Electronic Structure of the Triiodide Salt of the Asymmetric, Mixed-Valence Cation (3-Acetylfulvalene) (fulvalene)diiron(1 +)

MICHAEL F. MOORE and DAVID N. HENDRICKSON*

Received June *4, 1984*

The extent of delocalization is studied in the triiodide salt **of** the mixed-valence cation **(3-acetylfulvalene)(fulvalene)diiron(** l+). A single quadrupole-s₁ it doublet is seen in the 4.5 K Mössbauer spectrum of this salt. A relatively (for mixed-valence biferrocenes) isotropic EPR signal with g values of 2.340, 2.000, and 1.915 is seen for this solid at 77 K. An IT band at 7140 cm⁻¹ $(\epsilon = 1740$ M^{-1} cm⁻¹) is evident in the electronic absorption spectrum. The IR spectrum also indicates a delocalized electronic structure with a C-H ring-bending band at 840 cm-I. There is no potential energy barrier **for** electron transfer in the **bis(fulvalene)diiron(l+)** mixed-valence ion. The addition **of** a single electron-withdrawing acetyl substituent does not seem to change this situation.

Introduction

Mixed-valence transition-metal complexes have proved useful in the study of electron transfer between distant metal ions.¹⁻¹ Very recently the Creutz-Taube (C-T) complex, $[(NH₃)$ _sRu- $(pz)Ru(NH₃)₅$ ⁵⁺, has been reexamined with a battery of physical techniques.⁴ It was still not possible to decide whether the odd electron in the C-T ion is trapped on one ruthenium ion or delocalized over both.

The introduction of asymmetry into the C-T ion by replacing the five $NH₃$ ligands on one of the ruthenium ions by one Cl⁻ and two bpy ligands has a dramatic effect.³ The intervalence-transfer (IT) electronic absorption band in the near-IR moves from 8.8 \times 10³ cm⁻¹ (ϵ = 5,500 M⁻¹ cm⁻¹) for the C-T ion to 14.4 \times 10³ cm⁻¹ (ϵ = 530 M⁻¹ cm⁻¹) for $[(bpy)_2CIRu(pz)Ru(NH_3)_5]^{4+}$. This latter ion clearly has a weaker electronic interaction between the two different ruthenium ions than is present in the C-T ion, which results in a class II description and the presence of $Ru^{III}(NH_3)$, and $Ru^{II}(bpy)$, CI moieties.⁵ Several other asymmetric, mixedvalence ruthenium complexes have been studied.³ However, there is no direct information about the electron-transfer rate in these or, for that matter, any mixed-valence ruthenium complex. The electron-transfer rate has only been indirectly characterized by analyzing the IT band.

Recently a series of binuclear mixed-valence Cu^HCu^I complexes with seven different, but related, binucleating macrocyclic ligands was reported.6 Variable-temperature EPR data were used relatively directly to characterize the intramolecular electron-transfer rate for solutions of these complexes. It was found that the introduction of even an apparently small amount of asymmetry in these Cu^{II}Cu^I complexes (with the two copper coordination sites different) affected the electron-transfer rate.

Cowan et al.' have probed the effects of asymmetric substitution on the mixed-valence monocation of biferrocene. Biferrocenes were investigated that had a single substituent either at the *2* position of the fulvalenide ligand or on one of the cyclopentadienide ligands. Mixed-valence ions were generated electrochemically to determine the IT band. The decrease in intensity and movement to higher energy of the IT band for the mixed-valence biferrocene with a single substituent compared to the IT band for unsubstituted mixed-valence biferrocene suggested that the asymmetry in the complex reduced the electron-transfer rate.

