Phosphonitriles: Versatile Intermediates

Jürgen Böske,[†] Edgar Niecke,^{*†} Edgar Ocando-Mavarez,[‡] Jean-Pierre Majoral,[‡] and Guy Bertrand[§]

Received February 12, 1986

The photochemical and thermal behavior of five new azides $RR'PN_3$ (2a-e) is reported. Evidence for the primary formation of transient phosphonitriles RR'P=N (5a-e) is given for all the azides by trapping with Me₃SiCl or/and structures: a In the absence of trapping agents, depending on the nature of the phosphorus substituents, the phosphonitriles dimerized, giving nonisolated cyclodiphosphazenes 3b, c ($R = (i-Pr)_2N$, $R' = Me_2N$ or t-Bu), trimerized, affording isolated cyclotriphosphazene 3a (R = R''= t-Bu), polymerized (R = $(i-Pr)_2N$, R' = Me₂N or t-Bu; R = R' = t-Bu), or even rearranged via $1 \rightarrow 3$ trimethylsilyl migration $(R = (Me_3Si)_2N, R' = (Me_3Si)_2CH$ or 2,2,6,6-tetramethylpiperidino), leading to stable or unstable tricoordinated pentavalent phosphorus derivatives ((methylene)(imino)phosphoranes 8d and 11e or bis(imino)phosphorane 10e). The first spectroscopically characterized 1,3-diaza- $2\lambda^{5}$,4 λ^{5} -diphosphetene 13e resulting from a [2 + 2] cycloaddition of the phosphonitrile 5e on a bis(imino)phosphorane, 10e, is reported. No Staudinger reactions involving the azido group of phosphines 2 were observed.

The Curtius type rearrangement and the Staudinger reaction appeared to be very general features for organic¹ and heavier main-group-element² azides. However, phosphine azides present an entirely different behavior. Depending on the nature of the substituents, three types of reaction have been reported.

(i) Formation of phosphorus-nitrogen containing polymers have been observed with alkyl or aryl substituted phosphine azides.³

$$R_2P - N_3 - N_2 (R_2P - N_{-})_{3,n} R \circ Ph, CF_3$$

(ii) The use of bulky silvlated-amino substituents has provided a new route to tricoordinated pentavalent phosphorus derivatives by $1 \rightarrow 3$ silvl migration.⁴

$$(Me_{3}Si)_{2}N \longrightarrow P \longrightarrow N_{3} \xrightarrow{\Delta} R \longrightarrow P \longrightarrow N \longrightarrow SiMe_{3}$$

(iii) Bis(diisopropylamino)azidophosphine led to a transient phosphonitrile⁵ that dimerized into the corresponding cyclodiphosphazene.6

$$(\stackrel{(i-Pr)_2N}{(i-Pr)_2N} \xrightarrow{P-N_3} \stackrel{\stackrel{h_{r}}{\longrightarrow}}{\begin{bmatrix} (i-Pr)_2N \\ (i-Pr)_2N \end{bmatrix}} \xrightarrow{P-N_3} \stackrel{h_{r}}{\begin{bmatrix} (i-Pr)_2N \\ (i-Pr)_2N \end{bmatrix}} \xrightarrow{P-N_3} \stackrel{h_{r}}{\longrightarrow} \stackrel{h_{r$$

Here we wish to demonstrate that a phosphonitrile is, in fact, always involved in all of these reactions, and we will discuss the particular behavior of phosphine azides and, specially, the absence of Staudinger reaction.

Results and Discussion

Phosphine azides 2 have been prepared by action of an alkali-metal azide on the corresponding chlorophosphine 1, in a polar solvent, either at $-25 \,^{\circ}\text{C}$ (2a-c) or at room temperature (2d,e).⁷

$$\begin{array}{c|c} R & & & \\ R' & & \\ P & & \\ R' & & \\ \hline 1 & & \\ 1 & & \\ 2 \\ a: R = f - Bu, R' = r - Bu \\ b: R = f - Bu, R' = N(/ - Pr)_2 \\ c: R = NMe_2, R' = N(/ - Pr)_2 \\ d: R = (Me_3Si)_2CH, R' = N \\ e: R = (Me_3Si)_2CH, R' = (Me_3Si)_2N \end{array}$$

[†]Universität Bielefeld.

- [‡]Laboratoire de Synthèse, Réactivité et Structure de Molécules Phosphorées, Université Paul Sabatier. ¹Laboratoire des Organométalliques, Université Paul Sabatier.

