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and 25 OC, and a value exceeding 100 M-' does not seem to be 
reported so far. Further, the association constants obtained for 
I-IV increase as the acidity of the complexes increases, and a good 
linear correlation between log K and pKa may be observed in 
Figure 7. A linear regression analysis for the malonate and sulfate 
systems yields 0.98 and 0.90 as the correlation coefficients, but 
these figures should not be taken too literally because of rather 
large uncertainties in pKa values and some K values. Thus, log 
K can also be correlated with pKa, alone rather well. Even with 
these reservations, the correlation seems satisfactory. With the 
CD changes in Figure 5 and the correlation in Figure 7 taken 
together, it appears reasonable to conclude that the malonate and 
sulfate anions approach the complex cations from the D3 equatorial 
direction and hydrogen bond, via two oxygen atoms of the anions, 
to two N H  hydrogens of the cations, and the stability of the ion 
pairs is governed by this double hydrogen bonding. 

It seems pertinent to consider here the factors that may affect 
the value of the outer-sphere association constant in aqueous 
solution. Here, we will confine our discussion to such complexes 
that do not contain very hydrophobic ligands, as typified by 
1 ,lo-phenanthroline or 2,2'-bipyridine. For complexes with an 
overall charge of 1+ or 2+, we have pointed out that the dominant 
factor is the size of the interacting ions; as the ions get largerI6 
and hence assume more and more the character of water-structure 
breaker," the association constant increases. Here, it was noted 
that it is the crystallographic volume, not the hydrodynamic 
volume, of the ions that governs the association constant. This 
appears to be suggestive of contact ion pairs. For complexes with 
an overall charge of 3+, it is certain that interionic electrostatic 
force usually contributes significantly. This will be readily ap- 
preciated if we note a general trend in association constant that 
tripositive complex cations exhibit much larger association constant 
for most simple anions like C1-, Br-, NO3-, Sod2-, or S2032- than 
monopositive and dipositive complex cationsFc However, a cursory 
examination of previous results reveals immediately that the 
electrostatic force alone may not explain the variation of K values. 
For example, the K values of [ C ~ ( e n ) ~ ] ~ +  for 0- and p-phthalate 
dianions are repoted to be about 65 and 2.8 M-I, respectively, a t  
p = 0.1 (NaC104) and 25 O C . l j  Likewise, large differences in 
K values of perhaps a similar nature can also be found for [Co- 
(en)3]3+-.maleate/fumarate and [C0(en)~]~+...cis-l,2-/1,4- 
cyclohexanedicarboxylates (48 vs. 3.5 M-' and 70 vs. 8.5 M-I, 
respectively, under the same condition as ab~ve) , ' j - '~  despite the 

(16) Pethybridge, A. D.; Spiers, D. J. J.  Chem. Soc., Faraday Trans. I ,  1976, 

(17) Yoneda, H.; Wakida, S.; Nakazawa, H.; Sakaguchi, U. Bull. Chem. 
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same 3+/2- combination. Since such large differences in K values 
may not be accommodated by a simple electrostatic considerationI8 
and only those anions that can allow both carboxyl groups to take 
part in bonding to N H  hydrogens of the cation simultaneously 
exhibited large K values, the importance of hydrogen bonding has 
been stressed.I4 Therefore, it may be inferred that both elec- 
trostatic force and hydrogen bonding contribute significantly for 
tripositive complexes. The relative importance of the two effects 
has not always been assessed. We believe that the present result 
provides an unequivocal example where ion pairing is controlled 
by (double) hydrogen bonding. 

The results presented in Figure 7 might appear a t  first sight 
to suggest that the K values of ordinary complexes with pKa > 
14 are dominated by factors other than hydrogen bonding; hy- 
drogen bonding plays a minor role in [Co(en),I3+. Though double 
hydrogen bonding with [Co(en),13+ as depicted in Figure 6 is 
equally plausible structurally as for the present complexes, a 
completely different mode of association has been proposed for 
[C~(en) , ]~ ' . ' "~.~ In the ion pair [C0(en),]~+-.S0~-, for example, 
the sulfate ion has been assumed to approach the cation along 
the cation's C3 axis and hydrogen bond, through three oxygen 
atoms, to three NH hydrogens of the cation that are oriented in 
the C3 direction. For the dicarboxylate anions cited above, a 
similar C3 access has been postulated. Therefore, it may be 
inappropriate to discuss [Co(en),13+ and the present complexes 
on the same basis. 

From Figure 7 and Table I, it is seen that the association 
constant with malonate is rather similar to that with sulfate for 
all the complexes investigated in this work. This similarity in K 
values is puzzling for the present systems, where the dominant 
factor in K is most probably the hydrogen bonding; in hydro- 
gen-bonded systems, the K values are expected to depend not only 
on the acidity of the complexes but also on the basicity of the 
anion.Is This reasoning leads us to expect that the sulfate ion 
should have smaller K values than the malonate ion, because the 
former is less basic than the latter. Though the difference in K 
values is not large, especially for IV, the results in Table I do not 
appear to support this expectation. In this contrast, it may be 
worhwhile to point out that such an expectation is not fulfilled 
also for systems like [C~(en)~]~+~-dicarbooxylate dianions, where 
hydrogen bonding is considered to be the dominant contributor. 
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It is shown that the rules for determining the parameter X of the topological electron-counting (TEC) theory or its generalized 
version can be justified within the framework of molecular orbital theory. The parameter X can be interpreted as the number 
of "missing" antibonding cluster orbitals, or more precisely X =' E - A ,  where E is the number of edges and A is the number of 
antibonding cluster orbitals. It is also shown that the number of bonding cluster orbitals corresponds to the number of skeletal 
electron pairs in the context of the widely used skeletal electron pair (SEP) theory. Consequently, both rules can be derived from 
molecular orbital calculations and vice versa. Qualitative correlation and interaction diagrams are constructed for the conversion 
of prisms to antiprisms, pyramids to bipyramids, and prisms to bicapped prisms. Multiple X values, and hence multiple electron 
counts, for certain polyhedral clusters are also justified and illustrated with examples. 

Introduction 
Recently we developed a new topological electron-counting 

(TEC) theory for polyhedral metal clusters based on Euler's 
theorem and the effective atomic number (EAN) rule for transition 
metals.' This theory was subsequently generalized to include 

polyhedral clusters containing both main-group and transition- 
metal elements.2 This simple electron-counting rule can be used 

(1) (a) Teo, B. K. Inorg. Chem. 1984, 23, 1251. (b) Teo, B. K.; Longoni, 
G.; Chung, F. R. K. Inorg. Chem. 1984, 23, 1257. 
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to correlate the known structures as well as to predict the yet 
unknown geometries of a wide range of polyhedral clusters of 
varying nuclearity, including boranes, carhanes, carboranes, 
metallaboranes, metallacarboranes, and main-group and/or 
transition-metal clusters, etc.3-5 It also provides a better un- 
derstanding of the interrelations and/or transformations of various 
cluster geometries. 

Central to the TEC theory is the evaluation of the "adjustment" 
parameter X, which, until now, has been qualitatively interpreted 
as either (1) the number of electron pairs "in excess" of the EAN 
and/or octet rule or (2) the number of 'false" bonds (assuming 
that each polyhedral edge corresponds to a twc-center hv*electron 
bond). A more quantitative interpretation of the parameter X 
is that it corresponds to the number of "missing" antibonding 
cluster orbitals (when compared with the number of edges, viz., 
nearest neighbor contacts). In this latter context, one should be 
able to justify the rules for determining the parameter X within 
the framework of molecular orbital theory. In this paper, we wish 
to show that the rules for determining the parameter X can easily 
be derived from molecular orbital calculations. This quantitative 
measure of the parameter X provides not only an independent 
verification of the validity of the rules hut also a new way of 
calculating the parameter X for polyhedra for which the appli- 
cations of the rules are not straightforward. 

In a related work,' we also demonstrated that the number of 
skeletal electron pairs, in the context of skeletal electron pair 
(SEp) theory$ can be calculated from the parameter X. The TEC 
method therefore provides an alternative and sometimes com- 
plementary means of evaluating the number of skeletal electron 
pairs for polyhedral clusters.' In this paper, it will be shown that 
the number of skeletal electron pairs can be given by the number 
of bonding cluster orbitals and, therefore, is indirectly related to 
the parameter X, which is q u a l  to the number of "missing" 
antibonding cluster orbitals. 

