classes 1-5, see Figure 1 of preceding paper¹). The small ligand is $Et_2C_2B_4H_4^{2-}$; the large ligand is $Et_4C_4B_8H_8^{2-}$.

composition suggests an origin via oxidative fusion of $\text{Et}_2\text{C}_2\text{B}_4\text{H}_4^{2-}$ and $\text{Et}_4\text{C}_4\text{B}_8\text{H}_8^{2-}$ ligands, but this species is at present not well characterized.

The green complex 3b is of interest in that its high-resolution $(115.8-MHz)^{11}B$ NMR spectrum is identical within experimental error to that of 4a, a demonstrably different complex characterized as $(Et_4C_4B_8H_7)_2CoH$, which was isolated from the $Et_4C_4B_8H_8^{2-}-CoCl_2$ reaction described elsewhere.¹ These compounds exhibit quite distinct infrared and mass spectra and are clearly not isomers. The mass spectrum of 3b cuts off at 74 mass units higher than 4a and indicates the presence of a THF ligand as well as two more hydrogens than 4a. A probable solution to this rather intriguing structural problem is given by the two-dimensional (2D) ¹¹B spectrum⁵ of 3b, which matches that of 4a

Figure 2. Proposed structures of (a) 4a and (b) 3b, based on two-dimensional ¹¹B NMR data (see text). Skeletal and THF carbon atoms are shown as solid circles.

(see Figure 4 of preceding paper) except that the B(13)-B(12)and B(13)-B(10) cross peaks, which are present in 4a, are absent in 3b. Since the one-dimensional spectra are, as noted, essentially identical, it is clear that the cage structures of the two complexes are the same; consequently, the "missing" cross peaks in 3b suggest that the B(13)-B(12) and B(13)-B(10) edges contain B-H-Bbridges. Earlier work has shown that hydrogen-bridged boron nuclei usually do not exhibit scalar coupling and hence fail to give cross peaks.⁵ The fact that these particular boron atoms all lie on the rims of the open faces in the proposed structure of 4a (Figure 2a) lends further plausibility to this idea. Since both 3b and 4a contain two equivalent carborane ligands, it would appear that two B-H-B bridges per ligand, or a total of four, are required; yet 3b has only two "extra" hydrogens. Nevertheless, tautomerism of a proton between the B(13)-B(12) and B(13)-B(10) edges, and of a second proton between the equivalent B(13')-B(12') and B(13')-B(10') edges (Figure 2b), could effectively eliminate the corresponding cross peaks and account for the 2D spectrum of 3b. Inasmuch as the B(8) resonance is not shifted in 3b relative to its position in 4a, it may be that the THF substituent in 3b is fluxional in solution, spending only part of the time attached to B(8) (and B(8')) and resulting in a time-averaged 1D spectrum.

Attempted Oxidative Fusion of 6a. The mixed-ligand complex 6a, like most complexes derived from $R_4C_4B_8H_8^{2-}$ ligands,^{1,3a} is stable toward air oxidation. In an effort to induce ligand fusion, 6a was exposed to other oxidants, including FeCl₃, which resulted

⁽⁵⁾ Venable, T. L.; Hutton, W. C.; Grimes, R. N. J. Am. Chem. Soc. 1984, 106, 29.

Table III. Experimental Parameters and Crystal Data

Figure 3. ORTEP view of the molecular structure of $(Et_2C_2B_4H_4)Co (Et_4C_4B_8H_7OC_4H_8)$ (6a), with hydrogen atoms omitted for clarity.

in decomposition to noncharacterizable products. Treatment of 6a with iodine produced a low yield of a derivative identified from its mass spectrum as $(Et_2C_2B_4H_4)Co(Et_4C_4B_8H_8)(OC_4H_8)I$ (6b), which indicates net addition of an HI unit to 6a. No evidence of a fused carborane product was detected.

Reaction of $Et_4C_4B_8H_8^{2-}$, $FeCl_2$, and $Et_2C_2B_4H_5^{--}$. In a two-step sequence similar to that employed for the corresponding CoCl₂ reaction described above, the ${\rm Et}_4 C_4 B_8 H_8^{2-}$ dianion and ${\rm FeCl}_2$ were allowed to react for 2 h at 25 °C in THF, forming a dark red solution, after which the $Et_2C_2B_4H_5^-$ ion was introduced and the reaction continued overnight. This generated several characterizable mixed-ligand species, including isomers of $(Et_2C_2B_4H_4)Fe(Et_4C_4B_8H_8OC_4H_8)$ (9a,b), a probable linked-cage complex, $(Et_2C_2B_4H_3)FeH_2(Et_4C_4B_8H_7)$ (10), and the major product, $(Et_2C_2B_3H_4)FeH(Et_4C_4B_8H_7)$ (11). Complexes 9a,b and 11 are evidently paramagnetic, from their NMR spectra, and are presumed to contain Fe(III); 10 is diamagnetic and is formulated as an iron(II) species. The ¹¹B spectrum of 10 (Table I) cannot arise from a single species and hence is interpreted as a mixture of isomers, which were not separated. These (C_2B_4) - $Fe(C_4B_8)$ complexes are less air stable than their cobalt counterparts but have shown no tendency to undergo oxidative fusion.

Crystallographic Study of (Et₂C₂B₄H₄)Co(Et₄C₄B₈H₇OC₄H₈) (6a). The unit cell and data collection parameters, atomic coordinates, bond distances, and selected angles are given in Tables III-VI, and an ORTEP view of the molecule is presented in Figure 3. As anticipated, the complex consists of closo 7-vertex CoC_2B_4 and nido 13-vertex CoC_4B_8 cages with the metal occupying a common vertex. The smaller polyhedron exhibits normal bond distances and angles for 7-vertex MC_2B_4 closo systems,⁶ with a typically short carbon-carbon (C(2')-C(3')) length of 1.451 (8) Å, suggesting localized multiple bonding in that region. One unusual finding is that the cobalt is slightly closer to the three boron atoms of the C_2B_3 bonding face than it is to the two carbons, the difference between (Co-B) and (Co-C) amounting to 0.033 Å or about 5 standard deviations. This is contrary to observations in previously determined CoC_2B_4 and FeC_2B_4 closo systems,⁶

Figure 4. Cage geometry in 6a, depicting the 13-vertex CoC_4B_8 unit as a fragment of a bicapped hexagonal antiprism. The missing vertex (2) is shown by dashed lines. Framework carbon atoms are represented as solid circles; other vertices are boron.

where the metal-carbon distances are typically smaller by about 0.1 Å. There is, however, a precedent in the gallium analogue $CH_3GaC_2B_4H_6$,⁷ and it is clear that the nature of the exo polyhedral ligand(s) on the metal atom can influence the bonding within the cage. Thus, in the species $(\eta^8-C_8H_8)MEt_2C_2B_4H_4$ (M = V, Ti), the metal is very nearly equidistant from the members of the C_2B_3 bonding face.⁶ In the present case the interaction of cobalt with the formal $Et_4C_4B_8H_8^{2-}$ ligand may serve to weaken selectively the Co-C bonding (in the CoC_2B_4 cage), perhaps reflecting slightly greater ionic character in the Co-C vs. the Co-B interactions.

The CoC_4B_8 cluster can be described as a 13-vertex nido framework that is formally derived from a closo 14-vertex cage (bicapped hexagonal antiprism) by removal of an equatorial vertex as illustrated in Figure 4. The nido geometry (although not the specific arrangement of hetero atoms) is predicted by the polyhedral skeletal electron counting theory (PSEPT)⁸ if cobalt in this case is assumed to contribute one electron to skeletal bonding.⁹ With the usual contributions of three and two electrons from $C-C_2H_5$ and BH units, respectively, plus three from the B-OC₄H₈ unit, there are 30 framework bonding electrons; for a 13-vertex system this predicts nido geometry, as observed. However, in principle two kinds of nido fragments can be derived from a bicapped hexagonal antiprism, via removal of a six-coordinate (apical) vertex or a five-coordinate (equatorial) vertex. In 6a the observed structure, which is of the first type, places three of the four cage carbon atoms in low-coordinate positions on the fivemembered open face. The alternate geometry could be formed by moving B(1) up into the open face, thereby creating a new, six-membered open face that, however, would contain only two carbons and hence is less attractive.^{3a} Another argument against this latter arrangement is that it appears to have no precedent in metallacarborane chemistry; planar open faces larger than five members are avoided in favor of alternative geometries.

The nickelacarborane $[(C_6H_5)_2PCh_2]_2NiMe_4C_4B_8H_8$, reported earlier, ¹⁰ has a 13-vertex *nido*- MC_4B_8 cage structure analogous to that of **6a** and is the only previously confirmed example of this geometry. There is, however, one difference: in the nickel complex the metal is on the five-membered open face (in vertex 1), while in 6a the metal occupies an off-facial vertex (14). (In the coding system introduced earlier^{3a} the nickel species is a 5-4445(5) system while 6a is 6-4445(5)). Since all four cage carbons are located in corresponding vertices (3, 7, 9, and 13) in the two structures,

(10) Grimes, R. N.; Sinn, E.; Pipal, J. R. Inorg. Chem. 1980, 19, 2087.

⁽⁷⁾ Grimes, R. N.; Rademaker, W. J.; Denniston, M. L.; Bryan, R. F.;

<sup>Green, P. T. J. Am. Chem. Soc. 1972, 94, 1865.
(a) Wade, K. Adv. Inorg. Chem. Radiochem. 1976, 18, 1. (b) Rudolph, R. W. Acc. Chem. Res. 1976, 9, 446. (c) Mingos, D. M. P. Nature (London), Phys. Sci. 1972, 236, 99. (d) O'Neill, M. E.; Wade, K. In "Metal Interactions with Boron Clusters"; Grimes, R. N.; Ed.; Plenum</sup> (8)Press: New York, 1982; Chapter 1, and references therein.

Assigning six of cobalt's nine valence electrons to nonbonding orbitals⁸ leaves three available for the bonding MOs in the two cluster systems; of these, two are required to satisfy the quota of 16 (2n + 2) for the CoC_2B_4 cage.

Table IV. Positional Parameters for $[(C_2H_5)_2C_2B_4H_4]Co[(C_2H_5)_4C_4B_8H_7OC_4H_8]$ (6a)

