

Figure 4. Proposed dissociative mechanism for the dehydration-anation of *trans*- $[CrF(en)_2(H_2O)]X_2$. The intermediate is a square-based pyramid; there is no rupture of the Cr-N(amine) bond, and the trans to cis isomerization is due to the entering anion X (\bullet = water molecule).

Figure 5. Proposed dissociative mechanism for the dehydration-anation of *trans*- $[CrF(tn)₂(H₂O)]X₂$. The intermediate is a square-based pyramid. There is no rupture of the Cr-N(amine) bond. When the entering anion, **X-,** is small (CI, Br), there is no trans to cis isomerization **(I):** when the entering anion is larger (I, S_2O_6) , there is isomerization (II) (\bullet = water molecule).

nonisomerization of the trans- $[CrF₂(aa)₂]Cl$ (aa = en, tn) series indicates that the trans to cis isomerization, in all the trans- $[CrF(en)₂(H₂O)]²⁺$ salts and in the iodide and dithionate salts of *trans*- $[CrF(tn)₂(H₂O)]²⁺$, occurs after and is due to the de-

Conclusions

The lack of X-ray structural data forces us to neglect the structural aspects of the solid-state transformation. Consequently, we are very limited in the interpretation of the results. But, taking into account all the experimental facts, especially the isomorphism, we can point out the following reasonable possibilities:

(a) E_n increases with the size of the anion $(I > Br > Cl)$ due to the existence of less free space in the lattice, created by the packing of the anions, which are more or less similar in size with the voluminous *trans*-[CrF(chxn)₂(H₂O)]²⁺ cation.

(b) E_a varies according to chxn > en > tn, possibly due to the different sizes of the amines and the isomerization process that occurs in many cases.

(c) Only in the chxn case may the isomerization be explained by the rupture of the Cr^{III}–N(amine) bond, while in the other two cases, the experimental data indicate one internal rearrangement of the pentacoordinate intermediate without rupture of the Cr-N(amine) bond.

(d) **As** a result of this, in the chxn case, *E,* must correspond to two quasi-simultaneous processes: the dehydration and the Cr-N(amine) bond rupture. **In** contrast, in the en and tn cases, *E,* corresponds only to the dehydration process, without rupture of the Cr-N(amine) bond. Consequently, E_a must be lower in the en and tn cases, compared with that in the chxn compounds. This is the experimental fact.

Contribution from the Paul M. Gross Chemical Laboratory, Duke University, Durham, North Carolina **27706**

Boron Analogues of Choline. 2.' Efficient Syntheses of Boron Analogues of Choline, Acetylcholine, and Substituted Acetylcholines

Bernard F. Spielvogel,* Fahim U. Ahmed,[†] and Andrew T. McPhail

Received April **7,** *1986*

An efficient synthesis of isoelectronic and isostructural boron analogues of acetylcholine $[CH_3C(O)OCH_2CH_2N(Me_2)BH_3]$, benzoylcholine, (phenylacetyl)choline, and (phenoxyacety1)choline from the reaction of the corresponding ester hydrochlorides with Et_4NBH_4 is described. The ester hydrochlorides are prepared from $Me_2NCH_2CH_2OH$ and the corresponding acid chlorides. Both reactions are very mild and give almost quantitative yields of products. A boron analogue of choline is similarly prepared from Me₂NCH₂CH₂OH₂HCl, which is in turn made efficiently from dimethylethanolamine and anhydrous HCl. ((Trimethyl**amine-bory1)carbonyl)choline** is prepared by condensing trimethylamine-carboxyborane and the boron analogue of choline with **dicyclohexylcarbodiimide.** A boron analogue of suberoyldicholine is prepared from the reaction of the corresponding diester hydrochloride with NaBH4.

We are interested in the synthesis and characterization of isoelectronic and isostructural boron analogues of biologically important molecules. These may be of use to probe fundamental biochemical events at the molecular level as welll as to provide entirely new classes of compounds of potential pharmacological examples of boron analogues of the α -amino acids α and their (2) related precursors^{5,6} and derivatives.^{7,8} These analogues, typified by the protonated glycine analogue,² H₃N.BH₂CO₂H, contain value. Along these lines we have prepared some of the first four-coordinate boron and possess appreciable air and hydrolytic stability. They have been found to possess significant pharmacological activity, in particular, antitumor, $9-11$ antiarthritic, 12 and hypolipidemic^{13,14} activity in animal model studies. (5)

Boron analogues of other important biologically active molecules such as neurotransmitters can be envisioned. In a previous com-

- (1) **A** preliminary communication describing the synthesis of **Ib** has been published: Spielvogel, **B. F.;** McPhail, A. T.: Ahmed, **F.** U. *J. Am. Chem. Sor.* **1986,** 108, **3824.**
- Spielvogel, **9.** F.; Das, M. K.; McPhail, **A.** T.; Onan, K. D.; Hall, **I.** H. *J. Am. Chem.* **SOC. 1980,** *102,* **6343.**
- **(3)** Spielvogel, B. **F.;** Wojnowich, L.; Das, M. K.; McPhail, **A. T.;** Hargrave, K. D. *J. Am. Chem.* **SOC. 1976,** 98, **5702.**
- **(4)** Spielvogel, **9.** F. *Boron Chemistry-4;* IUPAC, Inorganic Chemistry Division; Parry, R. W., Kodama, G., Eds.; Pergamon: New York, 1980; pp 119-129.
- Wisian-Neilson, P.; Das, M. K.; Spielvogel, B. F. *Inorg. Chem.* **1978,** *I7.* 2327.
- (6) Spielvog \therefore B. F.; Harchelroad, F., Jr.; Wisian-Neilson, P. J. Inorg.
 Nucl. Chean 1979, 41, 123.

