only small quantities of a viscous oil, which could not be identified as a discrete compound.

Treatment of Ni(cyclam)²⁺ with m-Chloroperbenzoic Acid. A suspension of Ni(cyclam)(ClO₄)₂ (0.05 mmol) in 30 mL of dichloromethane was cooled to -78 °C, and a solution of MCPBA (0.05 mmol) in 5 mL of dichloromethane was added slowly. The mixture was stirred at -78 °C for 1 h, during which the original orange-yellow color turned pink. When a solution of phenyldimethylphosphine (0.2 mmol) in dichloromethane was added, the pink color was discharged within 5 min. GC-MS analysis confirmed the formation of the phosphine oxide in >80% yield. When this experiment was repeated with cyclohexene, no change occurred at -78 °C. When the mixture was warmed to room temperature, it turned black and no oxidation product of cyclohexene was observed.

A yellow solution of Ni(cyclam)(OTf)₂ (0.02 mmol) in 4 mL of dichloromethane was cooled to -78 °C and the electronic spectrum recorded. A solution of MCPBA (0.02 mmol) in dichloromethane was added slowly and the spectrum of the pink solution recorded again (Figure 1). Upon the addition of PMe₂Ph, the absorption band at 550 nm disappeared, and the solution returned to its yellow color. When the experiment was repeated with cyclohexene, the band at 550 nm did not disappear.

An intensely green solution of Ni^{III}(cyclam)³⁺ perchlorate²⁰ in acetonitrile reacted completely with excess iodosylbenzene within 2 min to lead to a yellow solution that contained a quantitative yield of iodobenzene. It is possible that iodosylbenzene is acting as a reducing agent under these conditions.

Isotopic Oxygen-18 Studies. Ni(cyclam)(ClO₄)₂ (0.01 mmol) and norbornene (1 mmol) were dissolved in 1 mL of MeCN, and H₂¹⁸O (1.85 mmol) was added together with 0.02 mmol of iodosylbenzene. After the mixture was stirred for 30 min, the norbornene oxide was analyzed by GC-MS for its isotopic composition. A control experiment was carried out in which norbornene oxide-¹⁶O (1.0 mmol) was treated with $H_2^{18}O$ (1.85 mmol) in the presence of Ni(cyclam)(ClO₄)₂ (0.01 mmol) and iodosylbenzene (0.02 mmol) in 1 mL of MeCN. The recovered epoxide showed no isotopic incorporation. Moreover, the treatment of iodosylbenzene (0.05 mmol) with $H_2^{18}O$ (2 mmol) in the presence of Ni(cyclam)(ClO₄)₂ (0.01 mmol) was carried out until half of it was in solution. The remainder of the iodosylbenzene was recovered. Analysis by a procedure developed previously^{3,7} showed that it contained no isotopic label.

Acknowledgment. We thank the National Science Foundation and the Robert A. Welch Foundation for financial support.

Contribution from Rocketdyne, A Division of Rockwell International, Canoga Park, California 91303

New, One-Step Syntheses of BrF_3O and BrF_4O^- Salts and the Preparation and Characterization of RbBrF₄O and NaBrF₄O

William W. Wilson and Karl O. Christe*

Received August 8, 1986

The reactions of an excess of BrF5 with the alkali-metal nitrates NaNO3, KNO3, RbNO3, and CsNO3 provide new, simple, high-yield syntheses of the corresponding BrF4O salts and FNO2. The NaBrF4O and RbBrF4O salts have been prepared for the first time and were characterized by vibrational spectroscopy, DSC, and their X-ray powder diffraction patterns. The reaction of LiNO₃ with an excess of BrF₅ does not result in the formation of a stable LiBrF₄O salt but produces free BrF₃O in high yield. This provides a simple, one-step synthesis of BrF_3O from commercially available starting materials.