2695

Among these azides, 2a appears to be the least thermally stable with respect to loss of nitrogen. It slowly decomposed even at -20

- See for example: (a) Patai, S. The Chemistry of the Azido Group; (1) Wiley-Interscience: New York, 1971. (b) Lwowski, W. Nitrenes; Wiley-Interscience: New York, 1970. (c) Scriven, E. F. V. Azides and Nitrenes: Reactivity and Utility; Academic: New York, 1984. (d) Gololobov, Yu. G.; Zhmurova, I. N.; Kasukhin, L. F. Tetrahedron 1981, 37. 937.
- (2) See for example: (a) Bertrand, G.; Majoral, J. P.; Baceiredo, A. Acc. Chem. Res. 1986, 19, 17. (b) Thayer, J. S. Organomet. Chem. Rev. 1966, 1, 157. (c) Meier, H. U.; Paetzold, P.; Schröder, E. Chem. Ber. 1984, 117, 1954. (d) Parker, D. R.; Sommer, L. H. J. Am. Chem. Soc. **1976**, *98*, 618. (e) Baceiredo, A.; Bertrand, G.; Majoral, J. P.; Mazerolles, P. Nouv. J. Chim. **1983**, *7*, 645. (f) Baceiredo, A.; Bertrand, G.; Mazerolles, P. Tetrahedron Lett. 1981, 22, 2553. (g) Baceiredo, A.; Bertrand, G.; Majoral, J. P.; Vermuth, V.; Schmutzler, R. J. Am. Chem. Soc. 1984, 106, 7065. (h) Mulliez, M.; Majoral, J. P.; Bertrand, G. J. Chem. Soc., Chem. Commun. 1984, 284.
- (a) Paciorek, K. L., Kratzer, R. Inorg. Chem. 1964, 3, 594. (b) Tesi, G.; Haber, C. P.; Douglas, C. H. Proc. Chem. Soc., London 1960, 219. (3) (c) Herring, D. L. Chem. Ind. (London) 1960, 717. (d) Tesi, G.; Douglas, C. M.; Haber, C. P. U.S. Patent 3087937, 1963. (e) Herring, Douglas, C. M., Haber, C. F. U.S. Patent 305/937, 1963. (c) Herning,
 D. L.; Douglas, C. M. Inorg. Chem. 1965, 4, 1012. (f) Kratzer, R. H.;
 Paciorek, K. L. Inorg. Chem. 1965, 4, 1767. (g) Paciorek, K. L.;
 Kratzer, R. H. U.S. Patent 3 297751, 1966.
 (a) Schäfer, H. G. Dissertation, Universität Bielefeld, 1981. (b)
 Wildbredt, D. A. Dissertation, Universität Bielefeld, 1981. (c) Min Xie,
- (4) Z.; Neilson, R. H. Organometallics 1983, 2, 921. (d) Neilson, R. H.
- (a) Sicard, G.; Baceiredo, A.; Bertrand, G.; Majoral, J. P. Angew. Chem., Int. Ed. Engl. 1984, 23, 459. (b) Baceiredo, A.; Bertrand, G.; (5) Majoral, J. P.; El Anba, F.; Manuel, G. J. Am. Chem. Soc. 1985, 107 3945. (c) Majoral, J. P.; Bertrand, G.; Baceiredo, A.; Ocando, E. Phosphorus Sulfur, in press. Baceiredo, A.; Bertrand, G.; Majoral, J. P.; Sicard, G.; Jaud, J.; Galy,
- (6)J. J. Am. Chem. Soc. 1984, 106, 1984.
- Although, up to now, no explosions occurred with compound 2, maxi-(7)mum care must be taken. For example, $(CF_3)_2P-N_3$ is a violent detonator even at -196 °C.^{3b}

Scheme II

°C and the decomposition is complete, at 0 °C, within 8 h, leading mainly to the hexa-*tert*-butylcyclotriphosphazene 3a along with cyclopolyphosphazenes $4a.^8$

2b and **2c**, stable up to 0 °C, lead to a mixture of polyphosphazenes in the same way at 20 °C or by photolysis at -30 °C. According to the ³¹P NMR spectrum, it is quite likely that cyclodiphosphazenes **3b** and **3c** are formed. However, because of their high instability, all attempts to isolate these products failed.