(7) Spielvog (2) Ahmed, F. U.; Morse, K. W.; McPhail, A. T. Inorg.
 Chean 182, 23, 776.
-

^t Present address: Research & Development Division, Colgate-Palmolive Co., Piscataway, NJ 08854.

munication' we reported a remarkably facile synthesis of **(2 acetoxyethy1)dimethylamine-borane (l),** an isoelectronic and isostructural boron analogue of an important neurotransmitter, the acetylcholine (ACh) cation **(2).**

This boron analogue of ACh is a molecular species since the boron and nitrogen atoms bear canceling formal negative and positive charges, respectively. Although **1** belongs to a relatively well-known class of compounds, the amine-boranes, viewing the compound as an analogue of ACh suggests examination of its activity in novel areas. Thus this analogue may be useful in studies designed to probe the importance of the so-called "anionic" subsite of acetylcholinesterase and ACh receptors. In view of the potential interest in this area we have therefore prepared a number of additional examples of boron analogues of molecules related to ACh as well as a boron analogue of choline itself.¹⁵

Results and Discussion

A series of boron analogues of choline and its esters are prepared in good yields in two convenient steps shown in Schemes I and 11.

Scheme I

$$
Me2NCH2CH2OH + R-Cl
$$

\n
$$
= 3
$$

\n
$$
= 4
$$

- (8) Spielvogel, B. F.; Ahmed, F. U.; Silvey, G. L.; Wisian-Neilson, P.; McPhail, **A.** T. *Inorg. Chem.* **1984,** *23,* 4322.
- Hall, **1.** H.; Spielvogel, B. F.; McPhail, A. T. *J. Pharm.* Sci. **1984,** *73,* 222.
- Hall, I. H.; Starnes, C. 0.; Spielvogel, B. F.; Wisian-Neilson, P.; Das, M. K.; Wojnowich, L. *J. Pharm. Sci.* **1979,** *68,* 685.
- Hall, I. H.; Gilbert, C. J.; McPhail, A. T.; Morse, K. W.; Hasset, K.; Spielvogel, B. F. J. *Pharm. Sci.* **1985,** *74,* 755.
- Hall, I. H.; Starnes, C. 0.; McPhail, A. T.; Wisian-Neilson, P.; Das, M. K.; Harchelroad, F., Jr.; Spielvogel, B. F. *J.* Pharm. Sci. **1980,** 69, (12) 1025.
- (13) Hall, I. H.; Das, M. K.; Harchelroad, F. Jr.; Wisian-Neilson, P.; McPhail, **A.** T.; Spielvogel, B. F. *J. Pharm. Sci.* **1981,** *70,* 339.
- Hall, I. H.; Williams, W. L., Jr.; Gilbert, C. J.; McPhail, **A.** T.; Spielvogel, B. F. J. *Pharm.* Sci. **1984,** *73,* 973.
- (15) An alkylborinic acid analogue of ACh has been prepared, $Me₃N⁺$ - $(CH₂)$ ₃B(OH)Me Br⁻, whose structure differs significantly from the class under consideration in this paper: Koehler, K. A,; Hess, G. P. *Biochemistry* **1974**, *13*, 5345. A borane adduct of 2-(dimethyl-
amino)ethanol, H₃B.NMe₂CH₂CH₂OH, has been reported, which may be considered a boron analogue of choline. However, this analogy was
not discussed in the reports. (a) Mancilla, T.; Santiesteban, F.;
Contreras, R.; Klaebe, A. Tetrahedron Lett. 1982, 23, 1561. (b) Brown, H. C.; Murray, L. T. *Inorg. Chem.* **1984,** *23,* 2746.

Scheme I1

Splelvogel et al.
\n**Scheme II**
\n
$$
Me_2HN^+CH_2CH_2ORCl^- + Et_4NBH_4 \xrightarrow{CH_2Cl_2}
$$

\n5a, R = H
\n5b, R = CH_3CO
\n5c, R = C_6H_3CH_2CO
\n5d, R = C_6H_3CH_2CO
\nH_3BN(Me_2)CH_2CH_2OR
\n1a, R = H (40%)
\n1b, R = CH_3CO (85%)
\n1c, R = C_6H_3CO (17%)
\n1d, R = C_6H_3CH_2CO (83%)
\n1d, R = C_6H_3CH_2CO (83%)
\nMe_2NCH_2CH_2OCOCH_2OC_6H_5 + H_3B.THF \xrightarrow{THF} for
\n6a
\nH PN(Me) CH CH OCOCH OCH

Me₂NCH₂CH₂OCOCH₂OC₆H₅ + H₃B\cdot THF
$$
\xrightarrow{\text{IHF}}
$$

\n
$$
H_3BN(Me_2)CH_2CH_2OCOCH_2OC_6H_5
$$
\n
$$
1e (98\%)
$$

Preparation of Precursor Hydrochlorides. N,N-Dimethylethanolamine **(3)** was allowed to react with the corresponding acid chlorides (4b-d) in either CH₂Cl₂ or anhydrous ether solvent at 0 "C to give the ester hydrochlorides (Scheme I). The yields of the ester hydrochlorides **(5b-d)** are almost quantitative in most cases. The protonated alcohol **(5a)** is similarly prepared in 83% yield from the alcohol 3 and dry HCl/ether solution at $0 °C$. When a similar reaction is carried out with phenoxyacetyl chloride **(4e)** and **3** in ether at 0 "C, completely different types of products are obtained. **(2-Hydroxyethy1)dimethylammonium** chloride **(5a)** is separated as an insoluble solid **(46%** yield), and unprotonated ester **(6a)** is isolated from the mother liquor in **45%** yield. The difference in reactivity of **4e** compared to that of the other acid chlorides used, **4b-d**, with 3 is not well-understood. All of these hydrochlorides are extremely hygroscopic, are purified by repeatedly washing with anhydrous ether under N_2 , and are characterized by 'H NMR and IR spectroscopy. These hydrochlorides have characteristic broad HN' stretches *(2200* s, 2250 s, 2400 s cm⁻¹) in the IR spectra. In the ¹H NMR spectra the methyl proton resonances in the Me₂HN⁺ moieties (2.74-2.94) ppm) are shifted downfield from the Me2N absorption at **2.23** ppm of the unprotonated alcohol **(3)** as expected.