Introduction

The existence of KBrF₄O was discovered in 1976 both by Bougon and co-workers¹ and by Gillespie and Spekkens.² It was prepared either by the reaction¹ of KBrO₃ with a large excess of BrF_5 at 80 °C in the presence of F_2 or by the reaction² of KBrF₆ with KBrO₃ in CH₃CN solution. Both methods have drawbacks. Although Bougon's method¹ can yield a pure product, the course of the reaction is difficult to control and frequently $KBrF_4$ is obtained as the only product,³ Gillespie's method² produces a mixture of $KBrF_2O_2$ and $KBrF_4O$, which must be separated by numerous extractions with CH₃CN.

An improved synthesis of BrF_4O^- salts was reported by Christe and co-workers³ who reacted BrO_4^{-} salts with BrF_5 and F_2 . In addition to $KBrF_4O$, the latter authors also prepared and characterized CsBrF₄O. Although this method results in a pure product in essentially quantitative yield,³ the required BrO_4^- starting materials are difficult to prepare.⁴ Except for NF₄⁺⁻ BrF_4O^{-5} , no other BrF_4O^{-5} salts have been reported.

Three methods have previously been reported for the synthesis of BrF₃O. Bougon and Bui Huy⁶ reacted KBrF₄O with O₂AsF₆ in BrF₅ solution.

- Gillespie, R. J.; Spekkens, P. J. Chem. Soc., Dalton Trans. 1976, 2391. Christe, K. O.; Wilson, R. D.; Curtis, E. C.; Kuhlmann, W.; Sawodny,
- W. Inorg. Chem. 1978, 17, 533.
- Appelman, E. H. Inorg. Chem. 1969, 8, 223. Christe, K. O.; Wilson, W. W. Inorg. Chem. 1986, 25, 1904.
- (6) Bougon, R.; Bui Huy, T. C. R. Seances Acad. Sci., Ser. C 1976, 283, 461.

$$KBrF_4O + O_2AsF_6 \rightarrow KAsF_6 + BrF_3O + O_2 + \frac{1}{2}F_2 \qquad (1)$$

Gillespie and Spekkens² dissolved KBrF₄O in anhydrous HF

$$KBrF_4O + HF \rightleftharpoons KHF_2 + BrF_3O$$
(2)

and extracted the formed BrF₃O with BrF₅ at low temperature. Adelhelm and Jacob⁷ obtained BrF_3O , together with $FBrO_2$, by treatment of a mixture of BrF_2OPtF_6 and BrO_2PtF_6 with FNO₂.

$$BrF_2OPtF_6 + FNO_2 \rightarrow NO_2PtF_6 + BrF_3O$$
 (3)

$$BrO_2PtF_6 + FNO_2 \rightarrow NO_2PtF_6 + FBrO_2$$
(4)

All three methods are elaborate and involve several steps and exotic starting materials. The development of a new, simple, one-step synthesis of BrF₃O from commerically available starting materials was therefore highly desirable.

Experimental Section

Materials. Commercial LiNO₃ (J. T. Baker, 99.7%), NaNO₃ (J. T. Baker, 99.5%), KNO3 (J. T. Baker, 99.1%), and RbNO3 (K & K Labs, Inc., 99.9%) were dried in a vacuum oven at 120 °C for one day prior to their use. The CsNO₃ was prepared from Cs₂CO₃ and HNO₃ and dried in the same manner. The BrF₅ (Matheson) was treated with 35 atm of F_2 at 100 °C for 24 h and then purified by fractional condensation through traps kept at -64 and -95 °C, with the material retained at -95 °C being used. BrF₅ and BrF₃O are powerful oxidizers, and contact with organic materials or moisture must be avoided.

Apparatus. Volatile materials used in this work were handled in a well-passivated (with BrF5 until it was recovered as a white solid at -196

⁽¹⁾ Bougon, R.; Bui Huy, T.; Charpin, P.; Tantot, G. C. R. Seances Acad. Sci., Ser. C 1976, 283, 71.

⁽⁷⁾ Adelhelm, M.; Jacob, E. Angew. Chem., Int. Ed. Engl. 1977, 16, 461.