A useful utility of the TEC theory is that it allows us to evaluate 
the number of bonding and antibonding cluster orbitals from the 
parameter X (which can be determined readily from the rules) 
without extensive molecular orbital calculations. However, it 
shoqld be emphasized that, in contrast to molecular orbital cal- 
culations, and as with any other electron-counting rules, the 
method provides no detailed information concerning the symmetry 
and/or energetics of orbital interactions (except the number of 
such interactions) within the cluster. 

Also d i d  are the correlation and interaction diagrams for 
the conversion of prisms to antiprisms, pyramids to bipyramids, 
and prisms to bicapped prisms. 

(2) Tp, B. K., submitted for publication. 
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Table 1. Rules for X 

highest symmetry axis 

rule polyhedron 3 4 5 6 1  

1 3annected 0 0 0 0 0  
2 capping" 0 1 2 3 4  
3 pyramid 0 0 0 0 0  
4 bipyramidb F,Zd le.d, 3d 2e,d 3'ld qcZd 
5 antiprism@ 1 3,1 3 3 3  
6 vertex-or X =  S (no. of shared vertices or edges) 

edee-sharine " I 

face-sharing X = -H (no. of hidden edges, if any) 
I perturbation AX< AF+ Y 

a Capping an n-gonal face changes X by n - 3. The X value 
for bipyramids can be determined either by capping the corres- 
ponding pyramids or by counting the number of anribonding 
Hiickel orbitals. e X value determined by capping. Xvalue 
determined by counting the antibonding Hiickel orbitals. e The 
X value for antiprisms can be determined by counting the bonding 
HUckel orbitals. 

(b) (01 

Figure 1. (a) Structure of As,Co(CO),, a tetrahedral cluster. (b) Pic- 
torial reprwntation of the topological electron pairs, T (outer circle), 
and the skeletal electron pairs, B (inner circle). See text for more details. 

Multiple X values (and hence multiple electron counts) for 
certain polyhedral clusters are also justified within the framework 
of molecular orbital theory and illustrated with some representative 
examples. 
Topological Electron-Counting Theory 

theorem states that 
For a polyhedron with Vvertices, F faces, and E edges, Euler's 

E =  V +  F - 2  (1) 

v =  V"+ v, (2) 
Let 

where V. and V, are the numbers of vertex atoms having the 
tendency to conform to the 8- and 18-electron noble-gas config- 
uration (viz., the octet and the effective atomic number rules), 
respectively. Assuming that each edge can be considered as a 
two-center electron-paired bond, the total electron count is 

N = 8V. -t lev, - 2E 
Note that N includes all valence electrons from the vertex atoms 
as well as electrons donated by the ligands or the encapsulated 
atoms to the cluster. The total number of topological electron 
pairs is 

(4) 
In general, T corresponds to Lauher's cluster valence molecular 
orbitals (CVMO)? Substituting eq 1 and 2 into eq 4 gives 

( 5 )  
However, for a delocalized system, not all edges of the polyhedron 
can be considered as twecenter tw*electron bonds. This implies 
that a correction factor X must be added to eq 5:  

(3) 

T = N / 2  = 4V. + 9V,- E 

T = 3Vn + 8Vm - F + 2 

(8) (a) Lauher. J .  W J. Am. Chtm. Soc. 1978. IW. 5305 (b) Lauher. J. 
W. J. Am. Chem. Soe. 1919. 101. 2604 (c) Lauhcr. J. W. J. &#a- 
nomer. Chem 1981.213. 25 .  
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T =  N / 2  = 3V, + SV, - F + 2 + X (6) 
where X i s  the number of "extra" electron pairs "in excess" of the 
effective atomic number (EAN) rule. The rules for estimating 
the parameter X are summarized in Table I. Note that eq 6 is 
a generalized version of the TEC rule.'s2 

We shall illustrate the utility of the TEC theory with an ex- 
ample, A s ~ C O ( C O ) ~ , ~  shown in Figure la. With V, = 3, V, = 
1, F = 4, and X = 0 (rule l ) ,  eq 6 predicts T = 3 X 3 + 8 X 1 
- 4 + 2 + 0 = 15, or a total of N = 2 X 15 = 30 electrons. This 
is in agreement with the observed electron count of 3 X 5 (As) + 1 X 9 (Co) + 3 X 2 (CO) = 30. Note that the Co atom 
contributes nine atomic orbitals and nine electrons while each As 
atom contributes four atomic orbitals and five electrons to cluster 
bonding. The disposition of the fifteen topological electron pairs, 
T (outer circle), is shown pictorially in Figure lb: three bonding 
electron pairs donated by the three carbonyls (dotted), six lone 
pairs (crossed), three from the Co atom and one from each of the 
three As atoms, and six bonding electron pairs that occupy the 
bonding combinations of the twelve cluster orbitals (open), three 
from each vertex atom. 

If the electron pairs "exo" to the cluster (cf. dotted or crossed 
orbitals in Figure 1 b) are removed, one obtains a quantity B (cf. 
inner circle, Figure 1 b): 

B = T -  (V, + 6V,) 
Combining eq 6 and 7 gives2 

B =  2V-  F 4- 2 + X 

Parameter B can be interpreted as the number of bonding cluster 
orbitals or electron pairs. As it turns out, parameter B corresponds 
to the number of skeletal electron pairs in the context of the 
skeletal electron pair (SEP) theory? It is interesting to note that 
B depends on the total number of vertices, V, regardless of its 
makeup (V, and V,). 

It is apparent that eq 8 allows a direct comparison between the 
TEC and the SEP rules. As we shall see in the following sections, 
both theories can be derived from molecular orbital calculations. 
Antibonding vs. Bonding Cluster Orbitals 

In this section, we shall provide a firm theoretical footing for 
the adjustment parameter X. We shall also show how it is related 
to the number of antibonding (A) and bonding (B) cluster orbitals. 

In the context of molecular orbital theory, the parameter Xcan 
be interpreted as the number of "missing" antibonding cluster 
orbitals (assuming that each polyhedral edge corresponds to a 
single-bond distance): 

where A is the number of antibonding cluster orbitals. If it is 
assumed that each vertex atom contributes mainly three orbitals 
for cluster bonding,1° then there are a total of 3Vcluster orbitals 
such that 

(7) 

(8) 

X = E - A  (9) 

A + B = 3 V  (10) 
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(9) Foust, A. S.; Foster, M. S.; Dahl, L. F. J .  Am. Chem. SOC. 1969, 91, 
563 1. 

(10) A crude approximation is to consider the three orbitals contributed by 
each vertex atom for cluster bonding as hybrid orbitals pointing inward 
(away from the exo ligands). A better description can be obtained via 
the isolobal concept. For example, the octahedral cluster H2R (CO),, 

bridization is isolobal with a BH unit (with sp3 hybridization) in that 
each vertex atom contributes two electrons and three orbitals for cluster 
bonding (assuming each ruthenium has three essentially nonbonding 
electron pairs). Hence, both clusters require Seven skeletal electron pairs 
( B  = 7), as is indeed observed. By the same rationale, the square-py- 
ramidal cluster RuS(CO)& is equivalent to nido-BSH9 with seven 
skeletal electron pairs. For more details on the isolobal concept, see, 
for example: (a) Elian, M.; Chen, M. M. L.; Mingos, D. M. P.; 
Hoffmann, R. Inorg. Chem. 1976,15, 1148. (b) Hoffmann, R. Science 
(Washington, DC) 1981, 211, 995. (c) Schilling, B. E. R.; Hoffmann, 
R. J .  Am. Chem. SOC. 1979, 101, 3456. (d) Hoffmann, R.; Schilling, 
B. E. R.; Bau, R.; Kaesz, H. D.; Mingos, D. M. P. J. Am. Chem. SOC. 
1978, Z O O ,  6088. (e) Halpern, J. Discuss. Faraday SOC. 1968, 46, 7. 
(f) Ellis, J. E. J. Chem. Educ. 1976, 53, 2. (g) Stone, F. G. A. Acc. 
Chem. Res. 1981, 14, 318. (h) Mingos, D. M. P. Trans. Am. Crys- 
tallogr. Assoc. 1980, 16, 17. (i) Albright, T. A. Ibid. 1980, 16, 35. 

is equivalent to ~ l o s o - B ~ H ~ ~ -  since each Ru(CO), unit with d 9 sp3 hy- 

chart I 

E 9 

X 0 

(a ) 

Chart I1 

e'k2e' 
2a;+a;' i 

E 15 

X 0 

( a )  

2 0  

2 

(b)  

30 

0 

(d ) 

25 

4 

(C) 

where B is the number of bonding cluster orbitals. From mo- 
lecular orbital calculations, one obtains quantities A and B, and 
from eq 9, the parameter X can readily be calculated as we shall 
see in the next section. 