Preparation of Boron Analogues of Ch, Ch Esters, and ACh. The hydrochlorides **(5a-d)** are reduced efficiently to the desired boron complexes (1a-d) by $Et_4NBH_4^{16}$ in CH₂Cl₂ as shown in Scheme 11. The boron analogue of choline **(la)** is obtained in **40%** yield, which is low compared to that of other analoguues prepared under similar reaction conditions (Table I). The low yield in **la** can be explained by several observations. The alcohol **(la)** has been prepared by other workers by complexation routes of the alcohol **(3)** with $H_3B\text{-}THF^{15}$ and $H_3B\text{-}SMe_2^{15a}$ as shown in the two equations 40% yield, which is low compared to that of or
prepared under similar reaction conditions (Tab
yield in 1a can be explained by several observatio
(1a) has been prepared by other workers by com
of the alcohol (3) with H_3

of the alcohol (3) with H₃B-THF¹⁵ and H₃B-SMe₂^{15a} as shown
in the two equations

$$
Me_2NCH_2CH_2OH + H_3B+THF \xrightarrow{20 \text{ °C}}
$$

 $H_3BN(Me_2)CH_2CH_2OH$
 $1a$
 $Me_2NCH_2CH_2OH + H_3B-SMe_2 \xrightarrow{-35 \text{ °C}}$
 $H_3BN(Me_2)CH_2CH_2OH$
 $H_3BN(Me_2)CH_2CH_2OH$

$$
H_3BN(Me_2)CH_2CH_2OH
$$

1a

It was observed that, concurrently with complexation, partial alcoholysis of the $BH₃$ by the $-OH$ group also occurred.¹⁵ By using a BH, to alcohol ratio of 4:3, the corresponding borate ester **(7)** was prepared. Subsequent hydrolysis provided¹⁵ 1a. Moreover, It was observed that, concurrently with complexat
alcoholysis of the BH₃ by the -OH group also occurred
a BH₃ to alcohol ratio of 4:3, the corresponding bora
was prepared. Subsequent hydrolysis provided¹⁵ 1a.
3Me₂

$$
3\text{Me}_2\text{NCH}_2\text{CH}_2\text{OH} + 4(\text{H}_3\text{B-THF}) \xrightarrow{\text{20 °C}} \text{B}(\text{OCH}_2\text{CH}_2\text{NMe}_2\cdot\text{BH}_3)_3
$$

⁽¹⁶⁾ Gibson, D. H.; Ahmed, F. U.; Phillips, K. P. *J. Organomet. Chem.* **1981,** *218,* 325.

Table I. Selected Physical and Spectral Data of Boron Analogues of Ch, ACh, and Related Derivatives

compd	analogues	mp, °C [bp, $°C$ (torr)]	yield, $\%$	IR $(CDCl_3)$, cm ⁻¹	¹¹ B NMR $(CDCl3/BF3·Et2O),$ ppm (J_{BH}, Hz)
	BH ₃ 1a MezNCH ₂ CH ₂ OH		40	3510 (OH), 2370 (BH), 2270 (BH)	-9.0 (q, 98)
	BH ₃ \circ 1b Me ₂ NCH ₂ CH ₂ OCCH ₃	$89 - 90(0.4)$	85	2380 (BH), 2260 (BH), 1740 (CO)	-9.4 (q, 95)
1c.	BH₃ \circ Me ₂ NCH ₂ CH ₂ OCC ₆ H ₅	$89 - 90$	59	2380 (BH), 2260 (BH), 1720 (CO)	-9.2 (q, 95)
1d -	BH ₃ Me2NCH2CH2OCCH2CeH5		83	2360 (BH), 2215 (BH), 1740 (CO)	-9.5 (q, 93)
1e	BH ₃ Me ₂ NCH ₂ CH ₂ OCCH ₂ OC ₆ H ₅	$47 - 48$	98	2360 (BH), 2260 (BH), 1760 (CO)	-9.4 (q, 91)
9	BH ₃ Me ₂ NCH ₂ CH ₂ OCBH ₂ NMe3	$107 - 108$	55	2370 (BH), 2260 (BH), 1660 (CO)	-9.4 (br)
11	BH (Me2NCH2CH2OCCH2CH2CH2)2	$58 - 59$	31	2370 (BH), 2260 (BH), 1730 (CO)	-9.3 (q, 105)

it was noted that 1a is very soluble in H_2O .^{15b} A moderate yield (52%) of 1a was reported^{15a} with the Me₂S-BH₃ reaction. Considering that alcohol 1a is soluble in $H₂O$ and can form the borate ester (7) easily with excess reagents, a 40% yield of 1a after aqueous workup is not surprising.