atom	x	У	Z	atom	x	У	2
Со	0.1822 (1)	0.20144 (7)	0.33553 (6)	H(T42)	0.342 (6)	-0.058 (4)	0.477 (4)
0	0.2661 (5)	0.0622 (3)	0.4783 (3)	H(1)	0.595 (5)	0.203 (4)	0.371 (3)
C(T1)	0.2398 (9)	0.0885 (6)	0.5552 (5)	H(M31)	0.442 (5)	0.250 (4)	0.164 (3)
C(T2)	0.2322 (8)	0.0017 (6)	0.5957 (5)	H(M32)	0.540 (6)	0.207 (5)	0.206 (4)
C(T3)	0.1989 (8)	-0.0680(5)	0.5327 (5)	H(E31)	0.611 (6)	0.353 (5)	0.178 (4)
C(T4)	0.2622 (8)	-0.0381 (5)	0.4691 (4)	H(E32)	0.604 (7)	0.344 (6)	0.266 (5)
C(3)	0.4269 (7)	0.2251 (5)	0.2691 (4)	H(E33)	0.502 (7)	0.388 (6)	0.213 (5)
C(M3)	0.4952 (8)	0.2482 (6)	0.2040 (5)	H(4)	0.470 (6)	0.066 (4)	0.258 (4)
C(E3)	0.5564 (10)	0.3369 (7)	0.2169 (5)	H(5)	0.485 (6)	0.028 (5)	0.413(4)
C(7)	0.4369 (7)	0.2838 (5)	0.4167 (4)	H(6)	0.506 (6)	0.171(4)	0.513(4)
C(M7)	0.5117 (9)	0.3560 (6)	0.4693 (6)	H(M71)	0.476 (7)	0.364 (5)	0.513 (5)
C(E7)	0.6322 (13)	0.3448 (9)	0.4887 (9)	H(M72)	0.504 (8)	0.417 (6)	0.444(5)
C(9)	0.3015 (7)	0.1665 (5)	0.2529 (4)	H(E71)	0.670 (6)	0.389 (5)	0.523 (4)
C(M9)	0.2513 (8)	0.1449 (5)	0.1671 (4)	H(E72)	0.676 (8)	0.352 (6)	0.445(5)
C(E9)	0.3006 (10)	0.0650 (6)	0.1302 (5)	H(E73)	0.655 (7)	0.290 (5)	0.505(4)
C(13)	0.3159 (7)	0.3147 (5)	0.3647 (4)	H(8)	0.277(5)	0.324(4)	0.234(4)
C(M13)	0.2763 (8)	0.4129 (5)	0.3743 (5)	H(M91)	0.256 (6)	0.200(5)	0.140 (4)
C(E13)	0.3333 (11)	0.4847 (6)	0.3304 (6)	H(M92)	0.177(5)	0.133(4)	0.101(3)
C(2')	0.0219 (8)	0.2817 (6)	0.3328 (5)	H(E91)	0.384(5)	0.069 (4)	0.130(3)
C(M2')	-0.0205(10)	0.3800 (7)	0.3348 (7)	H(E92)	0.256(7)	0.057(5)	0.085(4)
C(E2')	-0.0223(12)	0.4155 (9)	0.4142 (8)	H(E93)	0.286 (6)	0.010(5)	0.159(4)
C(3 ⁺)	0.0204 (8)	0.2368 (6)	0.2586 (5)	H(10)	0.254(5)	0.010(4)	0.304(3)
C(M3')	-0.0139 (9)	0.2884 (8)	0.1820 (6)	H(12)	0.276(0)	0.272(4)	0.489 (4)
C(E3')	-0.1126 (16)	0.2469 (11)	0.1281(8)	H(M131)	0.197(5)	0.410(4)	0.303(3)
B(1)	0.5010 (8)	0.2076(7)	0.3033(3)	H(MI32)	0.294(0)	0.432(3)	0.429(4) 0.326(5)
B(4)	0.4328 (9)	0.1154 (6)	0.2924(5)	H(E131)	0.304(7)	0.349(3)	0.320(3)
B(2)	0.4337(9)	0.0938 (0)	0.3887(5)	H(E132) H(E122)	0.326(8)	0.403(0)	0.264(5) 0.354(5)
B(0)	0.4377(9)	0.1822(0)	0.4547(5)	$H(M2^{\prime}1)$	0.424(0)	0.431(7)	0.334(3)
B(8)	0.3114(8)	0.2799(0)	0.2777(5)	$\Pi(M21)$	0.023(7)	0.420(5)	0.303(4)
B(10)	0.2951(9)	0.0873(0) 0.1269(6)	0.3220(3)	$\Pi(M22)$ $\Pi(E2'1)$	-0.055(0)	0.380(3)	0.303(4)
B(11) B(12)	0.3020(9)	0.1209(0)	0.4100(5)	$H(E_{2}^{-1})$	-0.052(7)	0.412(6)	0.413(4)
B(12) D(4')	0.3070(9)	0.2471(0) 0.1328(8)	0.4401(3)	H(E2 2) H(E2'3)	-0.082(8)	0.712(0)	0.443(5)
D(4) D(5)	0.0300(10)	0.1326 (6)	0.2075(0)	H(M3'1)	0.040 (6)	0.371(0)	(1155 (4))
$\mathbf{D}(\mathbf{S})$	0.0460(10)	0.1098(8)	0.3010(7)	H(M3'2)	-0.032(8)	0.255(5)	0.193(4) 0.198(5)
$\mathbf{D}(0)$	0.0430(9)	0.212 + (8) 0.1815 (8)	0.7007(0)	$H(E_{3'1})$	-0.052(0) -0.153(7)	0.334(0) 0.297(5)	0.170(3)
D(7) H(T11)	-0.0039(3)	0.1313(0)	0.5212(0)	H(E3'2)	-0.184(8)	0.229 (6)	0.075(5)
$\Pi(111)$ $\Pi(T12)$	0.103(7)	0.133(3)	0.579 (4)	H(E3'3)	-0.090 (8)	0.186(6)	0.108(5)
H(T21)	0.237 (0)	0.129(3)	0.577(4)	H(4')	0.026 (6)	0.064(5)	0.221(4)
H(121) H(T22)	0.100 (0)	-0.014(5)	0.027(4)	H(5')	0.020 (0)	0.039(5)	0.386(4)
$H(T_{2})$	0.303(0)	-0.128(5)	0.524(4)	H(6')	0.043 (6)	0.239(5)	0.456(4)
H(T32)	0.217(0) 0.118(6)	-0.066(4)	0.519(4)	H(7')	-0.154(6)	0.177(5)	0.310 (4)
$H(T_{41})$	0.224 (6)	-0.053(5)	0.420(4)	••(,)	0.101(0)	0.1, , (0)	0.010 (.)
11(171)	0.22 + (0)	0.000 (0)	0.720 (7)				

it is probable that these species were formed from topologically equivalent $R_4C_4B_8H_8^{2-}$ ions, but with metal attack in the two cases taking place at different locations on the carborane framework.^{3a,11} In these structures the skeletal carbon atoms are present as bonded pairs, reflecting the geometry of the neutral $R_4C_4B_8H_8$ carborane precursors.^{3a,c} (Although reduction to the dianions involves structural changes,¹¹ available evidence indicates that the framework carbon-carbon bonds remain intact.)

A related chromium species, $(\eta^5-C_5H_5)CrEt_4C_4B_8H_8$, also has a 13-vertex nido structure,¹² but in this case the cage geometry is irregular and is not a fragment of a bicapped hexagonal antiprism, in contrast to **6a** and the nickel compound just cited. However, in common with **6a** the chromacarborane cage does have a CCBCB open face and the metal occupies a six-coordinate vertex (6-3445(5) geometry), further underlining some of the structural trends noted above and elsewhere.

The cobalt atom in **6a** is located 1.659 Å from the bonding face of the C_2B_4 ligand (C(2')-C(3')-B(3')-B(4')-B(5')) and 1.369 Å from the plane calculated for the B(8)-C(9)-B(10)-B(11)-B(12)-C(13) array in the C_4B_8 ligand, to which cobalt is coordinated. These values are typical for first-row transition-metal interactions with five- and six-membered carborane faces, respectively. The two metal-bound faces are nearly planar, with maximum deviations of 0.027 and 0.044 Å from the calculated planes. These faces are slightly tilted (dihedral angle 10.9°) such that B(5') and B(6') are closest to the C_4B_8 ligand, but there are no interligand distances that could be considered bonding, the shortest being B(5')-B(11) (2.899 (8) Å) (Table V).

The open face on the CoC_4B_8 cage is well-defined, with all transfacial distances clearly nonbonding. In conformity with trends noted previously,^{3a} the carbon–carbon distance on the open face (1.573 (7) Å) is shorter than the nonfacial C(3)–C(9) bond length (1.648 (7) Å), which involves higher coordinate carbon atoms.

Conclusions

This work together with earlier efforts⁴ demonstrates that mixed-ligand metal-carborane and metal-borane complexes are accessible by straightforward synthetic methods, but the control of reaction conditions is critical. The products obtained in the present study proved unexpectedly resistant to ligand fusion via oxidation. Nevertheless, the observation of species with intercage links (suggestive of an early stage of fusion), and of a possible C_6B_{12} system in small amounts, encourages the thought that efficient metal-promoted fusion of C_2B_4 and C_4B_8 units can be achieved. Relevant to this point, work in this laboratory^{4a} has shown that an apparent supra-icosahedral carborane, $Me_4C_4B_{11}H_{11}$, can be obtained on oxidation of $(Me_2C_2B_4H_4)$ - $FeH_2(Me_2C_2B_7H_7)$. Quite possibly the use of carborane ligands in which the substituents on carbon are CH_3 (or even H), rather than C_2H_5 , tends to lower the steric barriers to fusion. That metal-promoted ligand fusion is a general phenomenon in boron cluster chemistry is clear from a number of studies,¹³ including

⁽¹¹⁾ Grimes, R. N.; Pipal, J. R.; Sinn, E. J. Am. Chem. Soc. 1979, 101, 4172.

⁽¹²⁾ Maynard, R. B.; Wang, Z.-T.; Sinn, E.; Grimes, R. N. Inorg. Chem. 1983, 22, 873. This complex was not the first nido 13-vertex metallacarborane as stated;¹² we overlooked [(C₆H₅)₂PCH₂]₂NiEt₄C₄B₈H₈.¹⁰

⁽¹³⁾ Maynard, R. B.; Grimes, R. N. J. Am. Chem. Soc. 1982, 104, 5983 and references therein.