Conversely, one can predict the number of the antibonding (A) 
and the bonding (B) cluster orbitals from the parameter X via 
the rules tabulated in Table I. Combining eq 1 and 9, we obtain 

A = E - X  
= V + F - 2 - X  (1 1) 

Combining eq 10 and 11, we have 
B = 3 V - A  

= 2V- F +  2 + X (12) 

Note that we have rederived eq 8 in the context of molecular 
orbital theory. 

It is obvious from the foregoing discussion that any given 
polyhedron can be characterized by one of the three parameters, 
X, A, or B. These parameters are interchangeable via eq 9-12. 
The electron-counting problem therefore reduces to determining 
one of these three parameters. As it turns out, the TEC theory 
provides a measure of X, the SEP rule is related to the parameter 
B, and, as we shall see in the next section, all three parameters 
X, A, and B, can readily be obtained from M O  calculations. 
Derivation of X from Molecular Orbital Calculations 

Much of the information needed to derive the adjustment pa- 
rameter X can be found in the extensive extended Hiickel mo- 
lecular orbital (EHMO) calculations for polyhedral boron hydride 
clusters (B,,H;-) by Hoffmann and Lipscomb." In this landmark 
paper, published in 1962, Hoffmann and Lipscomb examined 

(11) Hoffmann, R.; Lipscomb, W. N. J .  Chem. Phys. 1962, 36, 2179. 
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Chart I11 

A 6 6 ;  

E 6 

X 0 

Chart IV 

2al+e+a2 e 2a,+e,+e2 e '  

10 8 

0 0 

various factorization schemes and found that the B-H bonds, exo 
to the polyhedron, can be dropped without seriously affecting the 
energetics of the ground state. The orbitals that were "factored 
out" are the hydrogen 1s orbital and the boron sp3 hydrid orbital 
directed outward. Each boron atom therefore has three sp3 hybrid 
orbitals, directed inward, responsible for cluster bonding. This 
factorization scheme is called "3W in Hoffmann and Lipscomb's 
paper. We shall use their "3W results in the following derivation 
of X for all polyhedra discussed here except those for the pen- 
tagonal prism and pentagonal dodecahedron, which were taken 
from Honegger et al.I2 and Schulman et al.,I3 respectively. The 
energy level diagrams for trigonal and pentagonal prisms (Chart 
Ia,c) as well as those for tetragonal and pentagonal antiprisms 
(Chart Vb,c) were obtained by removing the symmetry orbitals 
of the two capping atoms from the corresponding bicapped 
polyhedra. 

It is important to note that Hoffmann and Lipscomb's finding 
that "3N" calculations are quite good approximations for 
ground-state electronic configurations provides a strong theoretical 
basis for the assumption that each vertex atom contributes bas- 
ically three orbitals for cluster interactions. It is also apparent 
that B and T i n  this paper correspond to the number of bonding 
orbitals from the "3N" and "5W calculations in Hoffmann and 
Lipscomb's paper" (note: B = 2 V -  F + 2 + X and T = 3V- 
F + 2 + X for main-group clusters). 

The energy levels, grouped into bonding and antibonding bands 
separated by the energy zero (dashed line) for some representative 
polyhedral clusters, are shown in Charts I-V and VII. Examples 
can be found in ref 1 and 2. In some cases, the nearly nonbonding 

(12) Honegger, E.: Eaton, P. E.; Shankar, B. K. R.: Heilbronner, E. Helu. 
Chim. Acta. 1982, 65, 1982. 

(13 )  Schulman, J.  M.; Venanzi, T.; Disch, R. L. J.  Am. Chem. SOC. 1975, 
97, 533.5. 

chart v 

E 1 8  20 

X 1 3 3 

Chart VI 

Chart VI1 

E 3 0  2 4  

X 7 4 

( a )  ( b) 

orbitals, either bonding or antibonding, are singled out and grouped 
separately. The total number of bonding ( B )  and antibonding 
( A )  cluster orbitals are also given to the left of each band. The 
total of A + B must be equal to 3V(cf. eq 10). If the number 
of edges, E, is known, the parameter X = E - A (eq 9) can readily 
be calculated as shown in Charts I-V and VI1 (cf. Table I). 

Rule 1. For 3-connected polyhedra such as the trigonal prism, 
cube (or tetragonal prism), or pentagonal prism, A = B = E ,  it 
follows that X = E - A = 0 (cf. Chart Ia-c). For example, the 
cube has 12 bonding (al, + tl, + eg + t2u + t2J and 12 antibonding 
(t,* + t,, + e, + tzo + a*,) cluster orbitals; hence B = A = 12. 
With 12 edges (E  = 12), X = E - A = 12 - 12 = 0. Also included 
in Chart I is the pentagonal dodecahedron (Chart Id).I3 With 
A = 30, B = 30,and E = 3 0 , X =  E -  A = 30- 30 = 0 is readily 
deduced. It is concluded that X = 0 for 3-connected polyhedra. 

Rule 2. In ref 11, the energy levels for the bicapped trigonal, 
tetragonal, and pentagonal prisms were calculated. As shown in 
Chart IIa, there are 9 bonding (B)  and 15 antibonding (A)  cluster 
orbitals for the DJh bicapped trigonal prism. With 15 edges (E) ,  
it follows that X = E - A  = 15 - 15 = 0. Since the trigonal prism 
has X = 0, it is obvious that capping a triangular face gives rise 
to X = 0/2 = 0. For the D4,, bicapped cube, Chart IIb shows that 
B = 12 and A = 18. With E = 20, we deduce X = E - A = 20 
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- 18 = 2. Since the cube has X = 0, it follows that capping a 
square face will contribute X = 212 = 1. For the DSh bicapped 
pentagonal prism, Chart IIc shows that B = 15 and A = 21. With 
E = 25, X = 25 - 21 = 4. Once again, since the parent poly- 
hedron, the pentagonal prism, has X = 0, it follows that capping 
a pentagonal face will give rise to X = 4/2 = 2. It is concluded 
that X increases by n - 3 for capping an n-gonal face. 

Rule 3. The energy levels and the derivation of the X values 
for the pyramids are shown in Chart 111. The tetrahedron (or 
trigonal pyramid) has B = 6 bonding (al + t2 + e) and A = 6 
antibonding ( t l  + t2) cluster orbitals; with E = 6 edges, X = E 
- A = 6 - 6 = 0 is obtained. For the tetragonal pyramid, with 
B = 7, A = 8, and E = 8, X = 8 - 8 = 0. And, for the pentagonal 
pyramid, with B = 8, A = 10, and E = 10, X = 10 - 10 = 0. It 
is therefore concluded that X = 0 for pyramids. 

Rule 4. The energy levels and the X values for bipyramids are 
depicted in Chart IV. The trigonal bipyramid (Chart IVa) has 
B = 6 bonding (al' + a2/1 + e' + e") and A = 9 antibonding (e' 
+ a; + e" + a,' + a; + e') cluster orbitals and E = 9 edges; 
it follows that X = E - A = 9 - 9 = 0. The octahedron (Chart 
IVb) has B = 7 (bonding (al, + tl, + t2,) and A = 11 antibonding 
(t2, + tl, + tl, + e,) orbitals and E = 12 edges; it follows that 
X = E - A = 12 - 1 1 = 1. Finally, the pentagonal bipyramid 
(Chart IVc) has B = 8, A = 13, and E = 15; it follows that X 
= 15 - 13 = 2. The additional X value for trigonal ( X  = 2) and 
tetragonal ( X  = 3) bipyramids will be discussed in a later section 
(under the heading Multiple X Values). 