The boron analogue of acetylcholine (1b) is prepared in 85% yield by reaction of the ester hydrochloride with Et4NBH₄. It can be purified by vacuum distillation. Reduction of 5b with a twofold excess of NaBH₄ in refluxing THF for 6 days produced 74% of 1b whereas a 19% yield is obtaining when the reaction period was shortened to 1 day. The benzoylcholine analogue (1c) is prepared in 59% yield by complexing $Me₂NCH₂CH₂OCOC₆H₅$ (6b) with $BH₃$ THF. When the ester hydrochloride (5c) was reacted with Et_4NBH_4 , it produced a ca. 1:2 mixture (determined by a ¹H NMR spectrum of the mixture) of the desired product (1c) and a by product (6b). Only a 10% yield of 1c was achieved

$$
B_{2}HN^{+}CH_{2}CH_{2}OCOC_{6}H_{5}CI^{-} + Et_{4}NBH_{4} \xrightarrow{CH_{2}Cl_{2}}
$$

\n
$$
5c
$$
\n
$$
Me_{2}NCH_{2}CH_{2}OCOC_{6}H_{5} + Me_{2}NCH_{2}CH_{2}OCOC_{6}H_{5}
$$
\n
$$
BH_{3}
$$
\n
$$
1c
$$

M

when a twofold excess of NaBH₄ in refluxing THF was used for 6 days; it produced a $3-4\%$ yield of the byproduct Me₂NCH₂CH₂OCOC₆H₅. The phenylacetylcholine analogue (1d) is similarly prepared in 83% yield by reacting the corresponding ester hydrochloride with Et₄NBH₄. It was purified by column chromatography on a silica gel column with a $CH₂Cl₂/pen$ $tan\epsilon/CH_3OH$ (20:1:1) solvent mixture elution. The (phenoxyacetyl)choline analogue (1e) is prepared by complexation of the ester (6a) with H_3B -THF. Attempts to purify 1a and 1d by vacuum distillation failed, producing decomposition products instead.

Preparation of ACh Analogues with Two Boron Atoms. Trimethylamine-carboxyborane (8) may be considered an isoelectronic boron-nitrogen analogue of a (substituted) acetic acid. Therefore, we desired to prepare the ester of 8 with the boron analogue of choline $(1a)$. Trimethylamine-carboxyborane³ (8)

$$
\frac{\text{Me}_3\text{NBH}_2\text{COOH} + \text{H}_3\text{B} \cdot \text{Me}_2\text{NCH}_2\text{CH}_2\text{OH} \quad \frac{\text{DCC}}{\text{CH}_2\text{Cl}_2}}{1\text{A}}
$$
\n
$$
\text{Me}_2\text{N}\text{CH}_2\text{CH}_2\text{OC}
$$

COBH2NMe₃

BH₃

is condensed with 1a in the presence of dicyclohexylcarbodiimide (DCC) to prepare (2-(((trimethylamine-boryl)carbonyl)oxy)ethyl)dimethylamine-borane (9) in 55% yield. The product is recrystallized from $CH₂Cl₂/ether$.

Boron Analogue of Suberovidicholine. Suberovidicholine has been studied for its effects on cholinergic excitation activity.¹⁷ The boron analogue of suberoyldicholine (11) is prepared from the reduction of the diester dihydrochloride (10) with N aBH₄ in 31% yield. The diester dihydrochloride (10) is in turn prepared from

$$
2Me2NCH2CH2OH + CICOCH2)6COCl $\frac{\text{other}}{0 \cdot C}$
\n
$$
3
$$
\n
$$
Me2HN+CH2CH2OCO(CH2)6COOCH2CH2+NHMe2Cl-2\n10\n10 + NaBH4 $\frac{THF}{\frac{1}{1}}$ Me₂NCH₂CH₂OCO(CH₂)₆COOCH₂CH₂NMe₂
\n
$$
BH3
$$
\n
$$
BH3
$$
$$
$$

the reaction of N , N -dimethylethanolamine (3) and suberoyl chloride in 93% yield. All new compounds have been characterized by elemental analyses and IR and ¹H and ¹¹B NMR spectroscopy. Selected physical and spectral data of these compounds are given in Table I. The IR spectra exhibited characteristic strong B-H and C=O absorptions. The ¹H and ¹¹B NMR spectral data are consistent with the structures of these compounds. In 9, the chemical shifts of two magnetically nonequivalent B atoms $(-BH₃)$ vs. $-BH_2$) are very similar and their individual absorptions overlapped to give a broad signal at 9.4 ppm.

The boron-hydrogen bonds in these analogues possess appreciable hydrolytic stability. For example, samples of 1b and 1c in a 1:2 D_2O/THF solvent mixture, after about 8 days, lost only ca. 10% and 33%, respectively, of their $BH₃$ groups due to hydrolvsis.

NMR Consideration. Acetylcholine and its analogues play very important roles in the transmission of the nerve impulse. Since conformational changes upon attachment to receptors may be of importance to understand the mechanism of action of these small molecules, detailed conformational studies of these compounds have been extensively undertaken. On the basis of X-ray¹⁸⁻²⁰ and NMR²¹⁻²⁴ studies, it was shown that choline and acetylcholine

- Canepa, F. P.; Pauling, P.; Sorm, H. Nature (London) 1966, 210, 907.
Chottinia, C.; Pauling, P.; Nature (London) 1968, 219, 1156. (18)
- (19)
- (20) Herdklotz, J. K.; Sass, R. L. Biochem. Biophys. Res. Commun. 1970,
- 40, 583.
- Culvenor, C. C. J; Ham, N. S. Chem. Commun. 1966, 537
- Terui, Y.; Ueyama, M.; Satoh, S.; Tori, K. Tetrahedron 1974, 30, 1465. (22)
- (23) Lichtenberg, D.; Kroon, P. A.; Chan, S. I. J. Am. Chem. Soc. 1974, 96, 5934.
- Partington, P.; Feeney, J.; Burgen, A. S. V. Mol. Pharmacol. 1972, 8, (24) 269.