Two mechanisms could be postulated to rationalize the formation of cyclopolyphosphazenes 3 and 4: (a) the Staudinger reaction or (b) polymerization of transient phosphonitrile 5 (Scheme I).

However, the photolysis of 2a-c, at -20 °C, in the presence of a stoichiometric amount of trimethylchlorosilane leads to the chlorophosphazenes 6a-c, which clearly result from a 1-2 addition of the trapping agent on transient phosphonitriles 5a-c. Moreover, pathway a can be ruled out since the formation of cyclopolyphosphazenes 3 and 4 is not inhibited when phosphine azides 2a-care heated or irradiated in the presence of a large excess of tributylphosphine (Scheme II).

Azidophosphine 2d is perfectly stable at room temperature; it melts without decomposition at 59-63 °C. In a first approach, its thermal and photochemical behavior is quite different from that observed for azides 2a-c. Thermolysis at 70 °C quantitatively leads to stable (2,2,6,6-tetramethylpiperidino)((trimethylsilyl)-imino)((trimethylsilyl)methylene)phosphorane (8d), while photolysis at -60 °C gives rise to the same product 8d, along with another species, 9d (5% yield) (Scheme III).

The structural assignment of the byproduct 9d is mainly based on ³¹P NMR spectroscopy. Its chemical shift (+319 ppm; ³J_{PH} = 17.9 Hz) could be in agreement with the phosphonitrile structure of 5d since the only characterized λ^5 -phosphorus-nitrogen triple-bonded-like^{5b} species has a ³¹P chemical shift of +246 ppm. However, the ³¹P signal at +319 ppm remains unchanged after addition of Me₃SiCl, excluding the phosphonitrile possibility. Therefore, dicoordinated species 9 or 10 is the most suitable candidate. 9 results from a 1→2 alkyl migration while 10 arises from amino migration followed by subsequent 1→3 hydrogen shift.⁹

A concerted $1 \rightarrow 3$ and $1 \rightarrow 2$ migration-nitrogen-loss mechanism could explain the formation of 8d and 9d or 10d, respectively. However, photolysis or thermolysis of phosphine azide 2d, in the presence of trimethylchlorosilane or dimethyldichlorosilane, demonstrate that the phosphonitrile 5d is the common intermediate since the chlorophosphazenes 6d and 7d are obtained in quantitative yield (obviously, if 6d could result from $1 \rightarrow 2$ chlorotrimethylsilyl addition on the phosphorus-carbon double bond of 8d, obtention of 7d can only be explained by the transient formation of 5d (Scheme III)). Further evidence for phosphonitrile-bis(imino)phosphorane or (methylene)phosphorane-(imino)phosphorane rearrangements was found by starting from (bis(trimethylsilyl)amino)(bis(trimethylsilyl)methyl)azidophosphine (2e). Indeed, when photolysis is carried out in pure trimethylchlorosilane at 0 °C for 4 h, the chlorophosphazene 6e is obtained in high yield, strongly supporting the transient formation of the phosphonitrile 5d. Thermolysis at 80 °C or photolysis at room temperature leads to the diazadiphosphetidine 12e, which apparently results from head to tail dimerization of the phosphorus-nitrogen double bond of the bis(imino)phosphorane intermediate 10e (Scheme IV) However, when the photolysis is performed at -70 °C, new species are formed. The major product (60% yield) appears to be the diazadiphosphetene 13e—which is the first example of a new class of P_2N_2 ring arising from [2 + 2] cycloaddition of the phosphonitrile 5e on the transient bis(imino)phosphorane 10e (note that such [2 + 2]cycloadditions involving a phosphonitrile have already been observed with dimethyl sulfoxide^{5b,c}). Not surprisingly, the diazadiphosphetene 13e is thermally unstable and isomerizes into the diazadiphosphetidine 12e via 1→3 trimethylsilyl migration at -10 °C. One of the minor products (5%) has been identified as the (imino)(methylene)phosphorane 11e coming from the migration of a trimethylsilyl group from the carbon atom (Scheme IV).