Bond Distances for Non-Hydrogen Atoms

$(\mathbf{n} - \mathbf{n}/\mathbf{n})$			10
CO-B(8)	2.253 (6)	B(5)-B(11)	1.744 (9)
Co-C(9)	2.222(5)	B(6)-C(7)	1.628(7)
C_{0} -B(10)	2146(6)	B(6) - B(11)	1 750 (9)
$C_{0} = D(10)$	2.140(0)	D(0) - D(11)	1.750 (5)
CO-B(11)	2.112(/)	B(0) - B(12)	1.747 (9)
Co-B(12)	2.202 (6)	C(7)-C(M7)	1.549 (7)
$C_0 - C(1.3)$	2.247(5)	C(7)-B(12)	1.698 (8)
$C_{\alpha} = C(2')$	2167 (6)	C(7) - C(13)	1 573 (7)
	2.10/(0)	C(7)- $C(13)$	1.575(7)
Co+C(3')	2.136 (6)	C(M7)-C(E7)	1,363 (11)
Co-B(4')	2.114(7)	B(8)-C(9)	1.715 (8)
$C_{2} = \mathbb{P}(5')$	2144(7)	P(R) = C(1,3)	1 506 (7)
CO-B(3)	2.144 (7)	B(8)=C(15)	1.390 (7)
Co-B(6')	2.099 (6)	С(9)-С(М9)	1.536 (7)
0-C(T1)	1.481 (6)	C(9)-B(10)	1.691 (7)
Ω -C(T4)	1 478 (6)	C(M9) - C(F9)	1 496 (8)
O D(11)	1.470(0)	P(10) P(11)	1765 (0)
O-B(II)	1.522(7)	B(10) - B(11)	1.703 (8)
C(T1)-C(T2)	1.465 (8)	B(11)-B(12)	1.797 (9)
$C(T_2)-C(T_3)$	1,499 (8)	B(12)-C(13)	1.667 (7)
$C(T_2) C(T_4)$	1.100(7)	C(12) C(M12)	1,505 (7)
C(13)=C(14)	1.499(/)	C(13)-C(M13)	1.525(7)
B(1)-C(3)	1.726 (8)	C(M13)-C(E13)	1.518 (8)
B(1)-B(4)	1.900 (9)	C(2')-C(M2')	1.521 (8)
P(1) - P(5)	1 0 20 (0)	C(2') - C(2')	1 451 (8)
D(1) = D(3)	1.920 (9)		1.751 (0)
B(1) - B(6)	1.908 (8)	$C(2^{-})-B(6^{-})$	1.547 (9)
B(1)-C(7)	1.705 (8)	C(2')-B(7')	1.754 (9)
C(3) = C(M3)	1 533 (7)	C(M2') - C(E2')	1 487 (10)
C(3)-C(M3)	1.555(7)		1.407 (10)
C(3) - B(4)	1.655 (8)	$C(3^{\circ})-C(M3^{\circ})$	1.524 (8)
C(3)-B(8)	1.575 (8)	C(3')-B(4')	1.537 (9)
C(3) - C(9)	1.648(7)	$\hat{C}(3') = \hat{R}(7')$	1 781 (0)
	1.040(7)		1.701 ())
C(M3)-C(E3)	1.472 (8)	$C(M3^{\circ})-C(E3^{\circ})$	1.459 (11)
B(4) - B(5)	1.711 (8)	B(4')-B(5')	1.660 (11)
BIALCIO	1 701 (0)	B(4') = B(7')	1 757 (10)
D(4) - C(3)	1.701 (9)	$\mathbf{D}(\mathbf{f}') = \mathbf{D}(f')$	1.757(10)
B(4) - B(10)	1./9/(9)	B(2)-B(6)	1.033 (11)
B(5)-B(6)	1.729 (8)	B(5')-B(7')	1.707 (10)
B(5) - B(10)	1.780 (9)	B(6') - B(7')	1.748 (11)
D(0) $D(10)$	10,00 ())	2(0) 2(1)	100 (11)
	Long I	Distances	
$\mathbf{D}(1)$ $\mathbf{D}(0)$	2 6 1 6 (9)	$\mathbf{D}(11) \mathbf{D}(5')$	2 000 (0)
B(1)-B(0)	2.010 (8)	B(11) - B(5)	2.099 (0)
B(1)-C(13)	2.635 (9)	B(11)-B(6')	3.151 (8)
C(3)-C(7)	2.703 (8)	B(12)-B(6')	2.977 (9)
C(2) $C(12)$	2.702 (0)	D(P) C(2')	2 226 (9)
C(3) - C(13)	2.028 (8)	B(8)-C(3)	3.330 (8)
C(7)-B(8)	2.583 (8)	B(12)-C(2')	3,478 (8)
C(9) - B(4')	3.128(7)	C(13)-C(2')	3.334 (9)
P(10) P(4')			
	2 010 (9)	$\mathbf{P}(\mathbf{R}) \left(\mathbf{C}(\mathbf{C}') \right)$	3 611 (8)
D(10) - D(4)	3.010 (8)	B(8)-C(2')	3.611 (8)
B(10) - B(4') B(10) - B(5')	3.010 (8) 3.035 (8)	B(8)-C(2') C(13)-C(3')	3.611 (8) 3.713 (10)
B(10)-B(4') B(10)-B(5')	3.010 (8) 3.035 (8)	B(8)-C(2') C(13)-C(3')	3.611 (8) 3.713 (10)
B(10)-B(4') B(10)-B(5') Bon	3.010 (8) 3.035 (8) d Distances I	B(8)-C(2') C(13)-C(3') nvolving Hydrogen	3.611 (8) 3.713 (10)
B(10) - B(4') B(10) - B(5') Bon C(T1) - H(T11)	3.010 (8) 3.035 (8) d Distances I 0.913 (6)	B(8)-C(2') C(13)-C(3') nvolving Hydrogen C(M9)-H(M92)	3.611 (8) 3.713 (10) 0.857 (6)
B(10)-B(4') B(10)-B(5') Bon C(T1)-H(T11) C(T1)-H(T12)	3.010 (8) 3.035 (8) d Distances I 0.913 (6)	B(8)-C(2') C(13)-C(3') nvolving Hydrogen C(M9)-H(M92) C(F9)-H(F91)	3.611 (8) 3.713 (10) 0.857 (6) 0.949 (8)
B(10)-B(4) B(10)-B(5') Bon C(T1)-H(T11) C(T1)-H(T12)	3.010 (8) 3.035 (8) d Distances I 0.913 (6) 0.921 (6)	B(8)-C(2') C(13)-C(3') nvolving Hydrogen C(M9)-H(M92) C(E9)-H(E91)	3.611 (8) 3.713 (10) 0.857 (6) 0.949 (8)
B(10)-B(4) B(10)-B(5') Bon C(T1)-H(T11) C(T1)-H(T12) C(T2)-H(T21)	3.010 (8) 3.035 (8) d Distances I 0.913 (6) 0.921 (6) 0.885 (6)	B(8)-C(2') C(13)-C(3') nvolving Hydrogen C(M9)-H(M92) C(E9)-H(E91) C(E9)-H(E92)	3.611 (8) 3.713 (10) 0.857 (6) 0.949 (8) 0.901 (6)
B(10)-B(4) B(10)-B(5') Bon C(T1)-H(T11) C(T1)-H(T12) C(T2)-H(T21) C(T2)-H(T22)	3.010 (8) 3.035 (8) d Distances I 0.913 (6) 0.921 (6) 0.885 (6) 0.924 (7)	B(8)-C(2') C(13)-C(3') nvolving Hydrogen C(M9)-H(M92) C(E9)-H(E91) C(E9)-H(E92) C(E9)-H(E93)	3.611 (8) 3.713 (10) 0.857 (6) 0.949 (8) 0.901 (6) 0.983 (7)
B(10)-B(4) B(10)-B(5') Bon C(T1)-H(T11) C(T1)-H(T12) C(T2)-H(T21) C(T2)-H(T22) C(T3)-H(T22)	3.010 (8) 3.035 (8) d Distances I 0.913 (6) 0.921 (6) 0.924 (7) 0.935 (5)	B(8)-C(2') C(13)-C(3') nvolving Hydrogen C(M9)-H(M92) C(E9)-H(E91) C(E9)-H(E92) C(E9)-H(E93) B(10)-H(10)	3.611 (8) 3.713 (10) 0.857 (6) 0.949 (8) 0.901 (6) 0.983 (7) 1 169 (6)
B(10)-B(4) B(10)-B(5') Bon C(T1)-H(T11) C(T1)-H(T12) C(T2)-H(T21) C(T2)-H(T22) C(T3)-H(T31)	3.010 (8) 3.035 (8) d Distances I 0.913 (6) 0.921 (6) 0.885 (6) 0.924 (7) 0.935 (5) 0.913 (6)	B(8)-C(2') C(13)-C(3') nvolving Hydrogen C(M9)-H(M92) C(E9)-H(E91) C(E9)-H(E92) C(E9)-H(E93) B(10)-H(10) P(12)-H(12)	3.611 (8) 3.713 (10) 0.857 (6) 0.949 (8) 0.901 (6) 0.983 (7) 1.169 (6)
B(10)-B(4) B(10)-B(5') Bon C(T1)-H(T11) C(T1)-H(T12) C(T2)-H(T21) C(T2)-H(T22) C(T3)-H(T31) C(T3)-H(T32)	3.010 (8) 3.035 (8) d Distances I 0.913 (6) 0.921 (6) 0.885 (6) 0.924 (7) 0.935 (5) 0.913 (6)	B(8)-C(2') C(13)-C(3') nvolving Hydrogen C(M9)-H(M92) C(E9)-H(E91) C(E9)-H(E92) C(E9)-H(E93) B(10)-H(10) B(12)-H(12)	3.611 (8) 3.713 (10) 0.857 (6) 0.949 (8) 0.901 (6) 0.983 (7) 1.169 (6) 1.055 (6)
B(10)-B(4) B(10)-B(5') Bon C(T1)-H(T11) C(T1)-H(T12) C(T2)-H(T21) C(T2)-H(T22) C(T3)-H(T31) C(T3)-H(T32) C(T4)-H(T41)	3.010 (8) 3.035 (8) d Distances I 0.913 (6) 0.921 (6) 0.924 (7) 0.935 (5) 0.913 (6) 0.909 (5)	B(8)-C(2') C(13)-C(3') nvolving Hydrogen C(M9)-H(M92) C(E9)-H(E91) C(E9)-H(E92) C(E9)-H(E93) B(10)-H(10) B(12)-H(12) C(M13)-H(M131)	3.611 (8) 3.713 (10) 0.857 (6) 0.949 (8) 0.901 (6) 0.983 (7) 1.169 (6) 1.055 (6) 0.898 (6)
B(10)-B(4) B(10)-B(5') Bon C(T1)-H(T11) C(T1)-H(T12) C(T2)-H(T21) C(T2)-H(T22) C(T3)-H(T31) C(T3)-H(T32) C(T4)-H(T41) C(T4)-H(T42)	3.010 (8) 3.035 (8) d Distances I 0.913 (6) 0.921 (6) 0.924 (7) 0.935 (5) 0.913 (6) 0.909 (5) 0.939 (6)	B(8)-C(2') C(13)-C(3') nvolving Hydrogen C(M9)-H(M92) C(E9)-H(E91) C(E9)-H(E92) C(E9)-H(E93) B(10)-H(10) B(12)-H(10) B(12)-H(12) C(M13)-H(M131) C(M13)-H(M132)	3.611 (8) 3.713 (10) 0.857 (6) 0.949 (8) 0.901 (6) 0.983 (7) 1.169 (6) 1.055 (6) 0.898 (6) 0.982 (6)
$\begin{array}{c} B(10) - B(4) \\ B(10) - B(5') \\ \hline Bon \\ C(T1) - H(T11) \\ C(T1) - H(T12) \\ C(T2) - H(T21) \\ C(T2) - H(T22) \\ C(T3) - H(T31) \\ C(T3) - H(T32) \\ C(T4) - H(T41) \\ C(T4) - H(T42) \\ B(1) + H(1) \end{array}$	3.010 (8) 3.035 (8) d Distances I 0.913 (6) 0.921 (6) 0.924 (7) 0.935 (5) 0.913 (6) 0.909 (5) 0.939 (6) 1.063 (6)	B(8)-C(2') C(13)-C(3') nvolving Hydrogen C(M9)-H(M92) C(E9)-H(E91) C(E9)-H(E92) C(E9)-H(E93) B(10)-H(10) B(12)-H(12) C(M13)-H(M131) C(M13)-H(M131) C(F13)-H(F131)	3.611 (8) 3.713 (10) 0.857 (6) 0.949 (8) 0.901 (6) 0.983 (7) 1.169 (6) 1.055 (6) 0.982 (6) 0.982 (6)
B(10)-B(4') B(10)-B(5') Bon C(T1)-H(T11) C(T1)-H(T12) C(T2)-H(T21) C(T2)-H(T22) C(T3)-H(T31) C(T3)-H(T32) C(T4)-H(T41) C(T4)-H(T42) B(1)-H(1)	3.010 (8) 3.035 (8) d Distances I 0.913 (6) 0.921 (6) 0.885 (6) 0.924 (7) 0.935 (5) 0.913 (6) 0.909 (5) 0.939 (6) 1.063 (6)	B(8)-C(2') C(13)-C(3') nvolving Hydrogen C(M9)-H(M92) C(E9)-H(E91) C(E9)-H(E92) C(E9)-H(E93) B(10)-H(10) B(12)-H(12) C(M13)-H(M131) C(M13)-H(M132) C(E13)-H(E131)	3.611 (8) 3.713 (10) 0.857 (6) 0.949 (8) 0.901 (6) 0.983 (7) 1.169 (6) 1.055 (6) 0.898 (6) 0.982 (6) 1.001 (6)
B(10)-B(4) B(10)-B(5') Bon C(T1)-H(T11) C(T1)-H(T12) C(T2)-H(T21) C(T2)-H(T22) C(T3)-H(T31) C(T3)-H(T32) C(T4)-H(T41) C(T4)-H(T42) B(1)-H(1) C(M3)-H(M31)	3.010 (8) 3.035 (8) d Distances I 0.913 (6) 0.921 (6) 0.924 (7) 0.935 (5) 0.913 (6) 0.909 (5) 0.939 (6) 1.063 (6) 0.846 (6)	B(8)-C(2') C(13)-C(3') nvolving Hydrogen C(M9)-H(M92) C(E9)-H(E91) C(E9)-H(E92) C(E9)-H(E93) B(10)-H(10) B(12)-H(12) C(M13)-H(M131) C(M13)-H(M132) C(E13)-H(E131) C(E13)-H(E132)	3.611 (8) 3.713 (10) 0.857 (6) 0.949 (8) 0.901 (6) 0.983 (7) 1.169 (6) 1.055 (6) 0.898 (6) 0.982 (6) 1.001 (6) 0.856 (7)
B(10)-B(4) B(10)-B(5') Bon C(T1)-H(T11) C(T1)-H(T12) C(T2)-H(T21) C(T2)-H(T22) C(T3)-H(T31) C(T3)-H(T32) C(T4)-H(T41) C(T4)-H(T41) C(T4)-H(T42) B(1)-H(1) C(M3)-H(M31) C(M3)-H(M32)	3.010 (8) 3.035 (8) d Distances I 0.913 (6) 0.921 (6) 0.924 (7) 0.935 (5) 0.913 (6) 0.909 (5) 0.939 (6) 1.063 (6) 0.846 (6) 0.787 (6)	B(8)-C(2') C(13)-C(3') nvolving Hydrogen C(M9)-H(M92) C(E9)-H(E91) C(E9)-H(E92) C(E9)-H(E93) B(10)-H(10) B(12)-H(12) C(M13)-H(M131) C(M13)-H(M132) C(E13)-H(E131) C(E13)-H(E132) C(E13)-H(E133)	3.611 (8) 3.713 (10) 0.857 (6) 0.949 (8) 0.901 (6) 0.983 (7) 1.169 (6) 1.055 (6) 0.898 (6) 0.982 (6) 1.001 (6) 0.856 (7) 1.042 (8)