⁽¹⁷⁾ For a recent review of cholinergic excitation, see: Maelicke, A. Angew.
Chem., Int. Ed. Engl. 1984, 23, 195.

assume predominantly a gauche conformation in aqueous solution as well as in the solid state. Solution conformations of these compounds were assigned on the basis of analysis of AA'BB' multiplets of $-CH_2CH_2$ - resonances.

In the 'H NMR spectra of all these boron analogues, an apparently perfect A_2X_2 system is observed for the $-CH_2CH_2$ moiety as exemplified by the symmetrical 1:2:1 intensity distribution of the $-CH_2$ - triplets with $J = 6$ Hz. This implies that the two A protons are magnetically equivalent as are the two X protons. No observable difference exists in the free energy of gauche and trans conformations; hence, the population of each

conformer must be identical, $n_t = n_g = 0.33$. This conclusion is supported by the fact that spectra did not change upon decreasing the temperature to -60 \degree C.

Our results contrast with those reported²¹⁻²⁴ for acetylcholine, choline, and related compounds in D_2O , where an AA'BB' system with $J = 7$ Hz, $J' = 2.5$ Hz, and $n_g = 0.91$, $n_t = 0.09$ was observed. Due to rapid interconversion between gauche and trans rotameters, it is not possible to observe the individual coupling constants for these analogues in the NMR time scale. Instead, two time-averaged coupling constants are obtained.

The conformational behavior of metoclopramide and its protonated derivative 12 have been investigated²⁵ recently by ¹H **NMR** spectroscopy, and results similar to those of our studies were obtained in the observation of 1:2:1 symmetrical triplets $(J = 6$ Hz) for the $-CH_2$ - moieties.

Conclusion

Isoelectronic and isostructural boron analogues of acetylcholine and choline have been prepared in a facile synthesis. Other boron choline ester analogues related to ACh have also been synthesized in high yield. The pharmacological properties of these compounds are under investigation and will be reported elsewhere. The boron analogue of ACh, in a preliminary study, has exhibited a relatively low toxicity (LD₅₀ > 750 mg/kg in male mice).²⁶

Experimental Section

General Considerations. IR spectra were recorded on a Perkin-Elmer 297 spectrometer. ${}^{1}H$ and ${}^{11}B$ NMR spectra were obtained on Varian EM 360A and JEOL-FX 90Q spectrometers, respectively. Elemental analyses were performed by Galbraith Labs., Inc., Knoxville, TN. The following compounds were purchased and used without further purification: Me₂NCH₂CH₂OH (Alrich), C₆H₅COCl (Fisher), CH₃COCl (Eastman Kodak), $C_6H_5OCH_2COCl$ (Aldrich), $C_6H_5CH_2COCl$ (Aldrich), suberoyl chloride (Aldrich), NaBH₄ (Alfa), Et₄NOH (Alfa), BHyTHF (Alfa), **dicyclohexylcarbodiimide** (Chemical Dynamics). $Et₄NBH₄¹⁶$ and $Me₃N·BH₂COOH³$ were prepared by methods described previously.

Preparation of (2-Hydroxyethyl)dimethylammonium Chloride (Sa). To a vigorously stirred solution of $Me₂NCH₂CH₂OH$ (133.71 g, 1.5 mol) in 100 mL of ether at 0 °C was added a cold solution of dry HCl (72) g, 2 mol) in 400 mL of ether dropwise over a period of 2 h. White fumes with some precipitation were produced immediately. The cloudy suspension was then stirred at ambient temperature for an additional 1 h, and the solvent was removed by filtration under a N_2 atmosphere. The extremely hygroscopic salt thus obtained was repeatedly washed with anhydrous ether and finally vacuum-pumped overnight to give a slightly pinkish salt **(5a)** (156.8 g, 83%). Suitable IH NMR and IR spectra of **5a** could not be obtained because of its extreme hygroscopic nature and insolubility in organic solvents.

Preparation of (2-Acetoxyethyl)dimethylammonium Chloride (5b). To a stirred solution of Me₂NCH₂CH₂OH (17.83 g, 0.2 mol) in 100 mL of CH₂Cl₂ at 0 °C was added CH₃COCI (17.27 g, 0.22 mol) in 100 mL of $CH₂Cl₂$ dropwise from a dropping funnel over a period of 1 h. White fumes were produced immediately. The resulting solution (some precipitate that formed initially went into solution) was stirred at ambient temperature overnight, and the solvent was removed by vacuum. The white solid thus obtained was repeatedly washed with anhydrous ether and dried under vacuum overnight. The extremely hygroscopic ester hydrochloride **(Sb)** (30.6 g, 91%) had the following spectral characteristics. IR (cm⁻¹, CDCl₃): v_{HN} + 2200 s, 2250 s, 2400 br s; v_{CO} 1740 s. ¹H NMR(CDCl₃): δ 2.1 (s, CH₃CO), 2.94 (s, CH₃N⁺CH₃), 3.43 (dist t, $CH₂N$), 4.48 (t, $CH₂O$).

Preparation of (2-(Benzoyloxy)ethyl)dimethylammonium Chloride (5c). To a stirred solution of $Me₂NCH₂CH₂OH$ (17.83 g, 0.2 mol) in 200 mL of CH₂Cl₂ at 0 °C was added C_6H_5COCl (30.93 g, 0.22 mol) in 200 mL of $CH₂Cl₂$ dropwise over a period of 1 h. The resulting mixture was stirred overnight at ambient temperature. The solvent was removed under reduced pressure, and the white solid thus obtained was washed repeatedly with ether and then dried under vacuum. The white hygroscopic ester hydrochloride **(5c)** (42.5 g, 98%) had the following spectra data. IR (cm⁻¹, CDCl₃): ν_{HN} + 2210 s, 2250 m, 2400 br s; ν_{CO} 1720 s. ¹H NMR (CDCI₃): δ 2.94 (s, CH₃N⁺CH₃), 3.5 (dist t, CH₂N), 4.7 (dist t, CH20), 7.2-8.0 (m, aromatic).

