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Although there is an extensive range of metal-metal-bonded 
alkoxides, there are none reported with ortho-substituted aryl 
oxides. This prevents a precise comparison of the effect of 
changing oxygen to sulfur on the observed chemistry. However, 
complex I does not react with CO at room temperature in contrast 
to species such as [Mo2(O-i-Pr),], which forms a series of carbonyl 
complexes.2a.b 

The electrochemistry of complex I was studied by cyclic vol- 
tammetry in thf solution with [n-Bu4N] [BF,] as supporting 
electrolyte and a platinum working electrode. The complex un- 
dergoes a one-electron reversible reduction at  Ell% = -0.88 V (vs. 
SCE calibrated vs. the ferrocene/ferrocenium couple a t  +OS4 
V) followed by a further irreversible one-electron reduction at  E, 
= -1.72 V. The second irreversible reduction was accompanied 
by thiolate anion loss. Although CO does not react with the 
unreduced dimer, under CO the second reduction process becomes 
a two-electron process due to interaction with CO. However, there 
was no indication of interaction with N, a t  any redox level. No 
oxidation waves were observed at  potentials up to + 1.2 V. 
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The chemistry of trans ruthenium(I1) and ruthenium(II1) 
tetraammine complexes has been the subject of extensive research 
over the past decade.’ However, the reported synthesis2 of 
t r a n s - [ R ~ ( N H ~ ) ~ C l ~ ] C l ,  a key starting material in ruthenium 
ammine chemistry, was rather inefficient and inconvenient, in- 
volving several steps. We have recently found that high-valent 
ruthenium(V1) amine oxo complexes could easily be converted 
into the corresponding ruthenium(1V) and ruthenium(II1) s p e c k 3  
Here an efficient synthetic procedure for trans- [Ru(NH3),X2]+ 
(X = C1, I, NCS) utilizing t r a n s - [ R ~ ( N H ~ ) ~ O ~ ] ~ +  as the starting 
material is described. 

Experiment Section 
Materials. Ruthenium(II1) chloride trihydrate (Aldrich) was used as 

supplied. t r a n s - [ R ~ ( N H ~ ) ~ O ~ ] C l ~  was prepared according to the liter- 
ature method., All chemicals used were of reagent grade, and deionized 
water was used throughout the experiment. 

t r a n s - [ R ~ ( N H ~ ) ~ C l ~ ~ I .  A mixture of t r~ns- [Ru(NH,) ,O~]C1~ (0.2 
g) and ascorbic acid (2 g) in HCl (2 M, 15 cm’) was stirred for 1 day. 
An orange microcrystalline solid gradually deposited upon standing (yield 

(1) See, for example: Prog. Inorg. Chem. 1983, 30. 
(2) Glen, K.; Bruel, W. 2. Anorg. Allg. Chem. 1938, 237, 197. 
(3) Che, C. M.; Wong, K. Y.; Poon, C. K., to be submitted for publication. 
(4) Griffith, W. P.; Pawson, D. J. Chem. SOC., Dalton Trans. 1973, 1315. 

Table I. UV-Vis Absorption Spectra of Some 
trans-Diacidotetraammineruthenium(II1) Complexes 

h”/nm 
complex solvent (e,,,/cm-’ dm’ mol-’)‘ 

Z~UW-[RU(NH~)~CI,]  C1 HC1 (1 M) 331 (5270)b 
trans- [Ru(NH3),Br2] Br HBr 399 (5133)b 

?~~~~-[RU(NH~)~(NCS)~]NCS H 2 0  524 (12600), 430 sh 

trans-[Ru(NH,),I,] I H2O 552 (SSOO), 425 sh 

(0.1 M) 

(1410), 330 br (770) 

(1190), 304 (12100) 

“Abbreviations: br, broad; sh, shoulder. bIsabirye, D. A. Ph.D. 
Thesis, University of Hong Kong, 1977. 

>60%). The purity of the complex was checked by comparing its molar 
extinction coefficient a t  331 nm with the known value. Alternatively, 
SnC12 or 2-propanol could be used instead of ascorbic acid. 