B(10)-B(4) B(10)-B(5') Bon C(T1)-H(T11) C(T1)-H(T12) C(T2)-H(T21) C(T2)-H(T22) C(T3)-H(T31) C(T3)-H(T31) C(T3)-H(T32) C(T4)-H(T41) C(T4)-H(T42) B(1)-H(1) C(M3)-H(M31) C(M3)-H(M32) C(F3)-H(F31)	3.010 (8) 3.035 (8) d Distances I 0.913 (6) 0.921 (6) 0.924 (7) 0.935 (5) 0.913 (6) 0.909 (5) 0.939 (6) 1.063 (6) 0.787 (6) 1.026 (6)	B(8)-C(2') C(13)-C(3') nvolving Hydrogen C(M9)-H(M92) C(E9)-H(E91) C(E9)-H(E92) C(E9)-H(E93) B(10)-H(10) B(12)-H(12) C(M13)-H(M131) C(M13)-H(M132) C(E13)-H(E131) C(E13)-H(E132) C(E13)-H(E132) C(M13)-H(E132)	3.611 (8) 3.713 (10) 0.857 (6) 0.949 (8) 0.901 (6) 0.983 (7) 1.169 (6) 1.055 (6) 0.898 (6) 0.982 (6) 1.001 (6) 0.856 (7) 1.042 (8) 0.971 (8)
B(10)-B(4) B(10)-B(5') Bon C(T1)-H(T11) C(T1)-H(T12) C(T2)-H(T21) C(T2)-H(T22) C(T3)-H(T32) C(T4)-H(T41) C(T4)-H(T41) C(T4)-H(T42) B(1)-H(1) C(M3)-H(M31) C(M3)-H(M32) C(E3)-H(E31) C(E3)-H(E31)	3.010 (8) 3.035 (8) d Distances I 0.913 (6) 0.921 (6) 0.924 (7) 0.935 (5) 0.913 (6) 0.909 (5) 0.939 (6) 1.063 (6) 0.846 (6) 0.787 (6) 1.026 (6)	B(8)-C(2') C(13)-C(3') nvolving Hydrogen C(M9)-H(M92) C(E9)-H(E91) C(E9)-H(E92) C(E9)-H(E93) B(10)-H(10) B(12)-H(12) C(M13)-H(M131) C(M13)-H(M132) C(E13)-H(E131) C(E13)-H(E132) C(E13)-H(E133) C(M2')-H(M2'1) C(M2')-H(M2'1)	3.611 (8) 3.713 (10) 0.857 (6) 0.949 (8) 0.901 (6) 0.983 (7) 1.169 (6) 1.055 (6) 0.898 (6) 0.982 (6) 1.001 (6) 0.856 (7) 1.042 (8) 0.971 (8) 0.961 (7)
B(10)-B(4) B(10)-B(5') Bon C(T1)-H(T11) C(T1)-H(T12) C(T2)-H(T21) C(T2)-H(T22) C(T3)-H(T31) C(T3)-H(T32) C(T4)-H(T41) C(T4)-H(T42) B(1)-H(1) C(M3)-H(M31) C(M3)-H(M32) C(E3)-H(E31) C(E3)-H(E32)	3.010 (8) 3.035 (8) d Distances I 0.913 (6) 0.921 (6) 0.924 (7) 0.935 (5) 0.913 (6) 0.939 (6) 1.063 (6) 0.846 (6) 0.846 (6) 0.87 (6) 1.026 (6) 0.927 (7)	B(8)-C(2') C(13)-C(3') nvolving Hydrogen C(M9)-H(M92) C(E9)-H(E91) C(E9)-H(E92) C(E9)-H(E93) B(10)-H(10) B(12)-H(12) C(M13)-H(M131) C(M13)-H(M132) C(E13)-H(E131) C(E13)-H(E132) C(E13)-H(E133) C(M2')-H(M2'1) C(M2')-H(M2'2)	3.611 (8) 3.713 (10) 0.857 (6) 0.949 (8) 0.901 (6) 0.983 (7) 1.169 (6) 1.055 (6) 0.898 (6) 0.982 (6) 1.001 (6) 0.856 (7) 1.042 (8) 0.971 (8) 0.961 (7)
B(10)-B(4) B(10)-B(5') Bon C(T1)-H(T11) C(T1)-H(T12) C(T2)-H(T21) C(T2)-H(T21) C(T3)-H(T31) C(T3)-H(T31) C(T3)-H(T32) C(T4)-H(T41) C(T4)-H(T42) B(1)-H(1) C(M3)-H(M31) C(M3)-H(M32) C(E3)-H(E32) C(E3)-H(E33)	3.010 (8) 3.035 (8) d Distances I 0.913 (6) 0.921 (6) 0.924 (7) 0.935 (5) 0.913 (6) 0.909 (5) 0.939 (6) 1.063 (6) 0.787 (6) 1.026 (6) 0.927 (7) 0.965 (8)	B(8)-C(2') C(13)-C(3') nvolving Hydrogen C(M9)-H(M92) C(E9)-H(E91) C(E9)-H(E92) C(E9)-H(E93) B(10)-H(10) B(12)-H(12) C(M13)-H(M131) C(M13)-H(M132) C(E13)-H(E131) C(E13)-H(E132) C(E13)-H(E133) C(E13)-H(E133) C(M2')-H(M2'1) C(M2')-H(M2'2) C(E2')-H(E2'1)	3.611 (8) 3.713 (10) 0.857 (6) 0.949 (8) 0.901 (6) 0.983 (7) 1.169 (6) 1.055 (6) 0.982 (6) 1.001 (6) 0.856 (7) 1.042 (8) 0.971 (8) 0.971 (8) 0.961 (7) 0.965 (8)
B(10)-B(4) B(10)-B(5') Bon C(T1)-H(T11) C(T1)-H(T12) C(T2)-H(T21) C(T2)-H(T22) C(T3)-H(T31) C(T3)-H(T32) C(T4)-H(T41) C(T4)-H(T42) B(1)-H(1) C(M3)-H(M31) C(M3)-H(M32) C(E3)-H(E31) C(E3)-H(E33) B(4)-H(4)	3.010 (8) 3.035 (8) d Distances I 0.913 (6) 0.921 (6) 0.924 (7) 0.935 (5) 0.913 (6) 0.909 (5) 0.939 (6) 1.063 (6) 0.846 (6) 0.787 (6) 1.026 (6) 0.927 (7) 0.965 (8) 1.078 (6)	B(8)-C(2') C(13)-C(3') nvolving Hydrogen C(M9)-H(M92) C(E9)-H(E91) C(E9)-H(E92) C(E9)-H(E93) B(10)-H(10) B(12)-H(12) C(M13)-H(M131) C(M13)-H(M132) C(E13)-H(E131) C(E13)-H(E131) C(E13)-H(E133) C(E13)-H(E133) C(M2')-H(M2'1) C(M2')-H(M2'1) C(M2')-H(M2'2) C(E2')-H(E2'1) C(E2')-H(E2'2)	3.611 (8) 3.713 (10) 0.857 (6) 0.949 (8) 0.901 (6) 0.983 (7) 1.169 (6) 1.055 (6) 0.898 (6) 0.982 (6) 1.001 (6) 0.856 (7) 1.042 (8) 0.961 (7) 0.965 (8) 0.940 (10)
$\begin{array}{c} \text{B}(10) - \text{B}(4) \\ \text{B}(10) - \text{B}(5') \\ \\ \end{array} \\ \begin{array}{c} \text{Bon} \\ \text{C}(T1) - \text{H}(T11) \\ \text{C}(T1) - \text{H}(T12) \\ \text{C}(T2) - \text{H}(T21) \\ \text{C}(T2) - \text{H}(T22) \\ \text{C}(T3) - \text{H}(T31) \\ \text{C}(T3) - \text{H}(T32) \\ \text{C}(T4) - \text{H}(T41) \\ \text{C}(T4) - \text{H}(T42) \\ \text{B}(1) - \text{H}(1) \\ \text{C}(M3) - \text{H}(M31) \\ \text{C}(M3) - \text{H}(M32) \\ \text{C}(E3) - \text{H}(E31) \\ \text{C}(E3) - \text{H}(E33) \\ \text{B}(4) - \text{H}(4) \\ \text{B}(5) - \text{H}(5) \end{array}$	3.010 (8) 3.035 (8) d Distances I 0.913 (6) 0.921 (6) 0.924 (7) 0.935 (5) 0.913 (6) 0.909 (5) 0.939 (6) 1.063 (6) 0.846 (6) 0.846 (6) 0.927 (7) 0.965 (8) 1.078 (6) 1.078 (6)	$\begin{array}{c} B(8)-C(2')\\ C(13)-C(3')\\ rvolving Hydrogen\\ C(M9)-H(M92)\\ C(E9)-H(E91)\\ C(E9)-H(E92)\\ C(E9)-H(E93)\\ B(10)-H(10)\\ B(12)-H(12)\\ C(M13)-H(M131)\\ C(M13)-H(M132)\\ C(E13)-H(E131)\\ C(E13)-H(E133)\\ C(E13)-H(E133)\\ C(M2')-H(M2'1)\\ C(M2')-H(M2'1)\\ C(M2')-H(M2'2)\\ C(E2')-H(E2'1)\\ C(E2')-H(E2'2)\\ C(E2')+H(E2'2)\\ C(E2')+H(E2')\\ C(E2')+H(E2')\\ C(E2')+H(E2')\\ C(E2')+H(E2')\\ C(E2')+H(E2')$	3.611 (8) 3.713 (10) 0.857 (6) 0.949 (8) 0.901 (6) 0.983 (7) 1.169 (6) 1.055 (6) 0.898 (6) 0.982 (6) 1.001 (6) 0.856 (7) 1.042 (8) 0.971 (8) 0.961 (7) 0.965 (8) 0.940 (10) 1.128 (10)
$\begin{array}{c} \text{B}(10) - \text{B}(4) \\ \text{B}(10) - \text{B}(5') \\ \\ \text{Bon} \\ \text{C}(T1) - \text{H}(T11) \\ \text{C}(T1) - \text{H}(T12) \\ \text{C}(T2) - \text{H}(T22) \\ \text{C}(T2) - \text{H}(T22) \\ \text{C}(T3) - \text{H}(T31) \\ \text{C}(T3) - \text{H}(T31) \\ \text{C}(T3) - \text{H}(T32) \\ \text{C}(T4) - \text{H}(T41) \\ \text{C}(T4) - \text{H}(T41) \\ \text{C}(T4) - \text{H}(T42) \\ \text{B}(1) - \text{H}(1) \\ \text{C}(M3) - \text{H}(M31) \\ \text{C}(M3) - \text{H}(M31) \\ \text{C}(E3) - \text{H}(E32) \\ \text{C}(E3) - \text{H}(E33) \\ \text{B}(4) - \text{H}(4) \\ \text{B}(5) - \text{H}(5) \\ \text{B}(5) - \text{H}(5) \\ \end{array}$	3.010 (8) 3.035 (8) d Distances I 0.913 (6) 0.921 (6) 0.924 (7) 0.935 (5) 0.913 (6) 0.909 (5) 0.939 (6) 1.063 (6) 0.787 (6) 1.026 (6) 0.927 (7) 0.965 (8) 1.078 (6) 1.169 (6)	B(8)-C(2') C(13)-C(3') nvolving Hydrogen C(M9)-H(M92) C(E9)-H(E91) C(E9)-H(E92) C(E9)-H(E93) B(10)-H(10) B(12)-H(12) C(M13)-H(M131) C(M13)-H(M132) C(E13)-H(E131) C(E13)-H(E131) C(E13)-H(E131) C(E13)-H(E132) C(E13)-H(E132) C(E13)-H(E132) C(E13)-H(E132) C(E13)-H(E132) C(E13)-H(E132) C(E13)-H(E132) C(E13)-H(E132) C(E13)-H(E132) C(E2')-H(E2'2) C(E2')-H(E2'3) C(E2')-H(E2'3)	3.611 (8) 3.713 (10) 0.857 (6) 0.949 (8) 0.901 (6) 0.983 (7) 1.169 (6) 1.055 (6) 0.898 (6) 0.982 (6) 1.001 (6) 0.856 (7) 1.042 (8) 0.971 (8) 0.961 (7) 0.965 (8) 0.940 (10) 1.128 (10)
$\begin{array}{c} \text{B}(10) - \text{B}(4) \\ \text{B}(10) - \text{B}(5') \\ \\ \text{Bon} \\ \text{C}(T1) - \text{H}(T11) \\ \text{C}(T1) - \text{H}(T12) \\ \text{C}(T2) - \text{H}(T21) \\ \text{C}(T2) - \text{H}(T22) \\ \text{C}(T3) - \text{H}(T32) \\ \text{C}(T3) - \text{H}(T32) \\ \text{C}(T4) - \text{H}(T41) \\ \text{C}(T4) - \text{H}(T42) \\ \text{B}(1) - \text{H}(1) \\ \text{C}(M3) - \text{H}(M32) \\ \text{C}(E3) - \text{H}(E31) \\ \text{C}(E3) - \text{H}(E33) \\ \text{C}(E3) - \text{H}(E33) \\ \text{B}(4) - \text{H}(4) \\ \text{B}(5) - \text{H}(5) \\ \text{B}(6) - \text{H}(6) \end{array}$	3.010 (8) 3.035 (8) d Distances I 0.913 (6) 0.921 (6) 0.885 (6) 0.924 (7) 0.935 (5) 0.913 (6) 0.909 (5) 0.939 (6) 1.063 (6) 0.846 (6) 0.927 (7) 0.965 (8) 1.078 (6) 1.169 (6) 1.176 (6)	B(8)-C(2') C(13)-C(3') nvolving Hydrogen C(M9)-H(M92) C(E9)-H(E91) C(E9)-H(E92) C(E9)-H(E93) B(10)-H(10) B(12)-H(12) C(M13)-H(M131) C(M13)-H(M132) C(E13)-H(E131) C(E13)-H(E131) C(E13)-H(E133) C(E13)-H(E133) C(M2')-H(M2'1) C(M2')-H(M2'1) C(E2')-H(E2'2) C(E2')-H(E2'3) C(M3')-H(M3'1)	3.611 (8) 3.713 (10) 0.857 (6) 0.949 (8) 0.901 (6) 1.055 (6) 0.898 (6) 0.982 (6) 1.001 (6) 0.856 (7) 1.042 (8) 0.961 (7) 0.965 (8) 0.940 (10) 1.128 (10) 0.858 (7)
$\begin{array}{c} \text{B}(10) - \text{B}(4) \\ \text{B}(10) - \text{B}(5') \\ \\ \\ \text{Bon} \\ \text{C}(T1) - \text{H}(T11) \\ \text{C}(T1) - \text{H}(T12) \\ \text{C}(T2) - \text{H}(T21) \\ \text{C}(T2) - \text{H}(T22) \\ \text{C}(T3) - \text{H}(T31) \\ \text{C}(T3) - \text{H}(T31) \\ \text{C}(T3) - \text{H}(T32) \\ \text{C}(T4) - \text{H}(T41) \\ \text{C}(T4) - \text{H}(T42) \\ \text{B}(1) - \text{H}(1) \\ \text{C}(M3) - \text{H}(M31) \\ \text{C}(M3) - \text{H}(M32) \\ \text{C}(E3) - \text{H}(E31) \\ \text{C}(E3) - \text{H}(E31) \\ \text{C}(E3) - \text{H}(E31) \\ \text{C}(E3) - \text{H}(E33) \\ \text{B}(4) - \text{H}(4) \\ \text{B}(5) - \text{H}(5) \\ \text{B}(6) - \text{H}(6) \\ \text{C}(M7) - \text{C}(E7) \\ \end{array}$	3.010 (8) 3.035 (8) d Distances I 0.913 (6) 0.921 (6) 0.885 (6) 0.924 (7) 0.935 (5) 0.913 (6) 0.909 (5) 0.939 (6) 1.063 (6) 0.846 (6) 0.787 (6) 1.026 (6) 0.927 (7) 0.965 (8) 1.078 (6) 1.169 (6) 1.166 (6)	$\begin{array}{c} B(8)-C(2')\\ C(13)-C(3')\\ rvolving Hydrogen\\ C(M9)-H(M92)\\ C(E9)-H(E91)\\ C(E9)-H(E92)\\ C(E9)-H(E93)\\ B(10)-H(10)\\ B(12)-H(12)\\ C(M13)-H(M131)\\ C(M13)-H(M132)\\ C(E13)-H(E133)\\ C(E13)-H(E133)\\ C(E13)-H(E133)\\ C(M2')-H(M2'1)\\ C(M2')-H(M2'2)\\ C(E2')-H(E2'1)\\ C(E2')-H(E2'2)\\ C(E2')-H(E2'3)\\ C(M3')-H(M3'1)\\ C(M3')-H(M3'2)\\ \end{array}$	3.611 (8) 3.713 (10) 0.857 (6) 0.949 (8) 0.901 (6) 0.983 (7) 1.169 (6) 1.055 (6) 0.898 (6) 0.982 (6) 1.001 (6) 0.856 (7) 1.042 (8) 0.971 (8) 0.961 (7) 0.965 (8) 0.940 (10) 1.128 (10) 0.858 (7) 1.030 (9)