Preparation of *(24* **Phenylacetoxy)ethyl)dimethylammonium Chloride** (5d). To a stirred solution of Me₂NCH₂CH₂OH (8.91 g, 0.1 mol) in 150 mL of ether at 0 °C was added C_6H_5COCl (15.46 g, 0.1 mol) in 50 mL of ether dropwise. White fumes accompanied by a white precipitate were formed as the acid chloride was added. The suspension was stirred at room temperature for 5 h and filtered, and the hygroscopic solid was repeatedly washed with ether. The ether washings were concentrated and then kept in the freezer to collect additional product. The combined solid (21.7 g, 89%) was recrystallized from $CH_2Cl_2/$ ether in the freezer to give a purplish solid (18.28 g, 75%); mp 122–128 °C dec. IR (cm⁻¹, CH₂Cl₂): $CH₃N⁺CH₃$), 3.3 (br m, CH₂N), 3.65 (s, CH₂), 4.43 (br m, CH₂O), 7.15 (s, aromatic). $\nu_{\rm HN}$ + 2200-2500 br s); $\nu_{\rm CO}$ 1740 s. ¹H NMR (CDCl₃): δ 2.74 *(s,*)

Preparation of 2-(Dimethy1amino)ethyl Phenoxyacetate (6a). To a stirred solution of $Me₂NCH₂CH₂OH$ (8.91 g, 0.1 mol) in 150 mL of ether at 0 °C was added $C_6H_5OCH_2COCl$ (17.06 g, 0.1 mol) in 50 mL of ether dropwise. White fumes followed by precipitation of a white solid occurred as the reaction progressed. The suspension was stirred at room temperature for 5 h. The solid product $Me₂HN+CH₂CH₂OH Cl⁻ (5a)$ was separated and repeatedly washed with ether (5.8 g, 46.18%). The ether portion was concentrated under reduced pressure to give the ester MezNCHzCH20COCH20C,Hs **(6a;** IO g, 45%. IR (cm-I, CDCI,): *vco* 1760 s. ¹H NMR (CDCl₃): δ 2.18 (s, CH₃NCH₃), 2.43 (t, CH₂N), 4.14 (t, CH₂O), 4.5 (s, CH₂OAr), 6.6-7.2 (m, aromatic).

Preparation of (2-Hydroxyethyl)dimethylamine-Borane (la). To a stirred solution of Me₂HN⁺CH₂CH₂OH Cl⁻ (5a) (3.7 g, 0.03 mol) in 300 mL of CH_2Cl_2 was added solid Et_4NBH_4 (5 g, 0.034 mol) slowly. An initially vigorous evolution of H_2 gas took place. The mixture was stirred for 2 h at ambient temperature and then refluxed overnight. The cloudy solution was cooled, washed with 3×100 mL of H₂O, and dried over MgSO,. The solvent was removed under reduced pressure, and the colorless oily **1a** (1.2 g, 40.18%) was obtained. IR (cm⁻¹, CH₂Cl₂): ν_{OH} 3510 s; ν_{BH} 2370 s, 2270 s. ¹H NMR (CDCl₃): δ 2.6 (s, CH₃NCH₃), 2.87 (t, CH₂N) 3.53 (s, OH), 3.87 (t, CH₂O). ¹¹B NMR (CDCl₃, BF₃·Et₂O): δ -9.0 (q, J_{BH} = 98 Hz). The spectral properties of **1a** matched well with the reported values.¹⁵ An attempt to vacuum-distill **la** was not successful. Anal. Calcd for $C_4H_{14}BNO$: C, 46.66; H, 13.70; N, 13.60. Found: C, 46.00; H, 12.50; N, 12.81.

Preparation of (2-Acetoxyethy1)dimethylamine-Borane (lb). To a stirred solution of the ester hydrochloride **5b** (3.80 g, 0.023 mol) in 300 mL of CH_2Cl_2 at room temperature was added solid Et_4NBH_4 (4.94 g, 0.034 mol, 50% excess) slowly. Initially, H_2 gas was evolved vigorously. When the reaction had subsided, it was refluxed for 3 h. The reaction mixture was then cooled, washed with water (3 **X** 100 mL), dried over MgSO,, and concentrated and finally dried under vacuum. The product **lb,** a slightly yellowish liquid (2.8 g, 85% yield, pure by 'H and "B NMR spectra) was distilled at reduced pressure to give a colorless liquid; bp 89-90 °C (0.4 torr). IR (cm⁻¹, CH₂Cl₂): v_{BH} 2270 m, 2310 sh, 2380 2.98 (t, $J = 6$ Hz, CH₂N), 4.38 (t, $J = 6$ Hz, CH₂O). ¹¹B NMR s; v_{CO} 1740 s. ¹H NMR (CDCl₃): δ 2.03 (s, CH₃), 2.62 (s, CH₃NCH₃),

⁽²⁵⁾ Anker, L.; Leuterwein, J.; van de Waterbeemed, H.; Testa, **B.** *Helo. Chim. Acta* **1984,** *67,* 706.

⁽²⁶⁾ Hall, **I.** H., private communication, Department of Medicinal Chemistry, The University of North Carolina, Chapel Hill, NC 27514.

(CDCl₃, BF₃·Et₂O): δ - 9.42 (q, J_{BH} = 98 Hz). Anal. Calcd for C6HI6BNO2: *C,* 49.70; H, 11.12; N, 9.66; B, 7.46. Found: C, 49.63; H, 10.93; N, 9.32; B, 7.25.