 Table I. Reaction Conditions and Yields for the Synthesis of MBrF₄O Salts

М	run по.	reacn temp, °C	reacn time, h	mole ratio BrF5:MNO3	conversion of MNO ₃ to MBrF ₄ O, %
Cs	1ª	-31	1	4.9	99.8
Rb	2ª	-31	1	5.0	73.2
	36	25	1	5.1	98.7
	4 ^b	25	96	5.1	99.5
Κ	5ª	-31	1	5.0	34.3
			4		37.1
			5		63.3 ^c
	6ª	-31	1	15.1	33.5
	7ª	25	1	5.2	37.5
			4		55.6
			5		68.8°
			6		77.7ª
	8 ^b	25	20	15.2	99.7°
	9 ^b	70	4	15.1	72.1
	10 ^b	100	20	15.1	99.9
	116	100	88	2.9	99.9
Na	12ª	-31	1	5.0	0
	136	0	624	15.1	72 ¹
	144	25	67	5.0	538

^aReactor: 0.75-in-o.d. Teflon-FEP ampule. ^bReactor: 30-mL stainless-steel cylinder. ^cSample was reground after 4 h reaction time. ^dSample was reground after 5 h reaction time. ^fReactants were subjected to ball-milling during reaction. ^fVolatile products contained 14% free BrF₃O, and solid residue showed the presence of a trace of NaBrO₂F₂. ^gVolatile products contained BrF₃O and BrF₃ and solid residue BrO₂F₂⁻ and BrF₄⁻ as byproducts.

°C) stainless-steel Teflon-FEP vacuum line.⁸ Nonvolatile materials were handled in the dry nitrogen atmosphere of a glovebox.

Infrared spectra were recorded in the range 4000-200 cm⁻¹ on a Perkin-Elmer Model 283 spectrophotometer. Spectra of solids were obtained by using dry powders pressed between AgCl or AgBr windows in an Econo press (Barnes Engineering Co.). Spectra of gases were obtained by using a Teflon cell of 5-cm path length equipped with AgCl windows. Raman spectra were recorded on either a Cary Model 83 or a Spex Model 1403 spectrophotometer using the 488-nm exciting line of an Ar ion laser or the 647.1-nm exciting line of a Kr ion laser, respectively. Sealed glass tubes were used as sample containers in the transverse-viewing-transverse-excitation mode. X-ray diffraction patterns of the powdered samples in sealed 0.5-mm quartz capillaries were obtained by using a General Electric Model XRD-6 diffractometer, Nifiltered Cu Ka radiation, and a 114.6-mm-diameter Phillips camera. DSC measurements were carried out with a Perkin-Elmer Model DS-C-1B instrument using crimp-sealed aluminum pans and a heating rate of 10 °C/min.

Preparation of M⁺BrF₄O⁻ (M = Cs, Rb, K, Na). Inside the drybox, a weighed amount (typically about 3 mmol) of MNO₃ was loaded into a prepassivated reactor (either a 30-mL stainless-steel cylinder or a 0.75-in-o.d. Teflon-FEP ampule), which was closed by a valve. The reactor was connected to the vacuum line, and a fivefold excess of BrF₅ was added at -196 °C. The reactor was warmed to a given temperature for a specified period of time with occasional agitation, followed by fractional condensation of the volatile products through a series of two U-traps kept at -142 (BrF₅) and -196 °C (FNO₂). The material balances were determined from the weight gain of the solid residue in the reactor and the amounts of volatiles collected in the cold traps. All materials were identified by vibrational spectroscopy. The reaction conditions and product yields for the various BrF₄O⁻ salts are summarized in Table I.