$\begin{array}{c} \text{B}(10) - \text{B}(4) \\ \text{B}(10) - \text{B}(5') \\ \\ \text{Bon} \\ \text{C}(T1) - \text{H}(T11) \\ \text{C}(T1) - \text{H}(T12) \\ \text{C}(T2) - \text{H}(T22) \\ \text{C}(T2) - \text{H}(T22) \\ \text{C}(T3) - \text{H}(T31) \\ \text{C}(T3) - \text{H}(T32) \\ \text{C}(T3) - \text{H}(T32) \\ \text{C}(T4) - \text{H}(T41) \\ \text{C}(T4) - \text{H}(T42) \\ \text{B}(1) - \text{H}(1) \\ \text{C}(M3) - \text{H}(M31) \\ \text{C}(M3) - \text{H}(M32) \\ \text{C}(E3) - \text{H}(E32) \\ \text{C}(E3) - \text{H}(E33) \\ \text{B}(4) - \text{H}(4) \\ \text{B}(5) - \text{H}(5) \\ \text{B}(6) - \text{H}(6) \\ \text{C}(M7) - \text{C}(E7) \\ \text{C}(M7) - \text{H}(M71) \\ \end{array}$	3.010 (8) 3.035 (8) d Distances I 0.913 (6) 0.921 (6) 0.924 (7) 0.935 (5) 0.913 (6) 0.909 (5) 0.939 (6) 1.063 (6) 0.787 (6) 1.026 (6) 0.927 (7) 0.965 (8) 1.078 (6) 1.169 (6) 1.176 (6) 1.363 (11) 0.934 (7)	$\begin{array}{c} B(8)-C(2')\\ C(13)-C(3')\\ nvolving Hydrogen\\ C(M9)-H(M92)\\ C(E9)-H(E91)\\ C(E9)-H(E92)\\ C(E9)-H(E93)\\ B(10)-H(10)\\ B(12)-H(12)\\ C(M13)-H(M131)\\ C(M13)-H(M132)\\ C(E13)-H(E131)\\ C(E13)-H(E133)\\ C(E13)-H(E133)\\ C(E13)-H(E133)\\ C(E2')-H(E2'1)\\ C(M2')-H(M2'1)\\ C(E2')-H(E2'2)\\ C(E2')-H(E2'3)\\ C(M3')-H(M3'1)\\ C(M3')-H(M3'2)\\ C(E3')-H(E3'1)\\ \end{array}$	3.611 (8) 3.713 (10) 0.857 (6) 0.949 (8) 0.901 (6) 0.983 (7) 1.169 (6) 1.055 (6) 0.898 (6) 0.982 (6) 1.001 (6) 0.856 (7) 1.042 (8) 0.961 (7) 0.965 (8) 0.940 (10) 1.128 (10) 0.858 (7) 1.030 (9) 1.159 (9)
$\begin{array}{c} \text{B}(10) - \text{B}(4) \\ \text{B}(10) - \text{B}(5') \\ \\ \text{Bon} \\ \text{C}(T1) - \text{H}(T11) \\ \text{C}(T1) - \text{H}(T12) \\ \text{C}(T2) - \text{H}(T21) \\ \text{C}(T2) - \text{H}(T22) \\ \text{C}(T3) - \text{H}(T32) \\ \text{C}(T3) - \text{H}(T32) \\ \text{C}(T3) - \text{H}(T32) \\ \text{C}(T4) - \text{H}(T41) \\ \text{C}(T4) - \text{H}(T42) \\ \text{B}(1) - \text{H}(1) \\ \text{C}(M3) - \text{H}(M32) \\ \text{C}(E3) - \text{H}(E31) \\ \text{C}(E3) - \text{H}(E33) \\ \text{B}(4) - \text{H}(4) \\ \text{B}(5) - \text{H}(5) \\ \text{B}(6) - \text{H}(6) \\ \text{C}(M7) - \text{C}(E7) \\ \text{C}(M7) - \text{H}(M71) \\ \text{C}(M1) + \text{H}(M22) \\ \text{C}(M1) - \text{H}(M12) \\ \text{C}(M1) + \text{H}(M1) \\ \text{C}(M1) + \text{H}(M1) \\ \text{C}(M1) + \text{H}(M1) \\ \text{C}(M1) + \text{H}(M1) \\ \text$	3.010 (8) 3.035 (8) d Distances I 0.913 (6) 0.921 (6) 0.924 (7) 0.935 (5) 0.913 (6) 0.909 (5) 0.939 (6) 1.063 (6) 0.946 (6) 0.927 (7) 0.965 (8) 1.078 (6) 1.169 (6) 1.176 (6) 1.363 (11) 0.934 (7) 0.984 (7)	$B(8)-C(2') \\C(13)-C(3') \\C(13)-C(3') \\(M)-C(3') \\C(13)-C(3') \\C(29)-H(E92) \\C(29)-H(292) \\C(29)-H(292) \\C(29)-H(292) \\C(29)-H(292) \\C(29)-H(292) \\C(29)-H(292) \\C(29)-H(292) \\C(213)-H(213) \\C(213)-H(2$	3.611 (8) 3.713 (10) 0.857 (6) 0.949 (8) 0.901 (6) 0.983 (7) 1.169 (6) 1.055 (6) 0.898 (6) 0.982 (6) 1.001 (6) 0.856 (7) 1.042 (8) 0.961 (7) 0.965 (8) 0.940 (10) 1.128 (10) 0.858 (7) 1.030 (9) 1.159 (9)
$\begin{array}{c} \text{B}(10) - \text{B}(4) \\ \text{B}(10) - \text{B}(5') \\ \\ & \text{Bon} \\ \text{C}(T1) - \text{H}(T11) \\ \text{C}(T1) - \text{H}(T12) \\ \text{C}(T2) - \text{H}(T21) \\ \text{C}(T2) - \text{H}(T22) \\ \text{C}(T3) - \text{H}(T32) \\ \text{C}(T3) - \text{H}(T32) \\ \text{C}(T4) - \text{H}(T41) \\ \text{C}(T4) - \text{H}(T41) \\ \text{C}(T4) - \text{H}(T42) \\ \text{B}(1) - \text{H}(1) \\ \text{C}(M3) - \text{H}(M31) \\ \text{C}(M3) - \text{H}(M32) \\ \text{C}(E3) - \text{H}(E31) \\ \text{C}(E3) - \text{H}(E31) \\ \text{C}(E3) - \text{H}(E32) \\ \text{C}(E3) - \text{H}(E33) \\ \text{B}(4) - \text{H}(4) \\ \text{B}(5) - \text{H}(5) \\ \text{B}(6) - \text{H}(6) \\ \text{C}(M7) - \text{C}(E7) \\ \text{C}(M7) - \text{H}(M71) \\ \text{C}(M7) - \text{H}(M72) \\ \end{array}$	3.010 (8) 3.035 (8) d Distances I 0.913 (6) 0.921 (6) 0.885 (6) 0.924 (7) 0.935 (5) 0.913 (6) 0.909 (5) 0.939 (6) 1.063 (6) 0.846 (6) 0.787 (6) 1.026 (6) 0.927 (7) 0.965 (8) 1.078 (6) 1.169 (6) 1.363 (11) 0.934 (7) 0.988 (7) 0.988 (7)	B(8)-C(2') $C(13)-C(3')$ nvolving Hydrogen $C(M9)-H(M92)$ $C(E9)-H(E91)$ $C(E9)-H(E92)$ $C(E9)-H(E93)$ $B(10)-H(10)$ $B(12)-H(12)$ $C(M13)-H(M131)$ $C(M13)-H(M132)$ $C(E13)-H(E133)$ $C(E13)-H(E133)$ $C(M2')-H(M2'1)$ $C(M2')-H(M2'1)$ $C(M2')-H(M2'2)$ $C(E2')-H(E2'3)$ $C(E2')-H(E2'3)$ $C(E2')-H(E3'3)$ $C(M3')-H(M3'2)$ $C(E3')-H(M3'2)$ $C(E3')-H(E3'1)$ $C(E3')-H(E3'2)$ $C(E3')-H(E3'2)$	3.611 (8) 3.713 (10) 0.857 (6) 0.949 (8) 0.901 (6) 0.983 (7) 1.169 (6) 1.055 (6) 0.898 (6) 0.982 (6) 1.001 (6) 0.856 (7) 1.042 (8) 0.971 (8) 0.961 (7) 0.965 (8) 0.940 (10) 1.128 (10) 0.858 (7) 1.030 (9) 1.159 (9) 1.045 (13)
$\begin{array}{c} \text{B}(10) - \text{B}(4) \\ \text{B}(10) - \text{B}(5') \\ \\ \text{Bon} \\ \text{C}(T1) - \text{H}(T11) \\ \text{C}(T1) - \text{H}(T12) \\ \text{C}(T2) - \text{H}(T22) \\ \text{C}(T2) - \text{H}(T22) \\ \text{C}(T3) - \text{H}(T31) \\ \text{C}(T3) - \text{H}(T31) \\ \text{C}(T3) - \text{H}(T32) \\ \text{C}(T4) - \text{H}(T41) \\ \text{C}(T4) - \text{H}(T42) \\ \text{B}(1) - \text{H}(1) \\ \text{C}(M3) - \text{H}(M31) \\ \text{C}(M3) - \text{H}(M31) \\ \text{C}(M3) - \text{H}(M32) \\ \text{C}(E3) - \text{H}(E33) \\ \text{B}(4) - \text{H}(4) \\ \text{B}(5) - \text{H}(5) \\ \text{B}(6) - \text{H}(6) \\ \text{C}(M7) - \text{C}(E7) \\ \text{C}(M7) - \text{H}(M71) \\ \text{C}(M7) - \text{H}(M72) \\ \text{C}(E7) - \text{H}(E71) \\ \end{array}$	3.010 (8) 3.035 (8) d Distances I 0.913 (6) 0.921 (6) 0.924 (7) 0.935 (5) 0.913 (6) 0.909 (5) 0.939 (6) 1.063 (6) 0.846 (6) 0.787 (6) 1.026 (6) 0.927 (7) 0.965 (8) 1.078 (6) 1.176 (6) 1.363 (11) 0.934 (7) 0.988 (7) 0.931 (8)	$\begin{array}{c} B(8)-C(2')\\ C(13)-C(3')\\ nvolving Hydrogen\\ C(M9)-H(M92)\\ C(E9)-H(E91)\\ C(E9)-H(E92)\\ C(E9)-H(E93)\\ B(10)-H(10)\\ B(12)-H(12)\\ C(M13)-H(M131)\\ C(M13)-H(M132)\\ C(E13)-H(E131)\\ C(E13)-H(E133)\\ C(E13)-H(E133)\\ C(E13)-H(E133)\\ C(E2')-H(E2'1)\\ C(M2')-H(M2'1)\\ C(M2')-H(M2'1)\\ C(E2')-H(E2'3)\\ C(M3')-H(M3'1)\\ C(M3')-H(M3'2)\\ C(E3')-H(E3'3)\\ C(E3')-H(E3'3)\\ \end{array}$	3.611 (8) 3.713 (10) 0.857 (6) 0.949 (8) 0.901 (6) 0.983 (7) 1.169 (6) 1.055 (6) 0.898 (6) 0.982 (6) 1.001 (6) 0.856 (7) 1.042 (8) 0.961 (7) 0.965 (8) 0.940 (10) 1.128 (10) 0.858 (7) 1.030 (9) 1.159 (9) 1.045 (13) 1.014 (13)
$\begin{array}{c} \text{B}(10) - \text{B}(4) \\ \text{B}(10) - \text{B}(5') \\ \\ \text{Bon} \\ \text{C}(T1) - \text{H}(T11) \\ \text{C}(T1) - \text{H}(T12) \\ \text{C}(T2) - \text{H}(T21) \\ \text{C}(T2) - \text{H}(T21) \\ \text{C}(T3) - \text{H}(T31) \\ \text{C}(T3) - \text{H}(T32) \\ \text{C}(T4) - \text{H}(T41) \\ \text{C}(T4) - \text{H}(T42) \\ \text{B}(1) - \text{H}(1) \\ \text{C}(M3) - \text{H}(M32) \\ \text{C}(E3) - \text{H}(E33) \\ \text{C}(E3) - \text{H}(E33) \\ \text{C}(E3) - \text{H}(E33) \\ \text{B}(4) - \text{H}(4) \\ \text{B}(5) - \text{H}(5) \\ \text{B}(6) - \text{H}(6) \\ \text{C}(M7) - \text{C}(E7) \\ \text{C}(M7) - \text{H}(M72) \\ \text{C}(E7) - \text{H}(E71) \\ \text{C}(E7) - \text{H}(E72) \\ \end{array}$	3.010 (8) 3.035 (8) d Distances I 0.913 (6) 0.921 (6) 0.885 (6) 0.924 (7) 0.935 (5) 0.913 (6) 0.909 (5) 0.939 (6) 1.063 (6) 0.939 (6) 1.026 (6) 0.927 (7) 0.965 (8) 1.078 (6) 1.176 (6) 1.363 (11) 0.934 (7) 0.988 (7) 0.931 (8) 0.997 (12)	$\begin{array}{c} B(8)-C(2')\\ C(13)-C(3')\\ rvolving Hydrogen\\ C(M9)-H(M92)\\ C(E9)-H(E91)\\ C(E9)-H(E92)\\ C(E9)-H(E93)\\ B(10)-H(10)\\ B(12)-H(12)\\ C(M13)-H(M131)\\ C(M13)-H(M132)\\ C(E13)-H(E131)\\ C(E13)-H(E131)\\ C(E13)-H(E133)\\ C(E13)-H(E133)\\ C(M2')-H(M2'1)\\ C(M2')-H(M2'1)\\ C(M2')-H(M2'1)\\ C(M2')-H(M2'2)\\ C(E2')-H(E2'3)\\ C(E3')-H(E3'1)\\ C(M3')-H(M3'2)\\ C(E3')-H(E3'2)\\ C(E3')-H(E3'2)\\ C(E3')-H(E3'3)\\ B(4')-H(4')\\ \end{array}$	3.611 (8) 3.713 (10) 0.857 (6) 0.949 (8) 0.901 (6) 0.983 (7) 1.169 (6) 1.055 (6) 0.898 (6) 0.982 (6) 1.001 (6) 0.856 (7) 1.042 (8) 0.971 (8) 0.961 (7) 0.965 (8) 0.940 (10) 1.128 (10) 0.858 (7) 1.030 (9) 1.159 (9) 1.045 (13) 1.022 (7)