Rule 5. The antiprisms are depicted in Chart V. The undis- 
torted trigonal antiprism or the octahedron (Chart Va) has been 
discussed under rule 4. The energy levels for the tetragonal 
antiprism are shown in Chart Vb. With B = 11 bonding cluster 
orbitals (2a1 + b2 + e3 + e2 + 2e1), A = 13 antibonding cluster 
orbitals (b, + 2e2 + a2 + 2e3 + e l  + b2), and E = 16 edges, X 
= E - A = 16 - 13 = 3 can readily be deduced. The energy levels 
for the pentagonal antiprism are depicted in Chart Vc. With B 
= 13 bonding cluster orbitals (2al, + aZu + 2elu + e2, + e,, + 
e2,), A = 17 antibonding cluster orbitals (2e2, + 2e2, + el, + 2el, 
+ aZg + al, + a2J, and E = 20 edges, X = 20 - 17 = 3 can be 
calculated. The additional X value ( X  = 1) for the tetragonal 
(square) antiprism will be discussed later (under Multiple X 
Values). 

Rule 6. Rule 6 follows directly from the modified Euler 
theorem, E = V + F - 2 - S, where S is the number of shared 
vertices or edges,Ia for vertex- and edge-sharing polyhedra. We 
shall consider one example in each category here. The vertex- 
sharing bitetrahedral metal cluster (cf. Chart VIa) has been 
calculated by Ciani and Sironi14 to have 51 CVMOs. Since 
CVMO = 8Vm- F +  2 + X = 8 X 7 - 8 + 2 + X ,  weobtain X 
= 1 as predicted by using the modified Euler theorem (V = 7, 
F = 8, S = 1). The edge-sharing bitetrahedral metal cluster (cf. 
Chart VIb) has been calculated by Ciani and Sironi14 as well as 
Lauhersa to have 43 CVMOs. Since CVMO = 8 X 6 - 8 + 2 
+ X = 43, we find X = 1, in agreement with the prediction from 
the modified Euler theorem (V = 6, F = 8, S = 1). 

Rule 7. For clusters of high nuclearity, small structural per- 
turbations, which amount to relatively small energy changes, can 
transform the cluster from one polyhedron to another. An example 
is the transformation of icosahedron to cubocahedron or twinned 
cuboctahedron. As shown schematically in Chart VII, the cu- 
boctahedron can be visualized as being formed by adding Y 
electron pairs to an icosahedron, resulting in a lengthening of six 
metal-metal distances. Since 12 triangular faces are converted 
to six square faces (F, - Fl = -6), the X value for a cuboctahedron 
becomes X 2  = Xl - 6 + Y (where X1 is the X value for the 
icosahedron). Since each edge of an icosahedron probably cor- 
responds to a metal-metal bond order of less than unity, we expect 
Y t o  be 0 I Y I 6. The energy level diagrams for the icosahedron 
and cuboctahedron are shown in Chart VII.I1 With A = 23 
antibonding and B = 13 bonding cluster orbitals and E = 30 edges, 
the icosahedron has an X value of 30 - 23 = 7. With A = 23, 
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Figure 2. Qualitative correlation (Walsh) diagram (cluster orbitals only) 
for the conversion of a trigonal prism of D3h symmetry (left) to a trigonal 
antiprism of D3d symmetry (second from the right) to an octahedron of 
oh symmetry (right). Symmetry correlations are given in the text. The 
four figures on the left depict the successive rotations of one (bottom) 
of the two triangles of the trigonal prism by 60' to form the trigonal 
antiprism. A slight shortening of the intertriangle spacing gives rise to 
the octahedron with 12 equal distances. Note that the word distance 
refers to interatomic separations whereas the word spacing refers to the 
interlayer separation (viz., perpendicular distance between the two tri- 
angles). 

B = 13, and E = 24, the cuboctahedron has an X value of 24 - 
23 = 1. Substituting these X values into the equality X 2  = 1 = 
X1 - 6 + Y = 7 - 6 + Y = 1 + Y, we obtain Y = 0, indicating 
that the icosahedron and cuboctahedron have similar electron 
counts, as is indeed observed.' The same X = 1 value applies to 
the twinned cuboctahedron, which is related to the cuboctahedron 
by rotating one of the two triangles about the trigonal symmetry 
axis by 60°. 

SEP Rules and MO Calculations 
The molecular orbital energy level diagram presented in Charts 

I-VI1 also provides a theoretical rationale for the skeletal electron 
pair (SEP) rules; viz., the number of the skeletal electron pairs 
can be given by the number of bonding cluster orbitals (B) .  For 
example, the closo polyhedra shown in Chart IV and Chart VIIa 
follow the B = V + 1 rule, the nido polyhedra shown in Chart 
IIIb,c follow the B = V +  2 rule, and the arachno polyhedra shown 
in Chart Vb,c follow the B = V + 3 rule. The 3-connected 
polyhedra shown in Chart I follow the relation B = E = 3V/2.I5 

It is also interesting to compare Chart IIa-c with Chart Ia-c. 
It is readily apparent that the two capping atoms add a total of 
six (three each) orbitals to the antibonding cluster orbital manifold 
and none to the bonding manifold. As a consequence, the number 
of bonding cluster orbitals ( B )  remains unchanged as predicted 
by the capping prin~ip1e.I~ 

(15) The SEP theory has recently been extended to include 3-conne~ted'~J' 
and fused'* polyhedra. 

(16) Evans, D. G.;  Mingos, D. M. P. Organometallics 1983, 2, 435. 
(17) Zhang, Q.; Lin, L.; Wang, N.; Lai, S. Acta Sci. Nut. Uniu. Amoi 1981, 

20, 226. 
(18) (a) Mingos, D. M. P. J .  Chem. Soc., Chem. Commun. 1983,706. (b) 

Mingos, D. M. P. J .  Organomet. Chem. 1983, 251, C13. (14) Ciani, G.; Sironi, A. J .  Organomet. Chem. 1980, 197, 233. 
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Correlation and Interaction Diagrams 
We shall now consider the correlation (Walsh) and interaction 

diagrams for various polyhedral transformations. We shall focus 
our attention on the cluster orbital framework only. 

Prisms to Antiprisms. Figure 2 depicts a qualitative correlation 
diagram for the transformation of a trigonal prism of D3h sym- 
metry (left) to a trigonal antiprism of Dgd symmetry (second from 
the right), or an octahedron of oh symmetry (right) if all 12 edges 
are equal (right), via rotation of one (bottom) of the triangles by 
60°. Note that intermediate (twisted) geometries conform to D, 
symmetry (see the caption for Figure 2 for details of geometrical 
transformation). The correlations from D3h (trigonal prism) to 
D, (twisted) are as follows: a,’ or a,” - a,; a i  or a; - a2; e’ 
or e” -+ e. It seen that, by twisting the trigonal prism (from left 
to right in Figure 2), the doubly degenerate, highest occupied 
cluster orbitals, e’, under D3h symmetry become destabilized in 
energy. This is so because e’ is antibonding within the triangles 
(viz., intrahyer antibonding) and bonding between the triangles 
(viz., interlayer bonding). In the process of the specified defor- 
mation, the intralayer interactions remain more or less unaffected 
but the interlayer interaction is significantly weakened (note also 
that intralayer distances remain the same while interlayer distances 
lengthen substantially). In fact, all orbitals that are interlayer 
bonding (antibonding) will be destabilized (stabilized) due to the 
increasing loss of interlayer interactions as a result of twisting 
(cf. Figure 2, from left to right). Another important feature to 
note is that the HOCO, e’, starts out as a bonding orbital under 
D3,, symmetry (since interlayer bonding outweighs intralayer 
antibonding), destabilizes in energy, and at  some halfway point 
crosses the energy zero (dashed line) to become an antibonding 
e orbital (the LUCO for a twisted trigonal antiprism or a twisted 
octahedron). Eventually the e orbitals merge with another an- 
tibonding a ,  orbital (originating from al” under D3h symmetry) 
to form t2, in the octahedron of 0, symmetry. Other orbitals can 
be understood in a similar manner. 

Going in the opposite direction (from right to left, Figure 2), 
a slight increase in the intertriangle spacing of an octahedron to 
that in the trigonal prism will lower the symmetry from oh to the 
D3d of a trigonal antiprism. A twisting of the trigonal antiprism 
further lowers the symmetry to D3. The symmetry correlations 
for Oh - D3d - D3 are a lg  - a l g  - a,, eg - e, - e, t,, - a2g 
+ e, - a, + e, t,, - a2, + e, -+ a2 + e, tZg - a,, + e, -c a,  + 
e, t2, - a,, + e, - a ,  + e, etc., as shown in Figure 2 (from right 
to left). For example, the LUCO, t2,, under 0, symmetry split 
into a,, and e, under Dgd symmetry, which correlate with a, and 
e under D3 symmetry, respectively. If the doubly degenerate (e, 
or e) orbitals lie lower in energy than the nondegenerate (a,, or 
a , )  orbital, they become the lowest unoccupied cluster orbitals 
for a regular or a twisted trigonal antiprism. Depending upon 
the interlayer spacing (trigonal antiprism) or the degree of 
structural deformation (twisted trigonal antiprism), the e orbitals 
may become weakly antibonding or nearly nonbonding (with 
energies close to the energy zero). In fact, the e orbitals may play 
an important role in determining the electron counts of the trigonal 
prism and antiprism (cf. Multiple X Values). 