traos-[Ru(NH,)J2~. An aqueous solution (20 cm3) of trans-[Ru- 
(NH3)402]C12 (0.1 g), ascorbic acid (2 g), and NaI  (2 g) was stirred for 
2 h. A dark violet-blue microcrystalline solid gradually deposited. This 
was filtered off and purified from a hot (-70 “C) NaI  solution (1 M) 
(overall yield >70%). Anal. Calcd for [Ru(NH,),I,]I: N,  10.17; I, 
69.20. Found: N,  10.27; I, 68.90. IR: u(NH) 3240, 3200, 3130 cm-I; 
6(NH) 1620 cm-I. 
~~~~-[RU(NH,)~(NCS)~]NCS. An aqueous solution (20 cm’) of 

t r a n s - [ R ~ ( N H , ) ~ O ~ ] C l ~  (0.1 g), ascorbic acid (2 g), and NaNCS (2 g) 
was stirred for 2-3 h. A dark violet-red solid gradually precipitated out. 
This was filtered off, washed with an ethanol-diethyl ether mixture 
(l:lO), and dried under vacuum. Anal. Calcd for [Ru(NH,),- 
(NCS)2]NCS: C, 10.50; H,  3.49; N,  28.56; S, 28.0. Found: C, 10.37; 
H, 3.33; N,  28.14; S, 28.4. IR: u(NH) 3240, 3200, 3130 cm-I; u(C=N) 
2060 cm-l; 6(NH) 1620 cm”, G(NCS) 790 cm-I. 

Physical Measurements. Elemental analyses of the newly prepared 
compounds were performed by the Australian Microanalytical Service 
Unit. Infrared spectra were measured in Nujol mulls on a Perkin-Elmer 
577 spectrophotometer (4000-200 cm-I). Electronic absorption spectra 
of freshly prepared solutions were measured with a Beckman Acta CIII 
spectrophotometer and the results were tabulated in Table I. 

Results and Discussion 

Previous work of Taube and his co-workerss has shown that 
reduction of t r a n s - [ O ~ ( N H ~ ) ~ O ~ ] C l ~  by SnC1, in HCl (6 M) 
produced t rans- [O~(NH~)~Cl~]+.  This synthetic method has been 
found to be more efficient for the general synthesis of trans- 
[Ru(NH3),X2]+ (X = C1, I, NCS). Other mild reductants, such 
as ascorbic acid and 2-propanol, can also very efficiently reduce 
t r ~ n s - [ R u ( N H , ) ~ O ~ ] ~ + ,  as it is a better oxidant than trans-[Os- 
(NH3)4o2l2+. 

The complex trans- [Ru(NH3),C12 prepared here is identical 
with that reported in the literature. The newly prepared 
r r ~ n s - [ R u ( N H ~ ) ~ I ~ l I  and ~~U~~-[R~(NH~)~(NCS)~]NCS com- 
plexes are stable in the solid state and in acidic solutions. The 
similarities of their UV-vis absorption spectra with those of the 
reported t r ~ n s - [ R u ( e n ) , X ~ ] + ~  (X = I, NCS) support the as- 
signment of a trans configuration. As expected, the ligand-to-metal 
charge-transfer energy of t r~ns- [Ru(NH~)~X,]+  decreases in the 
order of X = C1 > Br > NCS > I (see Table I) .  trans-[Ru- 
(NH3)4(NCS)2]NCS has also been characterized by its I R  ab- 
sorption bands at  2060 and 790 cm-’ assignable to v(CN) and 
u(CS), respectively.’ It is difficult to ascertain whether it is an 
N- or S-bonded thiocyanate species. Preliminary redox kinetic 
work showed that this species is a good mediator for electron- 
transfer reactions,s a full account of which will be reported. 

( 5 )  Buhr, J. D.; Winkler, J. R.; Taube, H. Inorg. Chem. 1980, 19, 2416. 
(6) Poon, C. K.; Lau, T. C.; Che, C. M. Inorg. Chem. 1983, 22, 3893. 
(7 )  Nakamoto, K. “Infrared and Raman Spectra of Inorganic and Coor- 

dination Compounds”, 3rd ed.; Wiley: New York, 1978. 
(8) Che, C. M., unpublished results. 
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Bond energies DRaF and I9F N M R  chemical shifts $ markedly 
depend on the nature of the R group in fluoroxy compounds. It 
has been shown' recently that the direct correlation between DRaF 
and $, which is nearly linear over a wide (1 3 kcal/mol; 100 ppm) 
range, (1) may be taken as evidence of three-center bonding2 in 
these species, (2) is consistent with changes in the electron pop- 
ulation of the r*-SOMO of OF, and (3) reveals the shortcomings 
of semiquantitative theories of paramagnetic shielding for the 
fluorine 

We wish to report now that an extended set of data, including 
an experimental measurement of $ in N020F ($ = 220)4 together 
with existing values for Fz02 (DaF = 18 kcal/mol; $ = 825)5 
and FOH (54 kcal/mol; 21 ppm),5a-6 confirms the above con- 
clusions but requires an improved correlation to account for the 
extremely large spans of both parameters. A nonlinear least- 
squares fit' of the S-shaped D vs. $ plot (Figure 1) leads to the 
expression 

D = 37.1 + 18.1 tanh [(222.7 - $)/117.5] (1) 

This correlation provides a useful predictor of the 0-F  bond 
energies of fluoroxy compounds from readily accessible spectro- 
scopic data? It also represents a critical test of a b  initio cal- 
culations of magnetic shielding constants for heavy nuclei.1° 
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Figure 1. (a) Spectroscopic dissociation energies DeF vs. I9F N M R  
chemical shifts 4 for fluoroxy compounds. (b) DeF vs. X, where X is 
tanh [(222.7 - $)/117.5]. The parameters have been determined by 
using the Marquardt algorithm.' 
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