In this paper a variety of physical techniques has been used to determine directly if there is any change in the electron-transfer

- (1) 'Mixed-Valence Compounds, Theory and Applications in Chemistry, Physics, Geology, and Biology"; Brown, D. **B.,** Ed.: D. Reidel Publishing Co.: Boston, 1980.
-
-
- Day, P*. Int. Rev. Phys. Chem.* 1<mark>981</mark>, *1*, 149.
Creutz, C. *Prog. Inorg. Chem.* 1**983**, 30.
Fürholz, U.; Bürgi, H.-B.; Wagner, F. E.; Stebler, A.; Ammeter, J. H.;
Krausz, E.; Clark, R. J. H.; Stead, M. J.; Ludi, A*. J. A* **1984,** 106, 121-123.
- Callahan, R. W.; Keene, F. R.; Meyer, T. **J.;** Salmon, D. **J.** *J. Am. Chem. SOC.* **1977,** *99,* 1064-1073.
- Long, R. *C.;* Hendrickson, D. N. *J. Am. Chem. SOC.* **1983,** *105,* 1513-1521.
- Le Vanda, C.; Bechgaard, K. Cowan, D. 0.; Rausch, M. D. *J. Am. Chem. SOC.* **1977,** 99, 2964-2967. (7)

rate resultant upon adding a single acetyl substituent in the **3** position to the mixed-valence bis(fulvalene)diiron monocation,
1. The extents of valence delocalization have been investigated **1.** The extents of valence delocalization have been investigated

for I_3 ⁻ salts of 1 and 2 in the solid state. Physical techniques such as ⁵⁷Fe Mössbauer and EPR have proven to be very useful to characterize mixed-valence ferrocenes? in contrast to the case for mixed-valence ruthenium complexes.

Experimental Section

Physical Measurements. EPR spectra of powdered samples were recorded on a Varian E-9 X-band spectrometer. A quartz direct-immersion Dewar was employed to establish a sample temperature of 77 K. Powdered-sample EPR spectra were simulated with a previously reported⁹ computer program.

Infrared spectra were obtained with Nicolet Model 7 199 FTIR spectrometer equipped with a HgCdTe detector. All samples were prepared as 13-mm KBr pellets with 2-5 mg of compound mixed well with 150 mg of KBr.

Electronic absorption spectra were measured at room temperature with **a** Cary Model 14 spectrophotometer.

Iron-57 Mössbauer spectra were obtained with a constant-acceleration spectrometer that has been described.¹⁰ Least-squares fitting of the powdered-sample Mössbauer spectra with Lorentzian lines was carried out with a modified version of a previously reported computer program.¹¹

Compound Reparation. Elemental analyses were performed in the Microanalytical Laboratory of the School of Chemical Sciences.

Samples of bis(fulva1ene)diiron and **(3-acetylfulvalene)(fulvalene)di**iron were prepared according to literature procedures.¹² Both compounds were characterized with electron-impact mass spectrometry with parent peaks of 368 and 410, respectively, seen for the two metallocenes. **(3-Acetylfulvalene)(fulvalene)diiron** was further characterized with a 'H 360-MHz NMR spectrum (CDCl₃ solution) that had the same characteristics as the spectrum previously reported.¹² An IR spectrum for this same compound in a KBr pellet showed a very strong C-0 band at 1666 cm-l.

The triiodide salt of cation 2, $[Fe(\eta^{10}-C_{10}H_8)Fe(\eta^{10}-C_{10}H_9)]$ $C_{10}H_8COCH_3$] I_3 .¹/₄I₂, was prepared by dissolving 50 mg (0.197 mmol) **of** iodine in 40 mL **of** benzene. This solution was added to a stirred

- (8) Morrison, W. H., Jr.; Hendrickson, D. N. *Inorg. Chem.* **1975,** *14,* 2331-2346.
- (9) (a) Nilges, M. **J.** Ph.D. Thesis, University of Illinois, Urbana, IL, 1979. (b) Belford, R. L.; Nilges, M. **J.** EPR Symposium, 21st Rocky Moun**tain** Conference, Denver, CO, 1979. (c) A. M. Maurice, Ph.D. Thesis, University of Illinois, Urbana, IL, 1980.
- (10) Cohn, M. **J.;** Timken, M. D.; Hendrickson, D. N. *J. Am. Chem. SOC.* **1984,** 106,6683-6689.
- (11) Chrisman, B. L.; Tumolillo, T. A. *Comput. Phys. Commun. 1971,* **2,** 322.
- (12) Pittman, C. **U.,** Jr.; Surynarayanan, B. *J. Am. Chem. SOC.* **1974,** 96, 7916-7919.