Preparation of BrF₃O. Inside the drybox, LiNO₃ (2.12 mmol) was loaded into a passivated 30-mL stainless-steel cylinder. On the vacuum line, BrF₅ (31.93 mmol) was added at -196 °C, and the cylinder was stored at 0 °C for 20 days with occasional agitation. The cylinder was reconnected to the vacuum line and cooled to -196 °C and did not contain any material volatile at this temperature. While the cylinder was allowed to slowly warm toward ambient temperature, the volatile material was separated in a dynamic vacuum by fractional condensation through a series of traps kept at -64, -142, and -196 °C. The -64 °C trap contained BrF₃O (2.01 mmol, 95% yield based on LiNO₃), the -142 °C trap retained the FNO₂ (2.05 mmol, 97% yield based on LiNO₃). The white, solid residue (about 0.06 g, weight calculated for 2.12 mmol of LiF = 0.055 g) was identified by its X-ray powder pattern

as LiF. Its powder pattern and vibrational spectra did not exhibit any lines attributable to either LiNO₃ or a BrF_4O^- salt. When the duration of this reaction was shortened to 4 h, the conversion of LiNO₃ and the concomitant yield of BrF_3O decreased to 70%.

Results and Discussion

Syntheses of BrF_4O Salts and BrF_3O . The reaction of an excess of BrF_5 with the alkali-metal nitrates $CsNO_3$, $RbNO_3$, KNO_3 , and $NaNO_3$ proceeds in high yield according to (5). The re-

$$MNO_3 + BrF_5 \rightarrow MBrF_4O + FNO_2$$
 (5)

activity of MNO₃ decreases from Cs to Na. Thus, the reaction of $CsNO_3$ is complete within 1 h at -31 °C (see Table I, run 1). For KNO₃, a 31% conversion to KBrF₄O was obtained under the same conditions (run 5), but thereafter the reaction progressed only very slowly. Because tripling the amount of BrF₅ did not significantly increase the conversion of KNO₃ (run 6) and since the solubility of $KBrF_4O$ in BrF_5 is quite low, coating of the solid KNO₃ phase by product was suspected as the principal cause for the observed falloff in the reaction rates. This suspicion was confirmed. Fine grinding of the product, followed by a second treatment with BrF₅, almost doubled the yield of KBrF₄O (run 5). Complete conversion of KNO_3 to $KBrF_4O$ was achieved at ambient temperature by ball-milling the reagents during the reaction (run 8). Alternatively, complete conversion of KNO₃ to KBrF₄O could be achieved by heating to 100 °C (run 10). Run 11 shows that these reactions do not require a fivefold excess of BrF_5 but also go to completion with lower BrF_5 to metal nitrate ratios.

The reactions of NaNO₃ with BrF₅ differed somewhat from those of CsNO₃, RbNO₃, and KNO₃, which produced exclusively the corresponding BrF₄O⁻ salts. At a reaction temperature of 0 °C, some free BrF₃O was always isolated in addition to NaBrF₄O (run 13). When the reaction temperature was increased to 25 °C, the solid products contained significant amounts of BrF₄⁻ and BrO₂F₂⁻ salts (run 14). The formation of BrF₄⁻ and BrO₂F₂⁻ at 25 °C is not surprising. BrF₃O is known^{5,6,9} to decompose above 0 °C to BrF₃ + O₂, and reaction of BrF₃O with a second mole of NaNO₃ can generate BrO₂F. Both BrF₃ and BrO₂F can then react with NaF to give the corresponding anions, as shown in (6)-(10). A rationale for the formation of free BrF₃O in the NaNO₃-BrF₅ system will be given below.

$$NaNO_3 + BrF_5 \rightarrow NaF + BrF_3O + FNO_2$$
 (6)

$$NaNO_3 + BrF_3O \rightarrow NaF + BrO_2F + FNO_2$$
 (7)

$$NaF + BrO_2F \rightarrow NaBrO_2F_2 \tag{8}$$

$$2BrF_3O \rightarrow 2BrF_3 + O_2 \tag{9}$$

$$NaF + BrF_3 \rightarrow NaBrF_4$$
 (10)

The isolation of some free BrF_3O from the $NaNO_3$ - BrF_5 reaction suggested the possibility of preparing BrF_3O in a simple, one-step synthesis from a metal nitrate whose metal fluoride does not form a stable BrF_4O^- salt at 0 °C or below. This concept was verified for LiNO₃. When LiNO₃ is reacted with an excess of BrF_5 at 0 °C, BrF_3O is formed in essentially quantitative yield according to (11). Ball-milling of the solid reagents during the

$$LiNO_3 + BrF_5 \rightarrow LiF + BrF_3O + FNO_2$$
 (11)

reaction, as in run 8, might also be advantageous for this system if shorter reaction times are desired.