$\begin{array}{c} \text{B}(10) - \text{B}(4) \\ \text{B}(10) - \text{B}(5') \\ \\ \text{Bon} \\ \text{C}(T1) - \text{H}(T11) \\ \text{C}(T1) - \text{H}(T12) \\ \text{C}(T2) - \text{H}(T22) \\ \text{C}(T2) - \text{H}(T22) \\ \text{C}(T3) - \text{H}(T31) \\ \text{C}(T3) - \text{H}(T32) \\ \text{C}(T4) - \text{H}(T41) \\ \text{C}(T4) - \text{H}(T42) \\ \text{B}(1) - \text{H}(1) \\ \text{C}(M3) - \text{H}(M31) \\ \text{C}(M3) - \text{H}(M32) \\ \text{C}(E3) - \text{H}(E31) \\ \text{C}(E3) - \text{H}(E31) \\ \text{C}(E3) - \text{H}(E33) \\ \text{B}(4) - \text{H}(4) \\ \text{B}(5) - \text{H}(5) \\ \text{B}(6) - \text{H}(6) \\ \text{C}(M7) - \text{C}(E7) \\ \text{C}(M7) - \text{H}(M71) \\ \text{C}(M7) - \text{H}(M72) \\ \text{C}(E7) - \text{H}(E71) \\ \text{C}(E7) - \text{H}(E72) \\ \text{C}(E7) - \text{H}(E72) \\ \end{array}$	3.010 (8) 3.035 (8) d Distances I 0.913 (6) 0.921 (6) 0.885 (6) 0.924 (7) 0.935 (5) 0.913 (6) 0.909 (5) 0.939 (6) 1.063 (6) 0.846 (6) 0.787 (6) 1.026 (6) 0.927 (7) 0.965 (8) 1.078 (6) 1.169 (6) 1.363 (11) 0.934 (7) 0.988 (7) 0.931 (8) 0.997 (12) 0.876 (11)	$\begin{array}{c} B(8)-C(2')\\ C(13)-C(3')\\ rvolving Hydrogen\\ C(M9)-H(M92)\\ C(E9)-H(E91)\\ C(E9)-H(E92)\\ C(E9)-H(E93)\\ B(10)-H(10)\\ B(12)-H(12)\\ C(M13)-H(M131)\\ C(M13)-H(M132)\\ C(M13)-H(M132)\\ C(E13)-H(E133)\\ C(E13)-H(E133)\\ C(E13)-H(E133)\\ C(M2')-H(M2'1)\\ C(M2')-H(M2'1)\\ C(M2')-H(M2'1)\\ C(M2')-H(M3'1)\\ C(M3')-H(M3'2)\\ C(E3')-H(E3'3)\\ C(E3')-H(E3'3)\\ B(4')-H(4')\\ B(5')-H(5')\\ \end{array}$	3.611 (8) 3.713 (10) 0.857 (6) 0.949 (8) 0.901 (6) 0.983 (7) 1.169 (6) 1.055 (6) 0.898 (6) 0.982 (6) 1.001 (6) 0.856 (7) 1.042 (8) 0.961 (7) 0.965 (8) 0.940 (10) 1.128 (10) 0.858 (7) 1.030 (9) 1.159 (9) 1.045 (13) 1.014 (13) 1.282 (7)
$\begin{array}{c} \text{B}(10) - \text{B}(4) \\ \text{B}(10) - \text{B}(5') \\ \\ \text{Bon} \\ \text{C}(T1) - \text{H}(T11) \\ \text{C}(T1) - \text{H}(T12) \\ \text{C}(T2) - \text{H}(T22) \\ \text{C}(T2) - \text{H}(T22) \\ \text{C}(T3) - \text{H}(T31) \\ \text{C}(T3) - \text{H}(T31) \\ \text{C}(T3) - \text{H}(T32) \\ \text{C}(T4) - \text{H}(T41) \\ \text{C}(T4) - \text{H}(T42) \\ \text{B}(1) - \text{H}(1) \\ \text{C}(M3) - \text{H}(M31) \\ \text{C}(M3) - \text{H}(M31) \\ \text{C}(M3) - \text{H}(M32) \\ \text{C}(E3) - \text{H}(E33) \\ \text{B}(4) - \text{H}(4) \\ \text{B}(5) - \text{H}(5) \\ \text{B}(6) - \text{H}(6) \\ \text{C}(M7) - \text{C}(E7) \\ \text{C}(M7) - \text{H}(M72) \\ \text{C}(E7) - \text{H}(E71) \\ \text{C}(E7) - \text{H}(E72) \\ \text{C}(E7) - \text{H}(E73) \\ \text{B}(6) \\ \text{H}(6) \\ \end{array}$	3.010 (8) 3.035 (8) d Distances I 0.913 (6) 0.921 (6) 0.924 (7) 0.935 (5) 0.913 (6) 0.909 (5) 0.939 (6) 1.063 (6) 0.846 (6) 0.846 (6) 0.927 (7) 0.965 (8) 1.078 (6) 1.176 (6) 1.363 (11) 0.934 (7) 0.931 (8) 0.997 (12) 0.876 (11)	B(8)-C(2') $C(13)-C(3')$ nvolving Hydrogen $C(M9)-H(M92)$ $C(E9)-H(E91)$ $C(E9)-H(E92)$ $C(E9)-H(E93)$ $B(10)-H(10)$ $B(12)-H(12)$ $C(M13)-H(M131)$ $C(M13)-H(M132)$ $C(E13)-H(E131)$ $C(E13)-H(E133)$ $C(E13)-H(E133)$ $C(M2')-H(M2'1)$ $C(M2')-H(M2'1)$ $C(M2')-H(M2'1)$ $C(E2')-H(E2'3)$ $C(M3')-H(M3'1)$ $C(M3')-H(M3'2)$ $C(E3')-H(E3'3)$ $C(M3')-H(M3'2)$ $C(E3')-H(E3'3)$ $C(E3')-H(E3'3)$ $B(4')-H(4')$ $B(5')-H(5')$	3.611 (8) 3.713 (10) 0.857 (6) 0.949 (8) 0.901 (6) 0.983 (7) 1.169 (6) 1.055 (6) 0.898 (6) 0.982 (6) 1.001 (6) 0.856 (7) 1.042 (8) 0.971 (8) 0.965 (8) 0.940 (10) 1.128 (10) 0.858 (7) 1.030 (9) 1.159 (9) 1.045 (13) 1.014 (13) 1.282 (7) 1.115 (7)
$\begin{array}{c} \text{B}(10) - \text{B}(4) \\ \text{B}(10) - \text{B}(5') \\ \\ \text{Bon} \\ \text{C}(T1) - \text{H}(T11) \\ \text{C}(T1) - \text{H}(T12) \\ \text{C}(T2) - \text{H}(T21) \\ \text{C}(T2) - \text{H}(T21) \\ \text{C}(T3) - \text{H}(T32) \\ \text{C}(T3) - \text{H}(T32) \\ \text{C}(T3) - \text{H}(T32) \\ \text{C}(T3) - \text{H}(T32) \\ \text{C}(T4) - \text{H}(T41) \\ \text{C}(T4) - \text{H}(T42) \\ \text{B}(1) - \text{H}(1) \\ \text{C}(M3) - \text{H}(M32) \\ \text{C}(E3) - \text{H}(E33) \\ \text{C}(E3) - \text{H}(E33) \\ \text{C}(E3) - \text{H}(E33) \\ \text{C}(E3) - \text{H}(E33) \\ \text{B}(4) - \text{H}(4) \\ \text{B}(5) - \text{H}(5) \\ \text{B}(6) - \text{H}(6) \\ \text{C}(M7) - \text{C}(E7) \\ \text{C}(M7) - \text{H}(M71) \\ \text{C}(E7) - \text{H}(E71) \\ \text{C}(E7) - \text{H}(E73) \\ \text{B}(8) - \text{H}(8) \\ \text{C}(M5) - \text{H}(5) \\ \text{B}(6) - \text{H}(6) \\ \text{C}(10) - \text{H}(10) \\ $	3.010 (8) 3.035 (8) d Distances I 0.913 (6) 0.921 (6) 0.885 (6) 0.924 (7) 0.935 (5) 0.913 (6) 0.909 (5) 0.939 (6) 1.063 (6) 0.939 (6) 1.063 (6) 0.927 (7) 0.965 (8) 1.078 (6) 1.176 (6) 1.363 (11) 0.934 (7) 0.934 (7) 0.931 (8) 0.997 (12) 0.876 (11) 1.022 (6)	$\begin{array}{c} B(8)-C(2')\\ C(13)-C(3')\\ rvolving Hydrogen\\ C(M9)-H(M92)\\ C(E9)-H(E91)\\ C(E9)-H(E92)\\ C(E9)-H(E93)\\ B(10)-H(10)\\ B(12)-H(12)\\ C(M13)-H(M131)\\ C(M13)-H(M132)\\ C(E13)-H(E131)\\ C(E13)-H(E131)\\ C(E13)-H(E133)\\ C(E13)-H(E133)\\ C(E13)-H(E132)\\ C(E13)-H(E131)\\ C(E13)-H(E131)\\ C(E13)-H(E131)\\ C(E13)-H(E131)\\ C(E13)-H(E131)\\ C(E13)-H(E131)\\ C(E13)-H(E132)\\ C(E13)-H(E131)\\ C(E13)-H(E131)\\ C(E13)-H(E132)\\ C(E13)-H(E131)\\ C(E13)-H(E132)\\ C(E13)-H(E132)\\ C(E13)-H(E132)\\ C(E13)-H(E132)\\ C(E13)-H(E133)\\ C(E13)-H(E13)\\ C$	3.611 (8) 3.713 (10) 0.857 (6) 0.949 (8) 0.901 (6) 0.983 (7) 1.169 (6) 1.055 (6) 0.898 (6) 0.982 (6) 1.001 (6) 0.856 (7) 1.042 (8) 0.971 (8) 0.961 (7) 0.965 (8) 0.940 (10) 1.128 (10) 0.858 (7) 1.030 (9) 1.159 (9) 1.045 (13) 1.044 (13) 1.282 (7) 1.044 (7)
$\begin{array}{c} \text{B}(10) - \text{B}(4) \\ \text{B}(10) - \text{B}(5') \\ \\ & \text{Bon} \\ \text{C}(T1) - \text{H}(T11) \\ \text{C}(T1) - \text{H}(T12) \\ \text{C}(T2) - \text{H}(T21) \\ \text{C}(T2) - \text{H}(T21) \\ \text{C}(T3) - \text{H}(T31) \\ \text{C}(T3) - \text{H}(T32) \\ \text{C}(T4) - \text{H}(T41) \\ \text{C}(T4) - \text{H}(T42) \\ \text{B}(1) - \text{H}(1) \\ \text{C}(M3) - \text{H}(M31) \\ \text{C}(M3) - \text{H}(M32) \\ \text{C}(E3) - \text{H}(E31) \\ \text{C}(E3) - \text{H}(E32) \\ \text{C}(E3) - \text{H}(E32) \\ \text{C}(E3) - \text{H}(E33) \\ \text{B}(4) - \text{H}(4) \\ \text{B}(5) - \text{H}(5) \\ \text{B}(6) - \text{H}(6) \\ \text{C}(M7) - \text{C}(E7) \\ \text{C}(M7) - \text{H}(M71) \\ \text{C}(E7) - \text{H}(E71) \\ \text{C}(E7) - \text{H}(E71) \\ \text{C}(E7) - \text{H}(E73) \\ \text{B}(8) - \text{H}(8) \\ \text{C}(M9) - \text{H}(M91) \end{array}$	3.010 (8) 3.035 (8) d Distances I 0.913 (6) 0.921 (6) 0.885 (6) 0.924 (7) 0.935 (5) 0.913 (6) 0.909 (5) 0.939 (6) 1.063 (6) 0.846 (6) 0.787 (6) 1.026 (6) 0.927 (7) 0.965 (8) 1.078 (6) 1.176 (6) 1.363 (11) 0.934 (7) 0.988 (7) 0.988 (7) 0.991 (8) 0.997 (12) 0.876 (11) 1.022 (6) 0.888 (5)	$\begin{array}{c} B(8)-C(2')\\ C(13)-C(3')\\ rvolving Hydrogen\\ C(M9)-H(M92)\\ C(E9)-H(E91)\\ C(E9)-H(E92)\\ C(E9)-H(E92)\\ C(E9)-H(E92)\\ C(E9)-H(10)\\ B(12)-H(12)\\ C(M13)-H(M131)\\ C(M13)-H(M131)\\ C(M13)-H(M132)\\ C(E13)-H(E132)\\ C(E13)-H(E133)\\ C(E13)-H(E133)\\ C(M2')-H(M2'1)\\ C(M2')-H(M2'1)\\ C(M2')-H(M2'2)\\ C(E2')-H(E2'2)\\ C(E2')-H(E2'2)\\ C(E2')-H(E2'3)\\ C(E3')-H(M3'1)\\ C(M3')-H(M3'2)\\ C(E3')-H(E3'3)\\ B(4')-H(4')\\ B(5')-H(5')\\ B(6')-H(6')\\ B(7')-H(7')\\ \end{array}$	3.611 (8) 3.713 (10) 0.857 (6) 0.949 (8) 0.901 (6) 0.983 (7) 1.169 (6) 1.055 (6) 0.898 (6) 0.982 (6) 1.001 (6) 0.856 (7) 1.042 (8) 0.971 (8) 0.961 (7) 0.965 (8) 0.940 (10) 1.128 (10) 0.858 (7) 1.030 (9) 1.159 (9) 1.045 (13) 1.014 (13) 1.282 (7) 1.115 (7) 1.044 (7) 1.016 (7)
$\begin{array}{c} \text{B}(10) - \text{B}(4) \\ \text{B}(10) - \text{B}(5') \\ \\ \text{Bon} \\ \text{C}(T1) - \text{H}(T11) \\ \text{C}(T1) - \text{H}(T12) \\ \text{C}(T2) - \text{H}(T22) \\ \text{C}(T2) - \text{H}(T22) \\ \text{C}(T3) - \text{H}(T31) \\ \text{C}(T3) - \text{H}(T32) \\ \text{C}(T3) - \text{H}(T32) \\ \text{C}(T4) - \text{H}(T41) \\ \text{C}(T4) - \text{H}(T42) \\ \text{B}(1) - \text{H}(1) \\ \text{C}(M3) - \text{H}(M31) \\ \text{C}(M3) - \text{H}(M32) \\ \text{C}(E3) - \text{H}(E32) \\ \text{C}(E3) - \text{H}(E32) \\ \text{C}(E3) - \text{H}(E33) \\ \text{B}(4) - \text{H}(4) \\ \text{B}(5) - \text{H}(5) \\ \text{B}(6) - \text{H}(6) \\ \text{C}(M7) - \text{C}(E7) \\ \text{C}(M7) - \text{H}(M71) \\ \text{C}(M7) - \text{H}(M72) \\ \text{C}(E7) - \text{H}(E71) \\ \text{C}(E7) - \text{H}(E73) \\ \text{B}(8) - \text{H}(8) \\ \text{C}(M9) - \text{H}(M91) \end{array}$	3.010 (8) 3.035 (8) d Distances I 0.913 (6) 0.921 (6) 0.885 (6) 0.924 (7) 0.935 (5) 0.913 (6) 0.939 (6) 1.063 (6) 0.846 (6) 0.787 (6) 1.026 (6) 0.927 (7) 0.965 (8) 1.078 (6) 1.169 (6) 1.169 (6) 1.363 (11) 0.934 (7) 0.938 (7) 0.931 (8) 0.997 (12) 0.876 (11) 1.022 (6) 0.888 (5)	$B(8)-C(2') \\C(13)-C(3') \\(M)-H(M92) \\C(E9)-H(E91) \\C(E9)-H(E92) \\C(E9)-H(E93) \\B(10)-H(10) \\B(12)-H(12) \\C(M13)-H(M131) \\C(M13)-H(M132) \\C(M13)-H(M132) \\C(E13)-H(E133) \\C(E13)-H(E133) \\C(E13)-H(E133) \\C(E13)-H(E133) \\C(E2')-H(E2'1) \\C(E2')-H(E2'1) \\C(E2')-H(E2'3) \\C(E3')-H(M3'1) \\C(M3')-H(M3'2) \\C(E3')-H(E3'3) \\C(M3')-H(M3'2) \\C(E3')-H(E3'3) \\B(4')-H(4') \\B(5')-H(5') \\B(6')-H(6') \\B(7')-H(7') \\111$	3.611 (8) 3.713 (10) 0.857 (6) 0.949 (8) 0.901 (6) 0.983 (7) 1.169 (6) 1.055 (6) 0.982 (6) 1.001 (6) 0.856 (7) 1.042 (8) 0.971 (8) 0.965 (8) 0.940 (10) 1.128 (10) 0.858 (7) 1.030 (9) 1.159 (9) 1.045 (13) 1.014 (13) 1.282 (7) 1.016 (7)