The net result of the structural transformation of a trigonal 
prism (D3h) to a trigonal antiprism (D3d) or an octahedron (0,) 
via twisting (D3) is to transfer two orbitals from the bonding (e’ 
under D3h, e under D,) to the antibonding (e under D3, e, under 
&, t,, under 0,) manifold. The number of bonding cluster 
orbitals therefore decreases from 9 to 7, and the corresponding 
number of antibonding cluster orbitals increases from 9 to 11 as 
shown schematically in Chart VIIIa. Both the trigonal prism 
and the trigonal antiprism (or the octahedron) have V = 6 vertices 
and hence 3 V = 18 cluster orbitals. For the 3-connected trigonal 
prism, the 18 cluster orbitals partition into B = 9 bonding and 
A = 9 antibonding orbitals. Consequently, it has B = 9 skeletal 
electron pairs, corresponding to the E = 9 edges, and X = E - 

Teo 

(19) (a) Mingos, D. M. P. Nature (London), Phys. Sci. 1972, 236,99. (b) 
Forsyth, M. I.; Mingos, D. M. P. J .  Chem. Soc., Dalton Trans. 1977, 
610. 
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A = 9 - 9 = 0. Hence the EAN rule works. For the trigonal 
antiprism (or octahedron), on the other hand, the 18 cluster 
orbitals partition into B = 7 bonding and A = 11 antibonding 
orbitals. The number of bonding cluster orbitals ( B  = 7) no longer 
corresponds to the number of edges ( E  = 12); hence, the EAN 
rule fails, and an X value of X = E - A = 12 - 11 = 1 can be 
deduced. 

A similar argument applies to the correlation of other prisms 
and antiprisms. As illustrated in Chart VIII‘O, a rotation by 45’ 
of one of the two squares of a square prism (or a cube if all 12 
edges are of equal length) gives rise to a square antiprism with 
16 edges. In such a process, one orbital is transferred from the 
bonding to the antibonding manifold. For the 3-connected square 
prism, the 24 cluster orbitals partition equally into B = 12 and 
A = 12, corresponding to the 12 edges. Hence, the EAN rule 
works. For the square antiprism, B = 11 no longer corresponds 
to the number of edges ( E  = 16); the EAN rule fails, and X = 
E - A = 3 is obtained. 

Also shown in Chart VIIIc is the conversion of a pentagonal 
prism to a pentagonal antiprism via a rotation of 36’ of one of 
the two pentagons. In the process, two cluster orbitals are 
transferred from the bonding to the antibonding regime. For the 
pentagonal prism, A = B = E = 15, X = E - A = 0; hence, the 
EAN rule works. For the pentagonal antiprism, B = 13, A = 17, 
and E = 20 and hence the EAN rule fails; the discrepancy between 
E a n d A i s X = 3 .  

It is interesting to note that prisms with a C, symmetry axis 
where n = odd (even) transfer an even (odd) number of cluster 
orbitals from the bonding to the antibonding manifold in the 
process of transforming into the corresponding antiprisms. 

Pyramids to Bipyramids. The interaction diagram (cluster 
orbitals only) for capping one of the faces of a tetrahedron (of 
Td symmetry) with an atom to form a trigonal bipyramid (of D3h 
symmetry) is shown in Figure 3. The twelve cluster orbitals of 
a tetrahedron symmetrize to give six bonding (al + t2 + e) and 
six antibonding (tl + t2) orbitals with an energy ordering shown 
on the left. As the capping atom approaches the tetrahedron, the 
symmetry is lowered to C3,, under which the tl and t2 orbitals split 
into a, + e and a, + e, respectively. The major interaction of the 
tetrahedron with the capping atom, which has three atomic orbitals 
of a, + e symmetry representations, is via the totally symmetric, 
bonding a ,  cluster orbital and the weakly bonding, doubly de- 
generate e cluster orbital, forming three bonding and three an- 
tibonding orbitals. Formally, one can view the three resulting 
bonding cluster orbitals (al + e) as tetrahedron based and their 
antibonding (a, + e) counterparts as capping-atom based since 
the tetrahedron contributes three cluster orbitals that are already 
bonding and hence lie lower in energy and the capping atom 
contributes three atomic orbitals that lie near the energy zero. 
In other words, the three bonding orbitals contributed by the 
tetrahedron are further stabilized and the three atomic orbitals 
of the capping atom are destabilized and become antibonding in 
nature as a result of the capping interaction. The net outcome 
is that the total number ( B  = 6) of bonding cluster orbitals (al + a l  + e + e) in the trigonal bipyramid remains the same as that 
in the tetrahedron while the total number ( A  = 9) of the anti- 
bonding cluster orbitals increases by 3 (with the added a, + e 
orbitals from the capping atom). This is shown schematically in 
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Figure 3. Interaction diagram (cluster orbitals only) for monocapping 
a tetrahedron (or a trigonal pyramid) with an atom to form a trigonal 
bipyramid. Symmetry correlations are given in the text. For conven- 
ience, orbital symmetry representations under the C,, point group are 
given for the capping interaction. Splittings of the cluster orbitals of the 
tetrahedron of Td symmetry are also indicated. 
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number of antibonding cluster orbitals derivable from M O  cal- 
culations. For systems with multiple X values (as we shall see 
in the next section), this meaning (X = E - A )  is lost. However, 
if one redefines A and B as the number of the unoccupied (A') 
and the occupied (B') cluster orbitals, then X'= E - A' and eq 
9-12 remain valid with X', A', and B'in place of X, A,  and B, 
respectively. Unless stated otherwise, we shall use the former 
definition of X ,  A,  and B throughout this paper. 

One utility of the TEC rule is that the parameter X can be used 
to predict the number of antibonding ( A )  and bonding (B) cluster 
orbitals (or the number of unoccupied (A') and filled (B') orbitals 
for systems with multiple X values) in the absence of molecular 
orbital calculations. Conversely, where such calculations are 
available, comparisons can be made as to the accuracy of the rules. 
In Table I1 the A and B values for a variety of polyhedra are 
calculated from the parameter X .  These calculated values compare 
favorably well with molecular orbital calculations in the litera- 
t ~ r e . * ~ " - ' ~  The comparison of predicted and observed electron 
counts has already been discussed in our previous papers.'V2 

It should also be pointed out that antibonding cluster orbitals 
are often more easily identifiable than their bonding counterparts 
(where extensive symmetry mixing with other "exo" orbitals may 
occur) in MO calculations, especially for complicated metal cluster 
systems.*O This is one of the reasons we choose to focus our 
attention on the antibonding manifold. 

A distinction should be made here between cluster orbitals and 
molecular orbitals. Cluster orbitals are, by definition, molecular 
orbitals that are responsible for cluster bonding. Hence, the highest 
occupied molecular orbitals (HOMO) or the lowest unoccupied 
molecular orbitals (LUMO) of a cluster may or may not be a 
cluster orbital as we shall see in the next section. 
Multiple X Values 

The TEC theory allows for multiple electron counts for certain 
types of polyhedral clusters. This is particularly important since 
metal clusters often exhibit multiple electron counts either with 
or without significant structural distortions. 

Multiple electron counts can occur for many reasons. On the 
one hand, electrons may enter or come out of molecular orbitals 
that are nor cluster orbitals. Examples of such orbitals are 
metal-ligand bonds or lone pairs as we shall see below (cf. Oc- 
tahedron). For these systems, the HOMO or the LUMO is not 
a cluster orbital. The resulting electron counts will not be directly 
related to parameters A,  B, or X discussed here. 