When BrF_5 was reacted for 1 h at either -31 or +25 °C with an excess of CsNO₃, a quantitative conversion of BrF_5 to CsBrF₄O and FNO₂ was observed. The solid product consisted exclusively of CsBrF₄O and unreacted CsNO₃. With an excess of LiNO₃, however, the course of the reaction was very different and will be reported in a separate paper.

The above described syntheses of $MBrF_4O$ and BrF_3O offer numerous advantages over the previously used methods. Among

⁽⁸⁾ Christe, K. O.; Wilson, R. D.; Schack, C. J. Inorg. Synth. 1986, 24, 3.

⁽⁹⁾ Gillespie, R. J.; Spekkens, P. J. Chem. Soc., Dalton Trans. 1977, 1539; Isr. J. Chem. 1978, 17, 11.

Scheme I

these are the following: (i) the starting materials, BrF_5 and MNO_3 , are commerically available and relatively inexpensive; (ii) the yields are essentially quantitative; (iii) the reactions can be carried out at convenient temperatures and at autogenous pressures; (iv) these syntheses are one-step reactions requiring only simple equipment. In addition to being useful methods for the preparation of $MBrF_4O$ and BrF_3O , these reactions also can be used as a convenient new laboratory method for the preparation of FNO_2 under mild conditions. The yields of FNO_2 are quantitative, and product separation is very easy. The FNO_2 is much more volatile than the other products and can readily be isolated in high purity by either fractional condensation or removal in vacuo at low temperature (BrF_5 stops at -95 °C, whereas FNO_2 still passes through a -142 °C trap but stops at -196 °C).

Some interesting questions concerning the mechanism of the MNO_3 -BrF₅ reactions are raised by the following facts. For the NaNO₃-BrF₅ system at 0 °C some BrF₃O was obtained as a byproduct besides NaBrF₄O, and at 25 °C the formed BrF₃O underwent either fast decomposition to BrF₃ + O₂ or further reaction with NaNO₃ to BrO₂F, followed by complexing with NaF to form the corresponding sodium salts. In marked contrast to these observations, the heavier alkali-metal salts (K, Rb, and Cs) form, even at reaction temperatures as high as 100 °C, the corresponding MBrF₄O salts in quantitative yield. As shown below, NaBrF₄O is stable up to about 160 °C. Therefore the free BrF₃O could not have formed by decomposition of NaBrF₄O, but must have been generated from a less stable intermediate that is capable of generating either BrF₃O + MF + FNO₂ or MBrF₄O + FNO₂.

A logical candidate for this intermediate is the $[NO_3 \cdot BrF_5]$ polyanion. BrF5 is well-known to exhibit some Lewis acidity and forms, for example with F^- , an octahedral BrF_6^- anion in which the free valence electron pair on bromine occupies a sterically inactive s orbital.¹⁰ Therefore, the formation of an analogous $[NO_3 \cdot BrF_5]^-$ anion is quite plausible. Decomposition of the resulting M⁺[NO₃·BrF₅]⁻ salt could involve either FNO₂ elimination from the anion resulting in the direct formation of $M^+BrF_4O^-(12)$ or F^- abstraction from the $[NO_3 \cdot BrF_5]^-$ anion by M⁺ followed by FNO₂ elimination from an unstable BrF₄ONO₂ molecule thus producing free BrF₃O (13). Whether (12) or (13) dominates should depend on the F^- ion affinity of M^+ and the thermal stability of $M^+[NO_3 \cdot BrF_5]^-$. Sodium is expected to form the least stable $M^+[NO_3 \cdot BrF_5]^-$ salt and therefore should be most prone to decomposition to MF and BrF_4ONO_2 . On the basis of these arguments, the mechanism shown in Scheme I is proposed to explain the observed reaction chemistry. For M = Na, dissociation of the intermediate $M^{+}[NO_{3} \cdot BrF_{5}]^{-}$ salt to MF and $BrF_{4}ONO_{2}$ would be faster than intramolecular FNO₂ elimination, while the reverse could be said for M = Cs, Rb, or K.