the recently reported facile conversions of $B_5H_8^-$ to $B_{10}H_{14}$ and of $B_6H_9^-$ to $B_{12}H_{16}$.¹⁴ Thus, routes to ultralarge carborane cages via $(C_2B_4)M(C_4B_8)$ and $(C_4B_8)_2M$ metallacarborane systems seem

(14) Brewer, C. A.; Grimes, R. N. J. Am. Chem. Soc. 1984, 106, 2722.

Table VI. Selected Bond Angles (deg) for 6a

	-		
B(8)-Co- $B(4')$	120.2 (3)	B(8)-C(9)-C(M9)	116.1 (4)
C(9)-Co-B(4')	92.3 (3)	B(8)-C(9)-B(10)	119.3 (4)
B(10)-Co-B(4')	89.9 (3)	C(M9)-C(9)-B(10)	120.3 (4)
B(10)-Co- $B(5')$	90.1 (3)	C(9)-C(M9)-C(E9)	118.7 (5)
B(10)-Co-B(6')	129.6 (3)	C(9)-B(10)-B(11)	117.5 (4)
B(11)-Co-B(4')	119.2 (3)	Co-B(11)-O	124.5 (4)
B(11)-Co-B(5')	85.9 (3)	O-B(11)-B(5)	113.2 (5)
B(11)-Co-B(6')	96.9 (3)	O-B(11)-B(6)	112.2 (4)
B(12)-Co-B(4')	158.8 (3)	O-B(11)-B(10)	118.5 (5)
B(12)-Co-B(6')	87.5 (3)	O-B(11)-B(12)	117.9 (4)
C(13)-Co-C(2')	98.1 (2)	B(10)-B(11)-B(12)	120.8 (4)
C(13)-Co-C(3')	115.8 (2)	B(11)-B(12)-C(13)	114.9 (4)
C(T1)-O-C(T4)	110.4 (4)	Co-C(13)-C(M13)	121.2 (4)
C(T1)-O-B(11)	126.0 (4)	C(7)-C(13)-B(8)	109.2 (4)
C(T4)-O-B(11)	123.4 (4)	C(7)-C(13)-C(M13)	116.9 (4)
O-C(T1)-C(T2)	104.7 (4)	B(8)-C(13)-B(12)	124.7 (4)
C(T1)-C(T2)-C(T3)	105.3 (5)	B(8)-C(13)-C(M13)	116.6 (4)
C(T2)-C(T3)-C(T4)	104.8 (5)	B(12)-C(13)-C(M13)	114.2 (4)
O-C(T4)-C(T3)	102.6 (4)	C(13)-C(M13)-C(E13)	115.7 (5)
C(3)-B(1)-C(7)	104.0 (4)	Co-C(2')-C(M2')	141.6 (5)
B(1)-C(3)-C(M3)	121.0 (5)	Co-C(2')-B(7')	90.0 (3)
B(1)-C(3)-B(8)	104.8 (4)	C(M2')-C(2')-C(3')	119.9 (6)
C(M3)-C(3)-B(4)	113.2 (4)	C(M2')-C(2')-B(6')	127.9 (6)
C(M3)-C(3)-B(8)	120.6 (4)	C(M2')-C(2')-B(7')	128.4 (5)
C(M3)-C(3)-C(9)	122.2 (4)	C(3')-C(2')-B(6')	111.1 (5)
C(3)-C(M3)-C(E3)	111.9 (5)	C(2')-C(M2')-C(E2')	114.4 (7)
B(1)-C(7)-C(M7)	121.7 (5)	Co-C(3')-C(M3')	136.4 (5)
B(1)-C(7)-C(13)	106.9 (4)	Co-C(3')-B(7')	90.4 (3)
B(6)-C(7)-C(M7)	114.9 (5)	C(2')-C(3')-C(M3')	121.3 (6)
C(M7)-C(7)-B(12)	118.9 (4)	C(2')-C(3')-B(4')	112.1 (5)
C(M7)-C(7)-C(13)	118.4 (5)	C(M3')-C(3')-B(4')	125.8 (7)
C(7)-C(M7)-C(E7)	119.0 (6)	C(M3')-C(3')-B(7')	133.2 (5)
C(3)-B(8)-C(13)	112.0 (5)	C(3')-C(M3')-C(E3')	113.8 (7)
C(9)-B(8)-C(13)	122.6 (4)	C(3')-B(4')-B(5')	106.8 (6)
Co-C(9)-C(M9)	121.3 (4)	B(4')-B(5')-B(6')	102.7 (5)
C(3)-C(9)-C(M9)	115.4 (4)	B(5')-B(6')-C(2')	107.1 (5)
B(4)-C(9)-C(M9)	116.5 (4)		

entirely feasible, and work along these lines continues.

The structural characterization of the mixed-ligand complex 6a furnishes additional evidence of the reliability and generality of the skeletal electron-counting correlations as embodied in PSEPT. The structures of 6a and the $(C_4B_8)_2$ Co system described in the preceding paper, together with earlier work,¹⁰⁻¹² demonstrate that the PSEPT approach is valid for cages at least as large as fragments of 14- and 15-vertex polyhedra. As more such structures are revealed, it will be interesting to see just how far the theory correlates with observation in this realm of large boron clusters.