On the other hand, multiple electron counts may arise when 
some energetically low-lying antibonding cluster orbitals are 
occupied (resulting in higher X values) or when some energetically 
high-lying bonding cluster orbitals are vacant (resulting in lower 
X values). In such cases, parameters A and B correspond to the 
number of vacant and filled cluster orbitals, respectively, and 
parameter X is still equal to E - A.  When these orbitals are 
essentially nonbonding, no significant structural distortion is ex- 
pected. In contrast, if the occupied cluster orbitals are antibonding 
(bonding), lengthening (shortening) of appropriate atom pairs is 

(20) For discussions on the importance of antibonding cluster orbitals, see, 
for example: (a) Teo, B. K. Ph.D. Thesis, University of Wisconsin 
(Madison), 1973. (b) Mingos, D. M. P. J .  Chem. SOC., Dalton Trans. 
1974, 133. 
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expected and vice versa for vacant cluster orbitals. Accompanying 
such bond lengthening or shortening may be a systematic distortion 
of the cluster to a lower symmetry (subgroup) via vibronic 
(Jahn-Teller) interactions. We shall discuss some of the systems 
with multiple X values. 

Tetrahedron. Since the highest occupied cluster orbital (HO- 
CO) of e symmetry (cf. Chart IIIa) in the tetrahedron is weakly 
bonding (reason: formed by tangential atomic orbitals), it might 
be expected that some tetrahedral clusters may be electron de- 
ficient with four electrons (Le. with the doubly degenerate e orbital 
vacant) less than expected. One example of such a cluster is 
Re4(CO),,H?' with four face-bridging hydrides. This tetrametal 
cluster has 4 X 7 + 12 X 2 + 4 X 1 = 56 electrons, 4 electrons 
less than the expected value of N = 2(8V,,, - F + 2 + X )  = 2(8 
X 4 - 4 + 2 + 0) = 60 electrons (cf. eq 6). Another example 
is B4C1422 which has 4 X 3(B) + 4 X 1 (Cl) = 16 electrons, 4 less 
than the expected value of N = 2(3Vn - F + 2 + X )  = 2(3 X 4 
- 4 + 2 + 0) = 20 electrons. In the latter case, however, there 
is strong evidence23 that the B-C1 bonds contain multiple-bond 
character so as to compensate for the electron deficiency. Nev- 
ertheless, the X value for these electron-deficient tetrahedral 
clusters appears to be, formally, X = -2. 

Trigonal Bipyramid. The TEC rule predicts two X values for 
trigonal bipyramids (cf. rule 4). We have already discussed one 
of them, X = 0, in Chart IVa. The higher X value, X = 2, 
predicted by the inverted Hiickel diagram, can be obtained by 
populating the doubly degenerate lowest unoccupied cluster orbitals 
(LUCO) e' (cf. Chart IVa), thereby giving rise to an electron-rich 
cluster with four electrons more than expected. This is indeed 
observed in, for example, [Pd2P3L2]+ (L = l,l,l-tris((dipheny1- 
pho~phino)methyl)ethane)~~ and [Ni5(C0)12]2-.25 Since the 
LUCO e' orbitals in the regular trigonal bipyramid are highly 
antibonding as suggested by M O  calculations (Hoffmann and 
Lipscomb," Lauher88), a significant distortion is expected for these 
electron-rich clusters. Indeed, [Ni5(CO)12]2-, for example, exhibits 
significantly longer axial-equatorial than equatorial-equatorial 
distances. A correlation diagram for such elongation can be found 
in Lauher's work (Figure 5 in ref Sa). 

Octahedron (Tetragonal Bipyramid). The TEC theory predicts 
two X values for the tetragonal bipyramid: X = 1, 3.  In Chart 
IVb (see also Figure 2), the energy level diagram for the octa- 
hedron is shown, corresponding to X = l .  Most octahedral clusters 
conform to X = 1 and E = 7. Octahedral metal clusters with X 
= 3 (formally) have been observed in, e.g., Ni6($-C5H5)26 and 
Fe6S8(PEt3)62+.27 These two clusters do not exhibit significant 
structural distortion. The absence of such distortion may be due 
to steric constraints imposed by the ligands, substantial metal- 
ligand antibonding character in the HOMO, or high spin states. 
In fact, the latter cluster has been reported to have six unpaired 
electrons.27b 

In this paper, we assume that each metal atom, as in the case 
of main-group elements, contributes three hybrid orbitals for 
cluster bonding. In terms of local site symmetry, they can be 
classified as one u, (pointing inward) and two rX, rY (pointing 
tangentially) orbitals. All other metal orbitals are either engaged 
in metal-ligand bonding or completely filled to give lone pairs. 
For example, each metal atom in the octahedral cluster Rh6(C0)16 
uses four orbitals for bonding with two terminal and two triply 

Teo 

(a) Saillant, R.; Barcelo, G.; Kaesz, H. D. J. Am. Chem. SOC. 1970, 92, 
5739. (b) Wilson, R. D.; Bau, R. Ibid. 1976, 98,4687. (c) Hoffmann, 
R.; Schilling, B. E. R.; Bau, R.; Kaesz, H. D.; Mingos, D. M. P. Ibid. 
1978, 100, 6088. 
Atoji, M.; Lipscomb, W. N. Acta Crystallogr. 1953, 6, 547. 
See, for examde. ref 3 and the following: Wonn. E. H.; Kabbani, R. 
M. Inorg. Ch&. 1980, 19, 451. 
Dapporto, P.; Sacconi, L.; Stoppioni, P.; Zanobini, F. Inorg. Chem. 
1981, 20, 3834. 
Longoni, G.; Chini, P.; Lower, L. D.; Dahl, L. F. J .  Am. Chem. SOC. 
1975, 97, 5034. 
Paquette, M. S.; Dahl, L. F. J .  Am. Chem. SOC. 1980, 102, 6621. 
(a) Cecconi, F.; Ghilardi, C. A.; Middolini, S. J .  Chem. SOC., Chem. 
Commun. 1981, 640. (b) Agresti, A,; B a d ,  M.; Cecconi, F.; Ghilardi, 
C. A.; Midollini, S. Inorg. Chem. 1985, 24, 689 and references cited 
therein for related cobalt clusters. 
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bridging carbonyls. The remaining five orbitals of uZ, T,., rY, SA,, 
and 6, local symmetry are available for cluster bonding. The 
18 uz T, rY orbitals give rise to 7 bonding and 11 antibonding 
cluster orbitals (cf. Chart IVb). The 12 &type orbitals give rise 
to an energetically closely spaced manifold of weakly bonding or 
antibonding orbitals. The degree of orbital interaction follows 
the expected order CT >> A >> 6. For Rh6(C0),6, all 12 6 orbitals 
are filled, giving rise to 12 lone pairs. The 43 electron pairs can 
thus be formally partitioned as follows: 12 terminal Rh-C bonds, 
12 bridging Rh-C bonds, 7 bonding cluster orbitals, and 12 Rh 
lone pairs. 

As stated earlier, multiple electron counts can arise when the 
6-orbital manifold ("lone pairs") is partially, instead of fully, filled 
as is often found in early-transition-metal clusters such as 
[ M o ~ C ~ ~ ~ ] ~ - ~ ~ ~  and [Nb6C118]S, where n = 228b and 4.28c Each 
metal atom in these clusters is bonded to one terminal and four 
bridging ligands, leaving four orbitals for metal-metal interaction. 
For [ M O ~ C ~ ~ , ] ~ - ,  the 42 electron pairs can formally be classified 
as follows: 6 terminal Mo-Cl bonds, 24 face-bridging Mo-C1 
bonds, 7 bonding cluster orbitals, and 5 ~,z-,,z orbitals. For 
[Nb6C11812-, the 37 electron pairs can formally be assigned to the 
following: 6 terminal Nb-Cl bonds, 24 edge-bridging Nb-C1 
bonds, and 7 bonding cluster orbitals. And for [Nb6C118]4-, one 
extra pair of electrons enters the 6, manifold. 