Table I. Parameters Resultant from Least-Squares Fitting of ⁵⁷Fe Mossbauer Spectra^a

compd	7. K	$ΔE$ Ω		'nС	
$(3$ -acetylfulvalene $)$ (fulvalene $)$ diiron	4.5	2.281(2)	0.386(1)	0.159(2)	0.174(2)
$(3$ -acetylfulvalene)(fulvalene)diiron $(1+)$ $(I, \lceil \cdot \rceil / 4I, \text{ salt})$	4.5	l.667 (2)	0.396(1)	0.147(2)	0.148(2)
bis(fulvalene)diiron $(1+)$ $(I2$ salt)		1.754(3)	0.404(2)	0.177(3)	0.180(3)

 a $\Delta E_{\bf Q}$ and δ values are in mm/s; the estimated errors in the least-significant figures are given in parentheses. $\,$ b Isomer shift relative to iron metal. **C** Full width at half-height taken from thc Lorentzian fitting program. The width for the line at more negative velocity is listed first.

Figure 1. 4.5 **K** 57Fe Mossbauer spectrum for **(3-acetylfulvalene)(ful**valene)diiron(1+) $(I_1^{-1}/I_2$ salt). The velocity scale is referenced to iron metal.

solution of 50 mg (0.122 mmol) of **(3-acetylfulvalene)(fulvalene)diiron** in 30 mL of benzene. The green precipitate that formed was filtered and washed repeatedly with anhydrous ether. Anal. Calcd for washed repeatedly with anhydrous ether. $C_{22}H_{20}OFe₂I_{3.5}$: C, 30.85; H, 2.35. Found: C, 31.16; H, 2.02.

A sample of the I_3 ⁻ salt of cation 1 was prepared as reported before.

Results

Mössbauer Spectroscopy. ⁵⁷Fe Mössbauer spectra were run for the triiodide salts of cations **1** and **2** at liquid-helium temperature. Only one quadrupole-split doublet is seen in the spectra of these two mixed-valence compounds (see Figure 1 for an illustration of the spectrum of the triiodide salt of **2).** In each case, the spectrum was least-squares fit with Lorentzian line shapes to obtain the parameters given in Table I. The two spectra are quite similar; however, the quadrupole splitting (ΔE_{O}) for the salt of **2** (1.667 (2) mm/s) is somewhat smaller than that for the salt of **1.** Mossbauer data are also included in Table I for the unoxidized, neutral form of **2.**

Electron Paramagnetic Resonance. EPR spectra were run for 77 K polycrystalline samples of the triiodide salts of **1** and **2** these two spectra are illustrated in Figure 2 (tracing B is for the salt of **2** and tracing C for the salt of **1).** As can be seen the two EPR spectra are also quite similar. The spectrum for the triiodide salt of **2** was simulated with a computer program employing a rhombic **g** tensor with gvalues of 2.340, 2.000, and 1.915. This simulated polycrystalline-sample spectrum is shown as tracing A in Figure **2.**

Electronic Absorption Spectroscopy. The electronic absorption spectrum obtained for a room-temperature $CH₃CN$ solution of the triiodide salt of **2** is shown in Figure 3. **A** relatively intense $(\epsilon = 1740 \text{ M}^{-1} \text{ cm}^{-1})$ intervalence-transfer (IT) band is observed at 7140 cm^{-1} . This band is shifted to higher energy by 340 cm^{-1} compared to the IT band seen for the triiodide salt of 1 in CH₃CN (6800 cm⁻¹; $\epsilon = 1710 \text{ M}^{-1} \text{ cm}^{-1}$). The band widths at half-height for the IT bands observed for the CH₃CN solutions of 1 and 2 are 3250 and 4000 cm^{-1} , respectively.