Experimental Section

Materials and Instrumentation. The carboranes $Et_4C_4B_8H_8$ and *nido*-2,3- $Et_2C_2B_4H_6$ were prepared by previously reported methods.¹⁵ Anhydrous iron(II) chloride (Alfa) was dried at high temperature in vacuo before use. Other reagents and materials, and the instrumentation employed, were as described in the preceding paper.¹

Reaction of Na⁺₂Et₄C₄B₈H₈²⁻ with CoCl₂ Followed by Na⁺Et₂C₂B₄H₅⁻. A 100-mL three neck flask was charged with 1040 mg (4 mmol) of Et₄C₄B₈H₈ and placed in a liquid-nitrogen bath. Sodium naphthalenide (NaC₁₀H₈, 8 mmol in 35 mL of THF) was added, and the mixture was warmed to room temperature, the dark green solution acquiring the yellow color of Et₄C₄B₈H₈²⁻. After the solution was cooled to -63 °C, 1560 mg (12 mmol) of anhydrous CoCl₂ was added in vacuo. The mixture was warmed to room temperature and stirred for 2 h, causing it to turn dark brown. After it was cooled in liquid nitrogen, a solution of Na⁺Et₂C₂B₄H₅⁻ (obtained by reaction of 4 mmol of Et₂C₂B₄H₆ with 6 mmol of NaH in THF) was introduced to the reactor via filtration in vacuo, and the mixture was again warmed to room temperature and stirred for 2 h, during which the color turned black.

The reaction mixture was exposed to the atmosphere and stirred for 1 h, after which the THF solvent was removed on a rotavaporator and the residue extracted with CH_2Cl_2 . After removal of the insolubles by filtration, the filtrate was rotavaporated and the residue placed on top

 ^{(15) (}a) Maynard, R. B.; Grimes, R. N. Inorg. Synth. 1983, 22, 215. (b) Maynard, R. B.; Borodinsky, L.; Grimes, R. N. Inorg. Synth. 1983, 22, 211.

Carbon-Rich Metallacarboranes

of a silica gel column and eluted successively with hexane, 1:1 hexane/ CH₂Cl₂, and CH₂Cl₂, after which all these fractions were combined, the solvent was removed by rotavaporation, and the residue was heated at 50 °C in vacuo to remove naphthalene. The remaining residue was placed on preparative silica TLC plates and eluted with hexane followed by 1:1 hexane/CH₂Cl₂. Over 20 bands were observed, most of which were in very small quantity and were not collected. The products isolated and characterized, in order of elution, were as follows. Colorless Et₆C₆B₁₂H₁₂ (8): yield 10 mg; R_f (hexane) 0.92; mass spectrum (EI) cutoff at m/e391 (parent, ${}^{13}C_{17}^{12}C_{17}^{11}B_{12}^{11}H_{42}^{+}$, intensity pattern corresponding to $C_{18}B_{12}$). Golden (Et₄C₄B₈H₇)₂Co₂ (2b): yield 50 mg (0.078 mmol); R_f (hexane/CH₂Cl₂) 0.82; identified¹ from its ¹¹B NMR spectrum and R, value. Compound 2b is completely air stable in both solution and the solid state. Purple $(Et_2C_2B_4H_4)Co(Et_4C_4B_8H_7OC_4H_8)$ (6a): yield 80 mg (0.15 mmol); R_f (hexane/CH₂Cl₂) 0.52; mp 158 ± 1 °C; high *m/e* 521 (parent, ¹³Cl²C₂₁¹¹B₁₂)¹⁶O¹H₄₉⁵⁹Co⁺, C₂₂B₁₂OCo pattern); ¹H NMR $(CDCl_3; t = triplet, m = multiplet, s = singlet) 0.80 t, 1.02 t, 1.10 t, 1.18$ t, 1.40 m, 1.45 t, 1.68 m, 2.00 m, 2.12 s, 2.20 m, 2.40 m, 2.58 m, 2.70 m, 5.08 s. Compound 6a is completely air stable. Green $(Et_4C_4B_8H_8)_2CoH(OC_4H_8)$ (3b): yield 15 mg (0.03 mmol); R_f (hex-ane/CH₂Cl₂) 0.50; mp 82 °C dec; high m/e 653 (parent, ${}^{13}C^{12}C_{27}{}^{11}B_{16}{}^{16}O^{1}H_{65}{}^{59}Co^{+}, C_{28}B_{16}OCo pattern)$; ¹H NMR (CDCl₃) 0.88 t, 0.97 t, 1.00 t, 1.12 t, 1.25 s, 1.54 s, 2.16 s, 5.21 s, 5.29 s. This compound is not air sensitive but decomposes in vacuo at room temperature and must be stored in a freezer. Orange $(Et_4C_4B_8H_7)_2CoH$ (4b): yield (60 mg (0.10 mmol); R_f (hexane/CH₂Cl₂) 0.46; mp 86 °C dec; high m/e 579 (parent, ¹³C¹²C₂₃¹¹B₁₆¹H₅₅⁵⁹Co⁺, C₂₄B₁₆Co pattern); ¹H NMR (CDCl₃) 0.88 t, 0.98 t, 1.11 t, 1.16 m, 1.25 m, 1.52 s, 2.17 s, 2.38 m, 2.70 m. This compound survives brief exposure to air but exhibits some air sensitivity over long periods (hours).

The product residues remaining on the silica column were eluted with a 1:1:1 mixture of acetone, hexane, and CH₂Cl₂, which gave a large red-brown band and two very small bands, which were not characterized.

The large band was red-brown $(Et_2C_2B_4H_3)Co(Et_4C_4B_8H_6OC_4H_8)$ (7): yield 132 mg (0.26 mmol); R_f (1:1:1 acetone/hexane/CH₂Cl₂) 0.51; mp 138 °C dec; high m/e 519 (parent, ${}^{13}C^{12}C_{21}{}^{11}B_{12}{}^{16}O^{1}H_{47}{}^{59}Co^+$, $C_{22}B_{12}{}^{-1}$ OCo pattern); ¹H NMR (acetone-d₆) 1.20 s, 2.05 s, 2.10 s, 2.14 s, 2.60 s, 2.90 s (broad), 3.80 s. Compound 7 is moderately air stable, decomposing slowly (days) in solution.

Iodination of 6a. A 40-mg sample of **6a** and 5 mg of I_2 were placed in a 50-mL flask, 20 mL of hexane was added, and the mixture was stirred for 1 h, after which O_2 was bubbled into the solution for another 1 h. Following removal of solvent by evaporation, the residue was extracted with hexane and developed on a TLC plate. A few milligrams of green $(Et_2C_2B_4H_4)Co(Et_4C_4B_8H_8)(I)(OC_4H_8)$ (6b), R_f 0.55, was collected and characterized mass spectroscopically (high m/e 649, parent ion ${}^{13}C^{12}C_{21}{}^{11}B_{12}{}^{16}O^{127}I^{1}H_{50}{}^{59}Co^{+}$, $C_{22}B_{12}OICo$ pattern, with intense fragments corresponding to $Et_4C_4B_8H_8OC_4H_8^+$). Several other small bands were observed but not collected.

Reaction of $Na^+_2Et_4C_4B_8H_8^{2-}$ with FeCl₂ Followed by $Na^+Et_2C_2B_4H_5^{--}$. A solution of the disodium salt of $Et_4C_4B_8H_8^{2-}$, prepared from 4 mmol of the neutral carborane as described above, was cooled to -15 °C, and 12 mmol of anhydrous FeCl₂ was added in vacuo. The dark green mixture was allowed to warm to room temperature and stirred for 2 h, during which it turned dark brown. A 4-mmol sample of Na⁺Et₂C₂B₄H₅⁻ in THF, prepared as described above, was added to the mixture, and stirring was continued overnight. The mixture was exposed to the atmosphere, stirred for 30 min, extracted with 1:1 CH₂Cl₂/acetone, and filtered through a 3-cm layer of silica. The solvent was removed by evaporation and the residue placed on a silica gel column and eluted with hexane followed by 1:1 hexane/CH₂Cl₂ and finally 1:1 acetone/CH₂Cl₂. The first band ($R_f 0.88$ in hexane) was red ($Et_2C_2B_4H_4$)(OC_4H_8)Fe- $(Et_4C_4B_8H_8)$ (9a): yield 50 mg; high m/e 519 (parent, ${}^{13}C^{12}C_{21}{}^{11}B_{12}{}^{16}O^{1}H_{50}{}^{56}Fe^+$, $C_{22}B_{12}OFe$ pattern). Band 2 (R_f 0.45 in hexane; 0.69 in 1:1 hexane/CH₂Cl₂) was red (Et₂C₂B₄H₃)FeH₂- $(\text{Et}_4\text{C}_4\text{B}_8\text{H}_7)$ (10): yield 25 mg; high m/e 447 (parent, $^{13}\text{C}^{12}\text{C}_{17}^{-11}\text{B}_{12}^{-11}\text{H}_{42}^{-56}\text{Fe}^+$, $C_{18}\text{B}_{12}\text{Fe}$ pattern). Band 3 (R_f 0.64 in 1:1 hexane/CH2Cl2) was purplish black 9b, yield 15 mg (high mass 519, isomeric with 9a, vide supra; parent envelope similar to that of 9a, corr sponding to a $C_{22}B_{12}OFe$ pattern). Band 4 (R_f 0.65 in 1:1 acetone/ CH₂Cl₂) was red (Et₄C₄ $\overline{B_8H_7}$)FeH(Et₂C₂ $\overline{B_3H_4}$) (11): yield 165 mg; high m/e 433 (P - 3, ¹³C¹²C₁₇¹¹ $\overline{B_{11}}$ ¹¹ $\overline{H_{39}}$ ⁵⁶Fe⁺, C₁₈ $\overline{B_{11}}$ Fe pattern).

X-ray Structure Determination on (Et₂C₂B₄H₄)Co(Et₄C₄B₈H₇OC₄H₈) (6a). Single crystals of 6a were grown by slow evaporation from CH_2Cl_2 solution, and a selected crystal $(0.60 \times 0.60 \times 0.40 \text{ mm})$ was mounted on a glass capillary and examined by precession photography, from which it was determined to be acceptable for data collection. Table III lists the data collection parameters and crystal data. The cell dimensions and space group were found by standard methods on an Enraf-Nonius CAD-4 diffractometer equipped with a graphite monochromator, and the θ -2 θ scan technique was employed¹⁶ to record the intensities of all nonequivalent reflections for which $1.5^{\circ} < 2\theta < 53^{\circ}$. Scan widths were calculated as $A + B \tan \theta$, where A and B are defined as in the accompanying paper¹ and had values of 0.60 and 0.35, respectively. Octants collected were $+h,+k,\pm l.$

The intensities of three standard reflections showed fluctuations no greater than those expected from Poisson statistics. The raw intensity data were corrected for Lorentz-polarization but not for absorption. Of the 4178 independent intensities, there were 2013 with $F_0^2 > 3\sigma(F_0^2)$, where F_o^2 was estimated from counting statistics.¹⁷ These data were used in the final refinement of the structural parameters.

A three-dimensional Patterson synthesis was employed to locate the cobalt atom, which in turn allowed the remaining non-hydrogen atom positions to be determined. Full-matrix least-squares refinement was carried out as described elsewhere.¹⁶ The atomic scattering factors for non-hydrogen atoms were taken from Cromer and Waber¹⁸ and those for hydrogen from Stewart et al.¹⁹ The effects of anomalous dispersion for all non-hydrogen atoms were included in F by using the values of Cromer and Ibers²⁰ for $\Delta F'$ and $\Delta F''$.

Additional Fourier difference functions permitted location of the non-methyl hydrogen atoms, which were included in the refinement for two cycles of least-squares refinement and then held fixed in subsequent cycles.

The model converged with R = 0.057 and $R_w \approx 0.061$. A final Fourier difference map was featureless. Listings of the observed and calculated structure factors, and of calculated thermal parameters, are available (see information on supplementary material).

Acknowledgment. The assistance of Dr. T. L. Venable in recording the ¹¹B NMR spectra is gratefully acknowledged. This work was supported by the National Science Foundation, Grant No. 81-19936.

Supplementary Material Available: Listings of observed and calculated structure factors, anisotropic thermal parameters, and calculated mean planes (18 pages). Ordering information is given on any current masthead page.

- (16) Freyberg, D. P.; Mockler, G. M.; Sinn, E. J. Chem. Soc., Dalton Trans. 1976, 447
- (17) Corfield, P. W. R.; Doedens, R. J.; Ibers, J. A. Inorg. Chem. 1967, 6, 197.
- Cromer, D. T.; Waber, J. T. "International Tables for X-ray Crystallography"; Kynoch Press: Birmingham, England, 1974; Vol. IV.
 Stewart, R. F.; Davidson, E. R.; Simpson, W. T. J. Chem. Phys. 1965,
- 42, 3175
- (20) Cromer, D. T.; Ibers, J. A. In ref 18.