Preparation of (2-(Benzoyloxy)ethyl)dimethylamine-Borane (IC). Method a. To a solution of the ester hydrochloride **5c** (3 1.4 g, 0.13 mol) in 500 mL of CH₂Cl₂ at room temperature was added Et_4NBH_4 (21.82) g, 0.15 mol) with stirring. After the initially vigorous H_2 evolution had subsided, the reaction mixture was refluxed overnight. This was then cooled, washed with water $(3 \times 150 \text{ mL})$, dried over MgSO₄, and concentrated. The semisolid material (18 g) thus obtained contained a ca. 1:2 ratio of H₃B-NMe₂CH₂CH₂OCOC₆H₅ (1c) and $Me₂NCH₂CH₂OCOC₆H₅$ (6b) (by ¹H NMR). To this mixture was added ca. 300 mL of pentane, and this preparation was cooled in the freezer. The desired product **IC** separated out as a solid (4.8 g, 17%) and was purified by recrystalliation from CH_2Cl_2 /pentane: white needles; mp 89-90 "C. IR (cm-I, CDCI,): **uBH** 2260 m, 2320 sh, 2380 s; *uco* 1720 s. ¹H NMR (CDCl₃): δ 2.64 (s, CH₃NCH₃), 3.1 (t, *J* = 6 Hz, CH₂N), 4.6 (t, $J = 6$ Hz, CH₂O), 7.2-8.0 (m, aromatic). ¹¹B NMR (CDCl₃, BF₃.Et₂O): δ -9.17 (q, J_{BH} = 95 Hz). Anal. Calcd for C₁₁H₁₈BNO₂: C, 63.80; H, 8.76; N, 6.76; B, 5.22. Found: C, 64.02; H, 8.80; N, 6.70; B, 5.10. The pentane solutions were concentrated and vacuum pumped to give oily $Me₂NCH₂CH₂OCOC₆H₅$ (6b) (12.5 g, 48%). IR (cm⁻¹, neat): *v*_{CO} 1720 s. ¹H NMR (CDCI₃): δ 2.23 (s, CH₃NCH₃), 2.58 (t, $J = 6$ Hz, CH₂N), 4.3 (t, $J = 6$ Hz, CH₂O), 7.1-8.0 (m, aromatic).

Method b. To a solution of **6b** (12.5 g, 0.065 mol obtained from method a) in 100 mL of dry THF was added 100 mL of BH₃·THF (0.1) mol), and the resulting mixture was refluxed overnight. The clear solution was cooled and concentrated to a thick liquid. Ca. 100 mL of pentane was added to precipitate the product **IC.** The crude product was purified (7.9 g, 59%) and characterized similarly by the method descried in (a).

Preparation of (2-(Phenylacetoxy)ethyl)dimethylamine-Borane (ld). To a stirred slightly yellowish solution of **Sd** (21.7 g, 0.089 mol) in 450 mL of CH₂Cl₂ at 0 °C was added Et₄NBH₄ (14.21 g, 0.098 mol) slowly under N_2 . The mixture was stirred at room temperature for 2 h and then refluxed overnight. The solution was cooled, washed with water (3 **X** 100 mL), dried over MgSO,, and concentrated to give **Id** (16.3 g, 82.83%). IR (cm-', CH,Cl2): *YBH* 2215 s, 2360 s; *vco* 1740 s. 'H NMR (CDCI,): δ 2.40 (s, CH₃NCH₃), 2.83 (t, *J* = 6 Hz, CH₂N), 3.54 (s, CH₂Ar), 4.30 $(t, J = 6 \text{ Hz}, \text{CH}_2\text{O})$, 7.20 (s, aromatic). ¹¹B NMR (CDCl₃, BF₃·Et₂O): δ -9.5 (q, J_{BH} = 93 Hz). Attempted distillation of 1d under reduced pressure (0.3 torr) at 110 -150 \degree C produced decomposition products (e.g., loss of B-H, C=O, groups, etc.). Finally the crude product was purified by column chromatography on a silica gel column eluted with $CH_2Cl_2/$ pentane/CH₃OH (20:1:1). Anal. Calcd for C₁₂H₂₀BNO₂: C, 65.19; H, 9.12; N, 6.33. Found: C, 65.34; H, 8.93; N, 6.29.

Preparation of $(2-(Phenoxyacceptoxy)ethyl)$ dimethylamine-Borane $(1e)$. To a stirred solution of **6a** (10 g, 0.045 mol) in 100 mL of dry THF under N_2 was added BH₃.THF (80 mL of a 1 M solution 0.08 mol). The mixture was then refluxed overnight and cooled, and the solvent was stripped off. The oily material was taken up in 300 mL of $CH₂Cl₂$, washed with water (3 \times 100 mL), dried over MgSO₄, and concentrated to a brown oily product **(le;** 10.5 g, 98.84%). The crude product was dried under vacuuum for several days and then kept in the freezer, whereupon it solidified. The product was purified by recrystallization from CH₃OH/hexane to give white plates; mp 47-48 °C. IR (cm⁻¹, CDCI,): uBH 2260 *S,* 2360 **S;** *vco* 1760 *S.* 'H NMR (CDCI,): 6 2.42 *(s,* CHjNCH,), 2.85 (t, *J=* 6 Hz, CH2N), 4.38 (t, *J=* 6 Hz, CH20), 4.50 (s, CH₂CO), 6.66–7.35 (m, aromatic). ¹¹B NMR (CDCl₃, BF₃·Et₂O: δ -9.4 **(q,** $J_{BH} = 91$ **Hz).** Anal. Calcd for C₁₂H₂₀BNO₂: C, 60.79; H, 8.50; N, 5.91. Found: C, 60.58; H, 8.43; N, 5.79.