Trigonal Prism. The majority of trigonal-prismatic clusters 
conform to X = 0 and E = 9 (cf. Chart Ia). If the highest occupied 
cluster orbital (HOCO) e' is vacant, one might expect an elec- 
tron-deficient system with X = -2 and E = 7, viz., four electrons 
less than expected. This is possible because the HOCO e' orbitals 
are only weakly bonding, and a twisting or a slipping deformation 
may cause the e' orbitals to rise in energy such that they become 
vacant. This may be observed in the [Pt6(Co),,]2- d i a n i ~ n , ~ ~ ~  
which has a slipped trigonal-prismatic structure with 86 rather 
than 90 electrons. The reason for such electron deficiency, 
however, is more likely related to the tendency of platinum to 
conform to a 16- rather than to an 18-electronic configuration 
and the HOMO is probably predominantly carbonyl T* in na- 
t ~ r e . , ~ ~  

Square Antiprism. Since the highest occupied cluster orbital 
in square antiprism (Chart XIa) is the doubly degenerate orbital 
e, (cf. Chart Vb), it might be expected that some electron-deficient 
square-antiprismatic clusters with four electrons less than that 
predicted for X = 3 may be found. These systems, with the 
energetically high-lying HOCO el vacant, correspond formally 
to X = 1. Indeed, these are quite common among metal clusters. 
For example, [Ni&(C0)16]2-,30 with 118 electrons, conforms to 

(a) SchBfer, H.; Schnering, H. G.; Tillack, J.; Kuhnen, F.; Wohrle, H.; 
Baumann, H. 2. Anorg. Allg. Chem. 1967, 353, 281. (b) Field, R. A.; 
Kepert, D. L.; Robinson, B. W.; White, A. H. J. Chem. Soc., Dalton 
Trans. 1973. 1858. (c) Simon, A,: Schnerina, H. G. Z .  Anora. Alla. - - -  
Chem. 1968, 361, 235.. 
(a) Calabrese, J. C.; Dahl, L. F.; Chini, P.; Longoni, G.; Martinengo, 
S. J .  Am. Chem. SOC. 1974, 96, 2614. (b) Hoffmann, R., private 
communication. 
(a) Longoni, G.; Ceriotti, A.; Della Pergola, R.; hlanassero, M.; Perego, 
M.; Piro, G.; Sansoni, M. Philos. Trans. R. SOC. London, Ser. A 1982, 
A308, 47. (b) Ceriotti, A.; Longoni, G.; Manassero, M.; Perego, M.; 
Sansoni, M. Inorg. Chem. 1985, 24, 117. 
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X = 3 whereas the electron-deficient [ c o 8 c ( c o ) ~ ~ ] 2 - ~ 3 1  with 114 
electrons, corresponds to X = 1. The latter cluster shows a rhombic 
distortion of the two square faces. Hence, the TEC theory’V2 
predicts two X values ( X  = 1, 3) for the square antiprism via the 
Hiickel molecular orbital energy diagram (cf. Table I). 

Bicapped (C2”) Trigonal Prism. The trigonal prism with two 
square caps (cf. Chart XIb) is predicted to have three possible 
X values; X = 2 via rule 2 (capping two square faces of a trigonal 
prism) and X = 1, 3 via rule 7 (removal of two electrons from 
one square face of a square antiprism to give two trigonal faces). 
X = 3 was observed in BSH12,3 corresponding to B = 10. Note 
that the concept of characterizing a cluster as electron rich, 
electron precise, and electron deficient begins to break down even 
for the octavertex cluster discussed here as well as in the next 
subsection. Both X = 2 and X = 3 can be considered as electron 
precise since the former is derived from the electron-precise 
trigonal prism while the latter is based on the electron-precise 
square antiprism. The case of X = 1 is electron deficient on both 
counts. 

Triangular Dodecahedron. The TEC theory predicts multiple 
Xvalues for the triangular dodecahedron (Chart XIc): X = 1, 
3 from the square antiprism via removal of four electrons (thereby 
converting two square faces to four triangular faces) or X = 1, 
2, 3 from the bicapped (CzD) trigonal prism via removal of two 
electrons (thereby transforming the square face into two triangular 
faces). The observed X values are X = 2 as in Cp4C04B4H4 ( B  
= 8),32 X = 3 as in B8H8Z-3 and Fe4(C0)11(HCCEt)23 ( B  = 9), 
and X = 4 as in Cp,Ni4B4H434 ( B  = 10). As in the case of the 
bicapped (C,) trigonal prism, both X = 2 and X = 3 are “electron 
precise”. In this regard, it is interesting to note that Lauher’s 
calculation shows that there are A = 16 antibonding cluster 
orbitals, which corresponds to B = 8 and X = E - A = 18 - 16 
= 2. In contrast, SEP theory predicts B = V + 1 = 9, which 
corresponds to X = 3 (cf. Chart XIc). 

The bonding for the (metalla) borane clusters described here 
has also been discussed by King,3s who showed that the re- 
placement of light atoms (boron and carbon) in eight-vertex 
deltahedral systems by transition metals leads eventually to a point 
where deltahedral bonding involving both surface and core in- 
teractions is replaced by surface-localized bonding. King’s bonding 
description points to the inadequacy of the two-center two-electron 
description for these systems. 

It is also important to note that B8Hs2- exists in the solid state36 
as a DZd triangular dodecahedron (Chart XIc). In solution,37 it 
is fluxional and N M R  shows the coexistence of square-antiprism 
(DU) (Chart XIa) and bicapped-trigonal-prism (C,) (Chart XIb) 
structures, interconverting via, presumably, the triangular-do- 
decahedral intermediate.38 Despite the differences in the number 
of electrons, we note that all three structures have multiple X 
values and hence multiple electron counts. The common B value 
is 9. With the reasonable assumption that the energetics of all 
three forms are not very different, it is not surprising that all three 
structures can coexist for the same electron count. 

Icosahedron. As shown in Chart VIIa, the HOC0 in an ico- 
sahedron is the quadruply degenerate g, orbital. It might be 
expected that some electron-deficient icosahedral cluster may exist 
with eight electrons less than expected (with nine orbitals, a + 
tl, + h,, filled and four orbitals, g,, vacant). The [AU13&2- 
(PMe2Ph),0]3+ t r i ~ a t i o n ~ ~  is such an example. It has 162 elec- 
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trans,@ corresponding to X = 3 and B = 9@ instead of the expected 
170 electrons, which correspond to X = 7 and B = 13 as exem- 
plified by [RhlzSb(C0)27]3-.41 In fact, the “spherical” guld 
clusters4* such as [Au13L12]5+, [ A u ~ ~ L ~ ~ ] ~ + ,  [Au9L8]+, and 
[Au8L8I2+ (where L represents phosphine ligands) appear to have 
B = 943 while the “toroidal” gold cluster4’ such as [AugL8l3’ and 
[Au8L7]’+ seem to have B = Note that most of these 
structures are based on, or derivable from, the icosahedral ge- 
ometry. In either case, the center gold atom is considered as 
“encapsulated” while the peripheral gold atoms are considered 
as vertex (V) atoms. Thus, the electron counts for the “spherical” 
and the “toroidal” gold clusters are N = 2 X (6V + 9) = 12V + 
18 and N = 2 X (6V + 8) = 12V + 16, respectively (cf. eq 7 ) .  
The two are interconvertible via addition or subtraction of two 
electrons, e.g.42 

& [AU&]+ [ A U S L ~ ] ~ +  & -L [ A U S L ~ ] ~ +  
-’e- 

Once again, the electron deficiency in these gold clusters is 
probably related to the tendency of gold to conform to 16- rather 
than 18-electronic configuration. 

Conclusion 
It is shown in this paper that the rules for determining the 

parameter X of the topological electron-counting (TEC) theory 
can be justified within the framework of molecular orbital theory. 
In this respect, the parameter X is no longer an “adjustment” factor 
as was originally developed to make the effective atomic number 
(EAN) rule work for polyhedral clusters.’S2 The parameter X can 
now be interpreted as the number of “missing” antibonding cluster 
orbitals (or more precisely, X = E - A )  and hence can be derived 
from molecular orbital calculations. 

It is also shown that, within the framework of M O  theory, the 
number of bonding cluster orbitals corresponds to the number of 
skeletal electron pairs in the context of the widely used skeletal 
electron pair (SEP) theory. Consequently, the TEC rule provides 
an alternative and complementary way of estimating the number 
of skeletal electron pairs. 

It is obvious that the EAN rule works only when the number 
of antibonding cluster orbitals (A)  is equal to the number of edges 
( E ) .  The discrepancy is, of course, the parameter X = E - A.  
Electron-counting rules such as SEP and TEC are useful when 
the parameter X deviates from zero. 

It is concluded that both the TEC and the SEP rules can be 
derived from molecular orbital calculations, many of which can 
be found in the literature, particularly the pioneering work of 
Hoffmann and Lipscomb.” 

Qualitative correlation (Walsh) and interaction diagrams 
(cluster orbitals only) are constructed for the conversion of prisms 
to antiprisms, pyramids to bipyramids, and prisms to bicapped 
prisms. 