An examination of these results as well as those previously reported³⁻⁶ reveals (i) low thermal stability of phosphine azides, (ii) formation of a phosphonitrile-type intermediate that dimerizes, trimerizes, polymerizes, or alternatively leads to tricoordinated pentavalent phosphoranes, depending on the nature of the phosphorus substituents, (iii) no Staudinger reaction with phosphine, and (iv) quasi-absence of a Curtius-type rearrangement. This instability and anomalous reactivity may be easily explained by the delocalization of the nonbonded electron pair of the phosphorus atom strongly favoring the resonance form

Experimental Section

All experiments were performed in an atmosphere of dry argon or nitrogen. Melting points are uncorrected. ¹H NMR spectra were recorded on a Bruker WM 250 or a Bruker WP 80 spectrometer. ¹H chemical shifts are reported in ppm relative to Me₄Si as internal standard. ³¹P NMR spectra were obtained on a Bruker AC 80 at 32.43 MHz and a Varian FT 80A at 32.203 MHz, respectively. Downfield shifts are expressed with a positive sign, in ppm, relative to external 85% H₃PO₄. ¹³C NMR spectra were recorded on a Bruker AC 80 at 20.15 MHz or a Varian FT 80A at 20.00 MHz. Infrared spectra were recorded on a Beckman IR 10 and a Perkin-Elmer lattice spectrometer (Model 598), respectively, by using polystyrene film for calibration. Mass spectra were obtained on a Ribermag R 10-10 E instrument or a Varian MAT 311 A.

Synthesis of tert-Butyl(diisopropylamino)chlorophosphine (1b). To a solution of (diisopropylaminodichlorophosphine (1 g, 4.95 mmol) in 10

(9) The (imino)phosphane form

can be ruled out since it has been shown¹⁰ that the compounds of type $(Me_3Si)_2CH-P=N-R$ spontaneously rearrange to phosphaalkenes $(Me_3Si)_2C=P-NHR$.

(10) Niecke, E.; Symalla, E., unpublished results.

⁽⁸⁾ For reviews concerning polyphosphazenes see: (a) Allcock, H. R. Phosphorus-Nitrogen Compounds; Academic: New York, 1972. (b) Allcock, H. R. Chem. Eng. News 1985, 63, 22.

Photochemical reactions were performed in quartz tubes with a Rayonnet photochemical reactor.

Scheme III

Scheme IV

mL of ether maintained at -70 °C was added dropwise a solution of *tert*-butyllithium in hexane (4.95 mmol). The mixture was stirred at room temperature for 2 h. After filtration and evaporation of the solvent the residue was extracted with a hexane acetonitrile (4/1) solution. Removal of the solvent afforded 1.1 g (75% yield) of **1b** as a yellow liquid, which was used without further purification. ³¹P NMR (C₆D₆): 151. ¹H NMR (C₆D₆): 1.05 (d, $J_{HH} = 7$ Hz, 6 H, CHCH₃), 1.10 (d, $^{3}J_{HP} = 16$ Hz, 9 H, C(CH₃)₃), 1.15 (d, $J_{HH} = 7$ Hz, 6 H, CHCH₃), 3.50 (m, 2 H, CHCH₃).

Synthesis of (Dimethylamino)(diisopropylamino)chlorophosphine (1c). Diisopropylamine (15.7 g, 155 mmol) was added dropwise to an ethereal solution (50 mL) maintained at -70 °C of (dimethylamino)dichlorophosphine (11 g, 75 mmol). The resulting mixture was stirred 4 h at room temperature. Pentane (50 mL) was added, and the chlorohydrate was eliminated by filtration on Celite. After evaporation of the solvent, the residue was dissolved in 20 mL of hexane and washed with acetonitrile (5 mL). After evaporation of hexane and acetonitrile, 1c (9.6 g, 76% yield) was obtained as an oil. ³¹P NMR (C₆D₆): 150. ¹H NMR (C₆D₆): 0.97 (d, J_{HH} = 7 Hz, 6 H, CCH₃), 1.12 (d, J_{HH} = 7 Hz, 6 H, CCH₃), 2.38 (d, J_{HP} = 14 Hz, 6 H, NCH₃), 3.50 (m, 2 H, CHCH₃).