Preparation of (2-(((Trimethylamine-bory1)carbonyl)oxy)ethyl)dimethylamine-Borane (9). To a solution of Me₃N.BH₂COOH (8; 11.69) g, 0.1 mol) and H,B.NMe2CH2CH20H **(la)** (12.60 g, 0.1 mol) in 450 mL of CH2C1, was added **dicyclohexylcarbodiimide** (22.69 g, 0.1 1 mol), and the resulting clear solution was stirred at ambient temperature for 4 days. The insoluble dicyclohexylurea was removed each day by filtering the reaction mixture. After 1 day ca. 70% of the reaction was complete (from the weight of insoluble urea) and the reaction was stopped after 4 days (ca. 90% completion). The clear solution was washed with water $(3 \times 100 \text{ mL})$, dried over MgSO₄ and concenrated to give 17.1 g of the crude ester **(9),** which was contaminated with some unreacted starting materials and byproduct. The crude semisolid material was dried under vacuum and washed with small amounts of ether to give 11.1 g (55%) of **9.** Finally the product was recrystallized from $CH_2Cl_2/$ ether; mp 107-108 'C. IR (cm-I, CDCI,): *uBH* 2260 *S,* 2370 *S; u,-o* 1660 *S.* 'H NMR (CDCl₃): δ 2.6 (s, CH₃NCH₃), 2.7 (s, Me₃N), 3.0 (t, *J* = 6 Hz, CH₂N), 4.27 (t, $J = 6$ Hz, CH₂O). Anal. Calcd for C₈H₂₄B₂N₂O₂: C, 47.69; H, 11.98; N, 13.87. Found: C, 47.59; H, 11.89; N, 13.68.

Preparation of Bis(2-(dimethy1amino)ethyl) Suberate Dihydrochloride (10). To a solution of suberoyl chloride (25 g, 0.1 18 mol) in 350 mL of ether at 0 "C was added N,N-dimethylethanolamine (23.40 g, 0.2625 mol) in 50 mL of ether dropwise. A white precipitate formed immediately as the reactants were mixed. The mixture was stirred overnight at ambient temperature, filtered, washed repeatedly with ether under N_2 , and then finally vacuum pumped. The yield of diester dihydrochloride was 43 g (93.27%). The product 10 is not very soluble in $CH₂Cl₂$ and CHCI₃ solvents but soluble in water. IR (cm⁻¹, Nujol): v_{HN} + 2210 s, 2250 m, 2400 br; *uco* 1730 s. 'H NMR (D,O): 6 1.4 (br m, CH,), 2.41 (br m, CH₂), 2.98 (s, CH₃NHCH₃), 3.44 (m, CH₂), 3.86 (t, CH₂N), 4.4 (dist t, $CH₂O$).

Preparation of (2,2'-(Suberoyldioxy)diethyl)bis(dimethylamine-b0 rane) (11). To a suspension of the diester dihydrochloride **10** (38.94 g, 0.1 mol) in 500 mL of THF was added $NabH_4$ (15.15 g, 0.4 mol) followed by another 100 mL of THF. The suspension was stirred at ambient temperature for 1 h followed by refluxing for 4 days. The mixture was cooled and filtered, 200 mL of CH_2Cl_2 was added, and the mixture was repeatedly washed with water $(3 \times 200 \text{ mL})$. The organic portion was dried over MgSO₄ and concentrated to give a solid product (11; yield 10.50 g, 31%), mp 58-59 °C. IR (CH₂Cl₂): ν_{BH} 2370 s, 2310 sh, 2260 s; *uco* 1730 s. 'H NMR (CDCI,): **6** 1.4 (br m, CH,), 2.23 (t, CH₂CO), 2.6 (s, CH₃NCH₃), 3.0 (t, $J = 6$ Hz, CH₂N), 4.32 (t, $J = 6$ Hz, CH₂CO). ^{'11}B NMR (CDCI₃, BF₃·Et₂O): δ -9.26 **(q**, $J_{BH} = 105$ Hz). Anal. Calcd for $C_{16}H_{38}B_2N_2O_4$: C, 55.84; H, 11.13; N, 8.14. Found: C, 56.08; H, 11.41; N, 8.14.

BH Stability toward Hydrolysis. Samples of **lb** and **IC** were dissolved in a 1:2 D₂O/THF solvent mixture in an NMR tube. After 8 days, ca. 90% of the BH, group of **lb** and 67% of the BH, group of **IC** remained unhydrolyzed as monitored by ¹¹B NMR.

Acknowledgment. We thank the U.S. Army Research Office for financial support.

Note Added in Proof. An isoelectronic and isostructural boron analogue of ACh of formula Me₃N.BH₂CH₂OCOCH₃ has been referred to (Sedlak, D. Ph.D. Thesis, University of Miinchen, 1982) in papers describing chemistry leading to $Me₃N·BH₂CH₂SCH₃$, an intermediate en route to this analogue: Biffar, **W.;** Noth, H.; Sedlak, D. *Organometallics* **1983, 2,** 579. Noth, H.; Sedlak, D. *Chem. Ber.* **1983,** 116, 1479.

Registry No. la, 82879-04-7; **lb,** 100898-92-8; **IC,** 103935-67-7; **Id,** 103935-68-8; **le,** 103935-69-9; **5a,** 2498-25-1; **Sb,** 17210-49-0; **5c,** 2208-05-1; **5d,** 103960-48-1; **6a,** 103960-49-2; **8,** 60788-33-2; **9,** 99-5; $Me₂NCH₂OCOC₆H₅$, 2208-05-1; $Et₄NBH₄$, 17083-85-1; Me,NCH2CH20H, 108-01-0; suberoyl chloride, 10027-07-3; choline, 103935-70-2; **10**, 28216-46-8; **11**, 103935-71-3; C₆H₅OCH₂COCI, 701-62-49-7.