Infrared Spectroscopy. It has been shown that the perpendicular, cyclopentadienyl C-H bending modes observed in the 800-850 cm-' region for mixed-valence ferrocenes reflect the oxidation state of the iron ions.¹³ This band is seen at 815 cm^{-1} for ferrocene, whereas, for ferrocenium triiodide the C-H bending mode appears at 851 cm⁻¹

Infrared spectra in the C-H bending region are illustrated in Figure 4 for a KBr pellet of the unoxidized $Fe₂$ ^{II} form of cation **2** (upper tracing) and for a KBr pellet of the triiodide salt of **2** (lower tracing). There is one strong band seen at 806 cm^{-1} for the unoxidized compound. This is typical for iron(I1) metallocenes. Only one absorption band at 840 cm^{-1} is seen for the triiodide salt of **2.** The perpendicular C-H bending band observed for a

Figure 2. X-Band **EPR** spectra: (A) computer simulation of the spectrum obtained on the triiodide cation of **2;** (B) 77 K powder spectrum for **(3-acetylfulvalene)(fulvalene)diiron(** 1 +) **(13--l/J2** salt); *(C)* 77 K powder spectrum for bis(fulvalene)diiron(1+) (I₅⁻ salt).

Figure 3. Electronic absorption spectrum at room temperature for the mixed-valence cation of **2** in acetonitrile.

variety of ferrocenium salts occurs in the $850-860$ cm⁻¹ region. Thus, the 840-cm-' band seen for the triiodide salt of **2** is intermediate in value between what is seen for the unoxidized form of **2** and for iron(II1) metallocenes. It is clear that the mixedvalence cation in the triiodide salt of **2** is delocalized on the IR time scale.

Discussion

At the outset of this study it was thought there was some probability that the introduction of a single acetyl substituent on the mixed-valence bis(fulva1ene)diiron cation would lead to an appreciable change in the potential energy barrier for electron transfer. Previous to this study it was known that cation **1** has a completely delocalized ground state with no electron-transfer barrier present. The acetyl substituent acts as an electron-with-

⁽¹³⁾ Kramer, **J. A.;** Hendrickson, **D. N.** *Inorg. Chem.* **1980,** *19,* **333C-3337.**

Figure 4. Infrared spectra of the perpendicular C-H bending region obtained at room temperature on KBr pellets of unoxidized neutral form of **2** (top) and the triiodide salt of **2** (bottom).

drawing group, increasing the oxidation potential of a ferrocene. For example, the oxidation potential of acetylferrocene is 0.790 **V** (vs. SCE) compared to 0.540 V for unsubstituted ferrocene.⁷ The introduction of a single acetyl substituent on **1** to give **2** could lead to an appreciable zero-point energy difference between the two different vibronic states for **2.**

Contrary to our simple expectations, we found that the mixed-valence cation **2** has a delocalized ground state. A single quadrupole-split doublet is seen at 4.5 K in the Mössbauer spectrum for the triiodide salt of **2.** The EPR spectra for the triiodide salts of **1** and **2** look very similar, but quite different from the EPR spectra seen for EPR-localized mixed-valence biferrocenes. The IR spectrum and intensity of IT band for the triiodide salt of **2** also point to a delocalized ground electronic state for **2.**

The observation that the single unpaired electron in cation **2** is delocalized over both halves of the molecule indicates that the electron-withdrawing nature of the acetyl substituent has had little effect on the electronic structure of the bis(fulva1ene)diiron cation. This very likely results from the fact that there is a strong electronic coupling between the electronic manifolds of the two iron ions in both **1** and **2.** There is no barrier for electron transfer. The single unpaired electron in **2** is located in a molecular orbital that has comparable contributions from both metallocene moieties.