Synthesis of (Bis(trimethylsilyl)methyl)(2,2,6,6-tetramethylpiperidino)chlorophosphine (1d). A 16.6-g (113-mmol) sample of the lithium salt of 2,2,6,6-tetramethylpiperidine was dissolved in 100 mL of ether, and this mixture was added dropwise to a stirred solution of 29,6 g (113 mmol) of (bis(trimethylsilyl)methyl)dichlorophosphine in 100 mL of ether. The mixture was cooled to 0 °C for a further 4 h and then allowed to warm up to room temperature overnight. After filtration and evaporation of the solvent the byproduct of the reaction (EtO-P(Cl)-CHR₂) could be separated in vacuo at 60 °C for several hours. The remaining pure 1d is a red viscous liquid, 20.5 g (49.5% yield). ³¹P NMR (CDCl₃): 162.6. ¹H NMR (CDCl₃): 0.24 (d, ⁴J_{HP} = 0.6 Hz, 9 H, SiCH₃), 0.28 (d, ⁴J_{HP} = 1.0 Hz, 9 H, SiCH₃), 1.50 (s, 12 H, CCH₃), 1.63 (s, 6 H, CH₂), 2.36 (d, ²J_{HP} = 19.5 Hz, 1 H, CHSi₂). ¹³C NMR (CDCl₃): 2.3 (d, ³J_{CP} = 4.5 Hz, SiC₃), 3.1 (d, ³J_{CP} = 6.3 Hz, SiC₃), 16.4 (s, CH₂), 29.5 (d, ¹J_{CP} = 93.4 Hz, PCH), 29.4 (d, ³J_{CP} = 9.2 Hz, CCH₃), 29.5 (d, ³J_{CP} = 6.5 Hz, CCH₃), 33.8 (s, CCH₃), 36.0 (d, ³J_{CP} = 41.4 Hz, CCH₃), 39.7 (d, ³J_{CP} = 22.2 Hz, CH₂), 39.8 (d, ³J_{CP} = 16.6 Hz, CH₂), 60.1 (d, ²J_{CP} = 29.8 Hz, NC), 62.1 (d, ²J_{CP} = 11.9 Hz, NC). Mass spectrum m/e: 365 (M⁺).

Synthesis of (Bis(trimethylsilyl)methyl)(bis(trimethylsilyl)amino)-

chlorophosphine (1e). A solution of lithium bis(trimethylsilyl)amide (5.9 g, 35 mmol) in 30 mL of hexane was added to (bis(trimethylsilyl)methyl)dichlorophosphine (9.2 g, 35 mmol) in 20 mL of hexane. The mixture was heated to reflux for 2 h, and LiCl was separated from it. After evaporation of the solvent, **1e** was distilled: bp 108-112 °C (0.1 mmHg); 8.3 g (61% yield). ³¹P NMR (C₆D₆): 177.6. ¹H NMR (CH₂Cl₂): 0.15 (d, ⁴J_{HP} = 0.8 Hz, 9 H, NSiCH₃), 0.21 (d, ⁴J_{HP} = 0.8 Hz, 9 H, NSiCH₃), 0.30 (d, ⁴J_{HP} = 1.6 Hz, 18 H, CSiCH₃), 1.98 (d, ²J_{HP} = 15.1 Hz, 1 H, PCH). ¹³C NMR (C₆D₆): 2.1 (d, ³J_{CP} = 5.3 Hz, CSiC₃), 2.9 (d, ³J_{CP} = 4.8 Hz, CSiC₃), 4.4 (d, ³J_{CP} = 3.1 Hz, NSiC₃), 4.8 (d, ³J_{CP} = 1.2 Hz, NSiC₃), 28.6 (d, ¹J_{CP} = 90.2 Hz, PCH). Mass spectrum *m/e*: 385 (M⁺).

Synthesis of Di-tert-butylazidophosphine (2a). Sodium azide (0.20 g, 3 mmol) was added to a solution of di-tert-butylchlorophosphine (0.50 g, 2.8 mmol) in 10 mL of acetonitrile-toluene (1/2) solution at -18 °C. After the mixture was stirred for 4 h at -18 °C, the precipitate was eliminated by filtration at low temperature and 2a was kept in solution at -60 °C. Removal of the solvent caused decomposition of the product. ³¹P NMR (C₆D₆): 133. ¹H NMR (C₆D₆): 1.10 (d, ³J_{HP} = 16.5 Hz, 18 H, CH₃). IR (C₆D₆): 2110 cm⁻¹ (P-N₃).

Synthesis of *tert*-Butyl(diisopropylamino)azidophosphine (2b). To a solution of *tert*-butyl(diisopropylamino)chlorophosphine (1b) (0.50 g, 2.2 mmol) in 1 mL of acetonitrile and 2 mL of benzene cooled at 0 °C was added sodium azide (0.17 g, 2.6 mmol). After the mixture was stirred for 2 h at 0 °C, 20 mL of hexane was added and the resulting mixture was filtered on Celite. Impurities were extracted with 5 mL of acetonitrile; after evaporation of the hexane 0.4 g of 2b (83% yield) was obtained as a yellow liquid and used without further purification. ³¹P NMR (C₆D₆): 121. ¹H NMR (C₆D₆): 1.10 (d, $J_{HP} = 16$ Hz, 9 H, CCH₃), 1.11 (d, $J_{HH} = 7$ Hz, 6 H, CHCH₃), 1.20 (d, $J_{HH} = 7$ Hz, 6 H, CHCH₃). IR (neat): 2160 cm⁻¹ (P-N₃).