Attempts were unsuccessful to isolate the proposed $[NO_3 \cdot BrF_5]^$ intermediate anion by condensation of BrF_5 onto an excess of $CsNO_3$ at -196 °C, brief warming of the mixture to the melting point of BrF_5 (-60.5 °C), and recooling it to -196 °C. Low-

Table II. X-ray Powder Data for RbBrF₄O^a

d _{obsd} , Å	$d_{\mathrm{calcd}}, \ \mathrm{\AA}$	intens	hkl	d _{obsd} , Å	d _{calcd} , Å	intens	hkl
7.22	7.214	m	200	2.583	2.582	vw	334
5.34	5.336	m	202	2.427	2.428	w	442
4.61	4.602	w	301	3 351	2.350		s 415
4.38	4.385	w	311	2.331	2.346	т	1226
2.05	3.964	116	∫ 004	2 285	2.281		∫620
3.95	3.954	vs	1312	2.265	2.287	3	1316
3.61	3.607	S	400	2.236	2.231	s	541
3.45	3.454	w	313	2.099	2.099	ms	534
3.276	3.283	w	402	2.050	2.049	ms	307
2 1 2 4	3.125	VE	∫ 332	1.984	1.982	mw	720
3.124	3.130	*3	1224	1.934	1.931	m	516
2.914	2.918	ms	413	1.020	1.837	me	§ 545
2.860	2.860	ms	333	1.830	1.835	1115	1651
2.650	2.647	vw	305	1.804	1.804	m	800

^aCu K α radiation and Ni filter; tetragonal; a = 14.43 Å, c = 15.86 Å, Z = 32, V = 3302Å³, $D_{calcd} = 4.14$ g cm⁻³.

Table III. X-ray Powder Data for NaBrF₄O and CsBrF₄O^a

	NaB	rF₄O		
d _{obsd} , Å	intens	d _{obsd} , Å	intens	
5.43	s	2.390	w	
5.02	vs	2.302	m	
4.40	m	2.255	m	
4.01	vs	2.189	m	
3.84	vw	2.036	S	
3.69	S	1.986	m	
3.46	vs	1.945	m	
3.312	S	1.868	mw	
2.919	vs	1.829	m	
2.661	vw	1.797	ms	
2.489	w	1.717	ms	
	CsB	rF₄O		
$d_{ m obsd},$ Å	intens	d _{obsd} , Å	intens	
4.02	S	2.330	vs, br	
3.70	m	2.174	w	
3.206	S	2.102	mw	
2.976	m	2.004	w	
2.516	w	1.981	mw	
2 4 2 7	mw			

^aCu K α radiation and Ni filter.

temperature Raman spectra of the resulting product showed only $CsBrF_4O$, FNO_2 , and unreacted BrF_5 .

Properties of the MBrF₄O Salts. The only previously known BrF_4O^- salts were $KBrF_4O^{,1,2}$ CsBrF₄O,³ and $NF_4BrF_4O^{.5}$ It was therefore of interest to characterize the two new salts, $NaBrF_4O$ and $RbBrF_4O$. All these alkali-metal BrF_4O^- salts are white, stable crystallinic solids. On the basis of DSC data, the onset of thermal decomposition occurs at the following temperatures (°C): $NaBrF_4O$, 161; $KBrF_4O$, 221; $RbBrF_4O$, 226; $CsBrF_4O$, 189. The X-ray powder diffraction patterns were also recorded

⁽¹⁰⁾ Tantot, G.; Bougon, R. C. R. Seances Acad. Sci., Ser. C 1975, 281, 271.

Figure 1. Vibrational spectra of solid RbBrF₄O: trace A, infrared spectrum of a sample in an AgCl disk; trace B, Raman spectrum.