In fact, the very recent report by Hillman and Kvick¹⁴ of the X-ray structure of the picrate hemihydroquinone salt of **1** indicates the nature of the strong Fe-Fe electronic coupling in **1** and **2.** They found that the Fe-Fe distance (3.636 (1) **A)** in mixed-valence 1 is 0.35 Å shorter than in the corresponding neutral Fe₂¹¹ complex. The bis(fulvalene)diiron framework distorts upon oxidation to **1** so as to increase the direct Fe-Fe interaction in the mixed-valence cation. Such a direct Fe-Fe interaction had previously been suggested⁸ as the explanation for the diamagnetism of the dioxidized Fe;I1 analogue of **1.** Apparently a direct Fe-Fe interaction is maintained in **2,** and this explains why the acetyl substituent does not have much effect on the extent of delocalization.

Acknowledgment. We are grateful for support from NIH Grant HL13652.

(14) Hillman, **M.;** Kvick, A. *Organometallics* **1983,** *2,* 1780-1785.

Contribution **from** the Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 4522 1

Matrix-Isolation Study of Oxide-Transfer Reactions to Halogen-Containing Lewis Acids: Synthesis of the CO₂F₂²⁻ Anion and Attempted Synthesis of the BF₃O²⁻ Anion

SHELLE J. DAVID and BRUCE **S.** AULT*

Received July 24, 1984

The oxide-transfer technique has been coupled with matrix isolation in an attempt to synthesize and characterize the BF_3O^2 and $CO_2F_2^2$ anions, through the reaction of Tl₂O with either BF_3 or COF_2 . In the latte observed; one agreed well with the absorptions of the known CO_2F anion. The second set has been assigned to the $CO_2F_2^2$ anion in the matrix-isolated $T1^+2CO_2F_2^2$ triple ion, which rapidly eliminated TIF upon warming to form the $T1^+CO_2F^2$ anion. Attempts to synthesize the BF_3O^2 anion in a similar fashion were not successful, suggesting that previous reports of the room-temperature synthesis of this anion are incorrect.

Introduction

The salt/molecule technique' was developed 10 years ago for the synthesis of unusual and highly reactive anions in inert matrices. This technique was initially employed for the transfer of a halide anion to a variety of Lewis acids to form the desired anion in a matrix-isolated ion pair.²⁻⁶ Recently, the oxide-transfer technique7 was developed in which an oxide anion *02-* is trans-

-
-

ferred from $T1_2O$ to a suitable acceptor, to form an oxyanion in a matrix-isolated triple ion. Species that have been formed in this manner⁷⁻⁹ include CO_3^2 ⁻, CO_2S^2 ⁻, COS_2^2 ⁻, SO_3^2 ⁻, and $S_2O_5^2$ ⁻. A direct, and important, extension of this technique would be to the reaction of Tl_2O with halogen-containing Lewis acids such as BF_3 and $COF₂$. For these systems, not only is the addition reaction feasible to form the product oxyanion, but a variety of elimination reactions may occur to form further products.

The synthesis of the BF_3O^{2-} anion was the first reported in the late 1950s, and spectroscopic characterization followed thereafter.¹⁰⁻¹⁴ However, since that time researchers have demon-

⁽¹⁾ Ault, B. S. ACS Symp. Ser. 1982, No. 179, 327.
(2) Ault, B. S.; Andrews, L. J. Chem. Phys. **1975**, 63, 2466.
(3) Ault, B. S.: *Inorg. Chem. 1979, 18,* 3339.
(4) Ault, B. S. J. Phys. Chem. **1979**, 83, 837.

⁽⁵⁾ Garber, K.; Ault, B. S. *Inorg. Chem.* **1983**, 22, 2509.
(6) Wermer, P.; Ault, B. S. *Inorg. Chem.* **1981**, 20, 970.
(7) David, S. J.; Ault, B. S. J. *Phys. Chem.* **1982**, 86, 4618.

⁽⁸⁾ David, *S.* J.; Ault, B. **S.** *Inorg. Chem.* **1984,** *23,* 1211.

⁽⁹⁾ David, *S.* J.; Auk, **B.** *S. Inorg. Chem.* **1985,** *24,* 1048.