Synthesis of (Dimethylamino)(diisopropylamino)azidophosphine (2c). Sodium azide (0.40 g, 5.97 mmol) was added to a solution of (dimethylamino)(diisopropylamino)chlorophosphine (1c) (1 g, 5.97 mmol) in 20 mL of acetonitrile-toluene (1/1) solution at -18 °C. After the mixture was stirred for 4 h at -18 °C, the precipitate was eliminated by filtration at -10 °C and the solvent removed at low pressure. Crude 2c (1.20 g) was obtained as a yellow liquid and used without further purification. ³¹P NMR (C₆D₆): 112. ¹H NMR (C₆D₆): 1.00 (d, J_{HH} = 7 Hz, 6 H, CHCH₃), 1.10 (d, J_{HH} = 7 Hz, 6 H, CHCH₃), 2.40 (d, J_{HP} = 11 Hz, 6 H, NCH₃), 3.30 (m, 2 H, CHCH₃). IR (neat): 2115 cm⁻¹ (P-N₃).

Synthesis of (Bis(trimethylsilyl)methyl)(2,2,6,6-tetramethylpiperidino)azidophosphine (2d). (Bis(trimethylsilyl)methyl)(2,2,6,6tetramethylpiperidino)chlorophosphine (1d) (20.5 g, 56 mmol) and lithium azide (2.8 g, 57 mmol) in 20 mL of pyridine were stirred at room temperature for 3 days. After filtration and evaporation of pyridine the crude product, 2d, was dissolved in 25 mL of hexane and recrystallized at -30 °C: mp 59-63 °C; 13.0 g (62% yield). ³¹P NMR (CDCl₃): 132.7. ¹H NMR (CDCl₃): 0.21 (s, 18 H, SiCH₃), 1.45 (m, 12 H, CCH₃), 1.59 (m, 6 H, CH₂), 1.80 (d, ²J_{HP} = 11.2 Hz, 1 H, PCH). ¹³C NMR (CDCl₃; -40 °C): 2.1 (s, SiC₃), 2.2 (d, ³J_{CP} = 11.1 Hz, SiC₃), 17.2 (s, CH₂), 24.9 nd, ¹J_{CP} = 67.7 Hz, PCH), 28.5 (d, ³J_{CP} = 2.6 Hz, CCH₃), 31.6 (d, ³J_{CP} = 5.5 Hz, CCH₃), 34.0 (d, ³J_{CP} = 0.8 Hz, CCH₃), 36.0 (d, ³J_{CP} = 42.5 Hz, CCH₃), 40.0 (d, ³J_{CP} = 10.2 Hz, NC). IR (Nujol): 2095 cm⁻¹ (P-N₃). Mass spectrum m/e: 372 (M⁺).

Synthesis of (Bis(trimethylsilyl)methyl)(bis(trimethylsilyl)amino)azidophosphine (2e). A solution of (bis(trimethylsilyl)methyl)(bis(trimethylsilyl)amino)chlorophosphine (1e) (5.9 g, 15 mmol) and lithium azide (0.75 g, 15 mmol) in 15 mL of pyridine was stirred at room temperature for 1 day. After filtration and evaporation of the solvent the product, 2e, is obtained almost quantitatively as pale yellow crystals: mp 27-31 °C; 5.7 g (95% yield). ³¹P NMR (C₆D₆): 143.6. ¹H NMR (C₆D₆): 0.16 (d, ⁴J_{HP} = 0.7 Hz, 9 H, CSiCH₃), 0.24 (d, ⁴J_{HP} = 0.9 Hz, 9 H, CSiCH₃), 0.30 (d, ⁴J_{HP} = 1.3 Hz, 18 H, NSiCH₃), 1.52 (d, ²J_{HP} = 8.7 Hz, 1 H, PCH). ¹³C NMR (C₆D₆): 2.0 (d, ³J_{CP} = 5.2 Hz, CSiC₃), 2.5 (d, ³J_{CP} = 5.2 Hz, CSiC₃), 4.5 (s, NSiC₃), 4.9 (s, NSiC₃), 23.4 (d, ¹J_{CP} = 66.9 Hz, PCH). IR (neat): 2100 cm⁻¹ (P-N₃).