Table IV. Vibrational Spectra^a of NaBrF₄O and RbBrF₄O

ob	sd freq, cm				
RbBrF ₄ O		NaBrF ₄ O		assignts in	
IR¢	Ra	IR ^d Ra		point group C_{4v}	
1015 vw				$\frac{1}{\nu_2 + \nu_7(E)}$	
930 s	929 (7.0)	943 s	941 (7.0)	$\nu_1(A_1), \nu(BrO)$	
	505 sh)	
570-450	482 (8.7)	590-450		$(\mathbf{F}) = (\mathbf{B} \cdot \mathbf{F})$	
vs, br		vs, br	$(\nu_{1}(E), \nu_{as}(D(14)))$		
	456 (6))	
	513 (10)		528 (10)	$\nu_2(A_1), \nu_s(BrF_4)$ in phase	
	431 (7)		421 (6.7)	$\nu_4(\mathbf{B}_1), \nu_s(\mathbf{BrF}_4)$ out of	
				phase	
420 sh	419 (6)	410 sh	١	-	
	401 (4)		405 sh	$\nu_8(E), \delta(OBrF_4)$	
392 mw	393 sh				
	309 (1.2)	320 m	303 (0.4)	$\nu_3(A_1), \delta_s(BrF_4)$ out of	
				plane	
	242 (2.2)		262 (1.9)	$\nu_6(\mathbf{B}_2), \delta_s(\mathbf{BrF}_4)$ in plane	
	189 (0.9)		172 (1.2)	$\nu_{9}(E), \delta_{as}(BrF_{4})$ in plane	

^aAll spectra recorded at ambient temperature. ^bUncorrected Raman intensities (peak heights). ^cAgCl disk. ^dAgBr disk.

for these salts. It was found that $RbBrF_4O$ is isotypic with $KBrF_4O$, and its diffraction pattern (see Table II) was indexed for a tetragonal cell by analogy to that previously published for $KBrF_4O$.¹ Many of the lines in the powder patterns of $CsBrF_4O$ and $NaBrF_4O$ (see Table III) can be indexed for similar tetragonal

Figure 2. Vibrational spectra of solid NaBrF₄O: trace A, infrared spectrum of a sample in an AgBr disk; trace B, Raman spectrum.

cells; however, the correspondence is not as good, and in view of the large unit cells involved, our confidence in such an indexing is low.

The vibrational spectra of BrF_4O^- salts are interesting. For $KBrF_4O^1$ and $CsBrF_4O^3$ numerous splittings of degenerate modes into their components were observed that made assignments³ difficult. The vibrational spectra of $RbBrF_4O$ (see Figure 1) are similar to those of CsBrF₄O and also exhibit these pronounced splittings. However, the spectra of $NaBrF_4O$ (see Figure 2) are much simpler and therefore can be used to examine the correctness of the previous assignments.³ As can be seen from Table IV, the Raman spectrum of NaBrF₄O allows unambiguous assignments for v_1 , v_2 , v_3 , v_4 , v_6 , and v_9 . The extra Raman bands in the spectra of KBrF₄O,¹ CsBrF₄O,³ and RbBrF₄O are due to splittings of the degenerate E modes into their components, accompanied by significant gains in intensity, and have previously been assigned³ correctly. The minor frequency differences between RbBrF₄O and NaBrF4O are normal for salts with different cations and are as expected.

Acknowledgment. The authors are indebted to Drs. C. J. Schack and L. R. Grant and R. D. Wilson for their help and to the Army Research Office and the Office of Naval Research for financial support.

Registry No. $Cs^+BrF_4O^-$, 65391-03-9; $Rb^+BrF_4O^-$, 106781-97-9; $K^+BrF_4O^-$, 60995-34-8; $Na^+BrF_4O^-$, 106781-98-0; BrF_3O , 61519-37-7; $CsNO_3$, 7789-18-6; $RbNO_3$, 13126-12-0; KNO_3 , 7757-79-1; $NaNO_3$, 7631-99-4; BrF_5 , 7789-30-2; FNO_2 , 10022-50-1; $LiNO_3$, 7790-69-4.