Multiple X values, and hence multiple electron caunts, for 
certain polyhedral clusters are justified within the framework of 

( 3 1 )  Albano, V. G.; Chini, P.; Ciani, G.; Martinengo, S.; Sansoni, M. J. 
Chem. SOC., Dalton Trans. 1978, 463. 

(32)  Pipal, J. R.; Grimes, R. N. Inorg. Chem. 1979, 18, 257. 
( 3 3 )  Sappa, E.; Tiripicchio, A.; Camellini, M. T. J .  Chem. SOC., Dalton 

Trans. 1978, 419. 
(34)  Bowser, J. R.; Bonny, A.; Pipal, J. R.; Grimes, R. N. J. Am. Chsm. Soc. 

1979, 101, 6229. 
(35)  King, R. B. Polyhedron 1982, 1 ,  133. 
(36)  (a) Klanberg, F.; Eaton, D. R.; Guggenberger, L. J.; Muetterties, E. L. 

Inorg. Chem. 1967, 6, 1271. (b) Guggenberger, L. J. Inorg. Chem. 
1969, 8, 2771. 

(37)  Muetterties, E. L.: Wiersema, R. J.: Hawthorne, M. F. J. Am. Chem. . .  
SOC. 1973, 95, 7520. 

( 3 8 )  Muetterties, E. L.; Beier, B. F. Bull. SOC. Chim. Belg. 1975.84, 397. 

(39)  Briant, C. E. ;  Theobald, B. R. C.; White, J. W.; Bell, L. K.; Mingos, 
D. M. P.; Welch, A. J. J. Chem. SOC., Chem. Commun. 1981, 201. 

(40)  For [ A U , ~ C I ~ ( P M ~ ~ P ~ ) , ~ ] ~ + + ,  observed N = 1 3  X 1 1  + 2 X 1 + 10 X 
2 - 3 . .  1 6 2 , T = N / 2 = 8 1 , a n d B =  T - 6 V = 8 1 - 6 X  1 2 = 9 ( c f .  
eq 7 ) .  Note that V, or V, in eq 7 counts only the vertex or peripheral 
atoms. 

(41)  Vidal, J. L.; Troup, J. M. J. Organomet. Chem. 1981, 213, 351 .  
(42)  For reviews of gold phosphine clusters, see, for example: (a) Mingos, 

D. M. P. Philos. Trans. R. SOC. London, Ser. A 1982, A308, 75.  (b) 
Steggerda, J. J.; Bour, J. J.; van der Velden, J. W. A. Red.  Trau. Chim. 
Pays-Bas 1982, 101, 164. (c) Briant, C. E.; Hall, K. P.; Wheeler, A. 
C ; Mingos, D. M. P. J. Chem. SOC., Chem. Commun. 1984,248. (d) 
van der Velden, J. W. A,; Stadnik, Z .  M. Inorg. Chem. 1984,23, 2640. 

(43)  From the procedure outlined in footnote 40, the [ A U ~ ~ L , ~ ] ~ +  or the 
Au,,L,X3 (L = phosphine and X = halogen) clusters have N = 138, 
T = 69, and B = 69 - 6 X 10 = 9, the [Au9L8]+ clusters have N = 114, 
T = 57, and B = 57 - 6 X 8 = 9,  and the [Au8Ls]*+ clusters have N 
= 102, T = 5 1 ,  and B = 5 1  - 6 X 7 = 9.  
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= 100, T = 50, and B = 50 - 6 X 7 = 8 .  
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M O  theory and illustrated with some representative examples. 
The distinction between cluster  orbitals and molecular orbitals 

is emphasized. In particular, the highest occupied or the lowest 
unoccupied molecular orbitals of a cluster may or may not be 
cluster orbitals. As a result, there are various causes of multiple 
electron counts, some involving cluster orbitals, others not. For 
the latter case, simple electron-counting rules are incapable of 
discerning the nature and/or predicting the consequences of the 
added or the subtracted electrons. 

Finally, while we have restricted our discussions to clusters 
containing up to 20 vertex atoms, the principles outlined in this 

paper can easily be extended to higher clusters.45 
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Coordination power (CP), a new measure for the donor ability of a solvent, was determined by using nickel(I1) ion and applying 
the rule of average environment. The values of C P  on the basis of acetonitrile are 2.24 (pyridine), 1.24 (dimethyl sulfoxide), 0.85 
(N,N-diethylformamide), 0.79 (water), 0.72 (N,N-dimethylformamide), 0.1 1 (methanol), 0.08 (trimethyl phosphate), 0.00 
(acetonitrile), -0.07 (n-hexanol and n-pentanol), -0.12 (ethanol and n-butanol), -0.14 (n-propanol), -0.15 (propionitrile), -0.37 
(benzonitrile), -0.46 (acrylonitrile and isobutyl alcohol), -0.48 (acetone), -0.54 (isopropyl alcohol), -0.68 (sec-butyl alcohol), -0.77 
(propylene carbonate), and -0.92 (tert-butyl alcohol). The stability constants of Mg(I1) and Ag(1) complexes with bpy and the 
Ni(I1) complex with 2,9-Me2phen decrease with the increase of CP. The activation enthalpy for the ligand substitution reaction 
of nickel(I1) ion with bpy increases linearly with the increase of C P  in the solvents with the same functional group. The half-wave 
potentials of the Ni2+/Nio couple in nitrile solvents become more negative with the increase of C P  and a good relationship between 
C P  and the ligand field splitting parameter (1ODq) for the nickel(I1) solvate ion was found. Thus, C P  is concluded to be a good 
measure for the donor ability of the solvents. 

Introduction 
Chemical reactions in solutions cannot be essentially understood 

without clarification of the effect of a solvent. An important and 
urgent problem in the study on the inorganic reaction in solutions 
is to obtain a measure representing the strength of the interaction 
between solvent and metal ion. The effects of solvents on the 
complexation reactions, electrode reactions, catalytic reactions, 
and syntheses in which metal ions participate should be divided 
into the solvation effect and the dilution effect to be discussed. 
The former especially plays an important role in these reactions. 
Many attempts have been made to correlate observed changes 
in the reactivity of metal ions with fundamental bulk properties 
of the solvents involved, such as their dielectric constants, dipole 
moments, and polarizabilities. Such attempts have met with only 
limited success. 

Gutmann has proposed the donor number, which is the enthalpy 
change on the solvation of pentachloroantimony(V), as a measure 
for the basicity of so1vents.'T2 The donor number has served as 
a useful guide for the interpretation of the solvent effects on the 
chemical shift of CF31,3 the stability constants of SbC16- and 
complexes of univalent cations with solvents," the half-wave po- 
tentials of metal ions? MBssbauer isomer shifts: and the electron 

Gutmann, V.; Wychera, E. Inorg. Nucl. Chem. Lett. 1966, 2, 257. 
Gutmann, V. "Coordination Chemistry in Non-Aqueous Solution"; 
Springer-Verlag: New York, 1968. 
Spaziante, P.; Gutmann, V. Inorg. Chim. Acta 1971, 5 ,  273. 
Izutsu, K.; Nakamura, T.; Iwata, K. Anal. Chim. Acta 1980, 117, 329. 
(a) Gutmann, V. Monatsh. Chem. 1969, 100, 2113. (b) Gutmann, V. 
Fortschr. Chem. Forsch. 1972, 27, 59. 
Vertes, A,; Burger, K. J .  Inorg. Nucl. Chem. 1972, 34, 3665. 

binding energies of the 3d5/* orbitals of antimony.' But no donor 
numbers of alcohols, which are frequently used as solvents and 
are indispensable in the study of nonaqueous chemistry, were 
reported by Gutmann. The prediction of the donor number of 
methanol from the solvent dependence of the dissociation rate and 
the equilibrium constant of the nickel complex with the thio- 
cyanate? the activation for dissociation of the nickel(I1) complexes 
with isoquinoline: and NMR measurementlo has been attempted. 
A modified value for it was suggested from a relationship between 
ESR parameters of bis(2,6-dimethyl-3,5-heptanedionato)cop- 
per(I1) and the donor numbers of solvents." From kinetic studies 
on the ligand substitution12 and the solvent-exchange enthalpies13a 
of nickel(I1) ions, it was suggested that the donor numbers did 
not necessarily apply to such acceptors as nickel(I1) ions having 
covalent bonds. 

There is no good measure for the strength of a metal ionsolvent 
interaction except for the donor number, though we strongly expect 
to establish a new concept for the classification of a solvent based 
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