Synthesis of Hexa-tert-butylcyclotriphosphazene (3a). To a solution of di-tert-butylchlorophosphine (2.6 g, 14 mmol) in 30 mL of toluene-acetonitrile (2/1) maintained at -18 °C was added sodium azide (1 g, 15 mmol). The mixture was stirred at -18 °C for 4 h and then allowed to warm to 0 °C. After filtration and evaporation of the solvents, the residue was washed with 10 mL of hexane. Evaporation of hexane afforded a yellow liquid, which slowly crystallized. Recrystallization from hexane-acetonitrile (1/1) led to 3a as a yellow powder: mp 248-251 °C; 1.33 g (60% yield). ³¹P NMR (C₆D₆): 40. ¹H NMR (C₆D₆): 1.1 (m, 54 H, CH₃). Mass spectrum m/e: 420 (M⁺ - *t*-Bu), 363 (M⁺ - 2*t*-Bu), 306 (M⁺ - 3*t*-Bu), 249 (M⁺ - 4*t*-Bu).

Photolysis of Di-tert-butylazidophosphine (2a) in the Presence of Trimethylchlorosilane. A solution of di-tert-butylazidophosphine (2a) (0.075 g, 4 mmol) in deuterated toluene acetonitrile (2/1) solution (2 mL) was irradiated in the presence of trimethylchlorosilane (0.5 g, 5 mmol) at 254 nm for 2 h at -40 °C. After removal of the solvent at reduced pressure (15 mmHg) 6a was distilled: bp 42 °C (1 mmHg); 0.85 g (80% yield). ³¹P NMR (C₆D₆): 52. All the other spectroscopic data are in agreement with those of the literature.¹¹

Photolysis of *tert*-Butyl(diisopropylamino)azidophosphine (2b) in the Presence of Trimethylchlorosilane. A solution of 2b (0.1 g, 0.4 mmol) in deuterated toluene-acetonitrile (2/1) (2 mL) was irradiated in the presence of trimethylchlorosilane (0.54 g, 5 mmol) at 254 nm for 2 h at room temperature. According to NMR spectroscopy 6b was formed in quantitative yield. ³¹P NMR (C₆D₆): 27. ¹H NMR (C₆D₆): 0.35 (s, 9 H, SiCH₃), 1.30 (d, J_{HH} = 7 Hz, 6 H, CHCH₃), 1.35 (d, J_{HH} = 7 Hz, 6 H, CHCH₃), 1.40 (d, J_{HH} = 7 Hz, 6 H, CHCH₃), 3.40 (septet of d, J_{HH} = 7 Hz, J_{HP} = 7 Hz, CHCH₃). IR (neat): 1330 cm⁻¹ (P==N). Mass spectrum *m/e*: 310, 275 (M⁺ - Cl).

Photolysis of (Dimethylamino)(diisopropylamino)azidophosphine (2c) in the Presence of Trimethylchlorosilane. (Dimethylamino)(diisopropylamino)azidophosphine (2c) (0.22 g, 1 mmol) in deuterated toluene-acetonitrile (2/1) (2 mL) and trimethylchlorosilane (0.13 g, 1.2 mmol) were irradiated at room temperature for 2 h. According to NMR spectroscopy 6c was formed quantitatively. ³¹P NMR (CD₃CN): 4.78. ¹H NMR (toluene-d₈): 0.15 (s, 9 H, SiCH₃), 1.30 (d, $J_{HH} = 7$ Hz, 6 H, CHCH₃), 1.35 (d, $J_{HH} = 7$ Hz, 6 H, CHCH₃), 2.75 (d, ³ $J_{HP} = 14$ Hz, 6 H, NCH₃), 3.60 (m, 2 H, CHCH₃). IR (neat): 1345 cm⁻¹ (P= N). Mass spectrum m/e: 297.

Photolysis of (Bis(trimethylsilyl)methyl)(2,2,6,6-tetramethylpiperidino)azidophosphine (2d) in the Presence of Trimethylchlorosilane. Azidophosphine 2d (0.37 g, 1 mmol) in 2.5 mL of hexane and trimethylchlorosilane (0.13 g, 1.2 mmol) were irradiated at room temperature for 12 h. According to ³¹P NMR spectroscopy 6d was formed almost quantitatively. After evaporation of the solvent 6d remained as a white crystalline solid. ³¹P NMR (C₆D₆): 12.5. ¹H NMR (CDCl₃): 0.09 (s, 9 H, NSiCH₃), 0.27 (s, 9 H, CSiCH₃), 0.30 (s, 9 H, CSiCH₃), 1.41/1.51 (m, 12 H, CCH₃), 1.58/1.66 (m, 6 H, CH₂), 1.92 (d, ²J_{HP} = 21.6 Hz, 1 H, PCH). ¹³C NMR (C₆D₆): 3.23 (s, CSiC₃), 3.43 (d, ³J_{CP} = 1.2 Hz, CSiC₃), 4.31 (d, ³J_{CP} = 4.4 Hz, NSiC₃), 14.96 (d, ⁴J_{CP} = 1.1 Hz, CH₂), 34.14 (d, ¹J_{CP} = 99.0 Hz, PCH), 39.17 (d, ³J_{CP} = 5.6 Hz, (CH₂)₂), 31.09 (d, ³J_{CP} = 2.9 Hz, C(CH₃)₂), 58.58 (d, ²J_{CP} = 13.4 Hz, NC), 58.96 (s, broad, NC). IR (Nujol): 1250 cm⁻¹ (P=N). Mass spectrum *m/e*: 452 (M⁺).

Synthesis of (Bis(trimethylsilyl)methyl)((chlorodimethylsilyl)imino)(2,2,6,6-tetramethylpiperidino)chlorophosphorane (7d). A solution of 2d in toluene was heated to 90 °C for 3 h in the presence of dimethyldichlorosilane (20% excess). According to ³¹P NMR spectroscopy, compound 7d was the only product of the reaction. ³¹P NMR (C₆H₃CH₃): 17.8. ¹H NMR (CH₂Cl₂): 0.27 (s, 18 H, CSiCH₃), 0.41 (s, 6 H, NSiCH₃), 1.50 (m, 12 H, CCH₃), 1.62/1.67 (m/m, 6 H, CH₂), 1.95 (d, ²J_{HP} = 22 Hz, 1 H, PCH).

Thermolysis of (Bis(trimethylsilyl)methyl)(2,2,6,6-tetramethylpiperidino)azidophosphine (2d). A solution of 2d in deuterated benzene was heated to 70 °C for 15 h. According to ³¹P NMR spectroscopy the formation of 8d was quantitative and was only spectroscopically characterized. ³¹P NMR (C_6D_6): 100.6. ¹H NMR (C_6D_6): 0.35 (s, 9 H, NSiCH₃), 0.41 (s, 9 H, CSiCH₃), 1.35 (m, 18 H, CCH₃ and CH₂), 2.82 (d, ²J_{HP} = 7.6 Hz, 1 H, P=CH). ¹³C NMR (C_6D_6): 0.86 (d, ³J_{CP} = 6.8 Hz, CSiC₃), 3.14 (d, ³J_{CP} = 3.7 Hz, NSiC₃), 17.39 (s, CH₂), 30.56 (d, ³J_{CP} = 1.5 Hz, C(CH₃)₄), 39.45 (d, ³J_{CP} = 5.8 Hz, (CH₂)₂), 54.36 (s, (NC)₂), 68.3 (d, ¹J_{CP} = 147.3 Hz, P=CH).

Photolysis of (Bis(trimethylsilyl)methyl)(bis(trimethylsilyl)amino)azidophosphine (2e) in the Presence of Trimethylchlorosilane. Azidophosphine 2e (0.4 g, 1 mmol) in 2.5 mL of pentane and trimethylchlorosilane (0.12 g, 1.1 mmol) were irradiated (254 nm) at 0 °C for 4 h. According to ³¹P NMR spectroscopy the main product was 12e (70%) whereas 6e was formed only in a yield of 15%. By irradiation of 2e in pure trimethylchlorosilane (10-fold excess) 6e was formed as a main product (65%). All attempts to isolate 6e in pure form failed. ³¹P NMR (CDCl₃): 15.6 (²J_{PH} = 24.2 Hz).

Acknowledgment. We thank the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie (E.N.) as well as the Centre National de la Recherche Scientifique (J.P.M., G.B.) for financial support.

⁽¹¹⁾ Scherer, O. J.; Schieder, G. Chem. Ber. 1968, 101, 4198.