observed in the resulting product mixture were [PtCl₂(dmpe)], *cis-* $[PtCl₂(PPh₃)₂]$, and $[Pt(dmpe)₂]Cl₂$. No evidence for the cationic complex $[PtCl(PPh₃)(dmpe)]⁺$ was obtained.

Reaction of $[PtCl₂(dmpe)]$ with PMePh₂. (a) $[PtCl₂(dmpe)]$ (0.037 g, 0.088 mmol) was mixed with CDCI₃ in a 5-mm NMR tube. After the tube had been flushed with argon, PMePh_2 (16.3 μ L, 0.088 mmol) was added. ³¹P(¹H) NMR analysis of the resulting mixture indicated that the predominant platinum-containing species was $[PtCl(PMePh₂)(dmpe)]Cl$.

(b) When $[PtCl₂(dmpe)]$ (0.032 g, 0.077 mmol) was reacted with PMePh₂ (28.8 μ L, 0.16 mmol) in CDCl₃ in the same way as above, the $31P(H)$ NMR spectrum indicated that the predominant platinum-containing species in solution was $[PtCl(PMePh₂)₃]Cl.$

Acknowledgment. This work was supported by the Research Corp., Monsanto Co., and a Missouri Research Assistance Grant. Thanks are also expressed to the donors of the Petroleum Research Fund, administered by the American Chemical Society, for support, to the National Science Foundation for a grant to the University of Missouri-St. Louis for the purchase of a NMR spectrometer, and to Johnson Matthey for a generous loan of \bar{K}_2 PtCl₄.

Contribution from the Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 021 39, and Engelhard Corporation, Menlo Park, New Jersey 0881 8

Solvolysis Reactions of *cis* - **and** *trans* **-Diamminedichloroplatinum(11) in Dimethyl Sulfoxide, Structural Characterization and DNA Binding of** *trans* $-[Pt(NH_1)_2(Me_2SO)Cl]^+$

Wesley I. Sundquist,^{1a,b} Kazi J. Ahmed,^{1a} L. Steven Hollis,^{1c} and Stephen J. Lippard*^{1a}

Received December *5. 1986*

Dimethyl sulfoxide, Me2S0, is commonly used to dissolve cis- and **trans-diamminedichloroplatinum(II),** cis- and trans-DDP, prior to use in experiments comparing their biological activities. The solvolysis reactions of cis- and trans-DDP in Me₂SO have been investigated in this study. Me₂SO substitutes for a single chloride ligand in both cases to form *cis*-[Pt(NH₃)₂(Me₂SO)Cl]Cl (1-Cl) and *trans*-[Pt(NH₃)₂(Me₂SO)Cl]Cl (2-Cl). The half-lives of the cis and trans isomers in Me₂SO at 37 °C are 60 and 8 min, respectively, as determined by both optical and ¹⁹⁵Pt NMR spectroscopy. Kinetic studies gave activation parameters for *cis-DDP*
solvolysis of $\Delta H^* = 18.9$ (1) kcal mol⁻¹ and $\Delta S^* = -14.5$ (2) eu (optical spectroscop = -11.6 (3) eu (¹⁹⁵Pt NMR spectroscopy). Activation parameters for solvolysis of *trans-DDP* were $\Delta H^* = 15.5$ (1) kcal mol⁻¹
and $\Delta S^* = -21.4$ (2) eu (optical spectroscopy) and $\Delta H^* = 16.9$ (3) kcal mol⁻¹ and Δ The mixed perchlorate/chloride salt of 2, *trans*-[Pt(NH₃)₂(Me₂SO)Cl](ClO₄)_{0.8}Cl_{0.2}, has been crystallized and its structure determined by single-crystal X-ray diffraction methods. The compound crystallizes in the orthorhombic space group *Pnma* with $a = 10.554$ (3) Å, $b = 7.446$ (1) Å, $c = 14.161$ (2) Å, $V = 1111.79$ Å³, and $Z = 4$. The fina reflections. The geometry of platinum is square planar, with Pt-S, Pt-N, and Pt-Cl distances of 2.204 (4), 2.1 1 (2) and 2.03 (l), and 2.307 (5) **A,** respectively. Since **2** is formed rapidly enough to be a significant contaminant in studies in which trans-DDP has been dissolved in Me₂SO, reactions with DNA substrates of trans-DDP dissolved in either Me₂SO or aqueous buffer were compared. Use of Me₂SO instead of aqueous buffer to dissolve *trans-DDP* increases the rate of platinum binding to calf thymus DNA. Moreover, significant changes occur in the spectrum of products, as revealed in reactions with the model DNA substrate d(GpTpG). These results are consistent with the conversion of trans-DDP in Me2S0 to **rrans-[Pt(NH,),(Me,SO)CI]+** and the subsequent reaction of this complex with DNA. The use of $Me₂SO$ to dissolve cis- or trans-DDP in biological studies is therefore strongly discouraged.

introduction

cis-Diamminedichloroplatinum(II), cis-DDP,² is a clinically important anticancer drug that apparently acts by binding to DNA and inhibiting replication. 3 Bidentate coordination of DNA to cis-DDP is preceded by hydrolysis of at least one labile chloride ligand.4 Interestingly, the trans isomer, which can bind DNA in a different bifunctional manner, is far less cytotoxic at equimolar doses. A number of studies have focused on the different biological activities of the two isomers in an attempt to explain the detailed mechanism of cis -DDP cytotoxicity.⁵

- Action; Neidle, S., Waring, M. J., Eds., MacMillan: London, 1983; p 183 and references cited therein.
- (a) Lippard, S. J. Science (Washington D.C.) 1982, 218, 1075. (b)
Martin, R. B. In Platinum, Gold, and Other Metal Chemotherapeutic Chemical Society: Washington, DC, 1983; p 231. Hacker, M. P., Douple, E. **B.,** Krakoff, I. H., **Eds.,** Platinum Coordi-
- nation Compounds in Cancer Chemotherapy; Martinus Nijhoff: Boston, 1984.

While reviewing data on the different biological effects of cisand trans-DDP we became concerned that a number of laboratories⁶ employ dimethyl sulfoxide, Me₂SO, as a solvent to dissolve these platinum complexes prior to use in biological experiments, despite the well-known affinity of divalent platinum for sulfur donor ligands.' In particular, substitution of a chloride ligand by Me₂SO is expected to occur much faster for *trans-DDP* than for cis-DDP, owing to the greater trans-labilizing effect of chloride vs. ammonia. 8 Use of Me₂SO as a solvent may therefore change

 (1) (a) Massachusetts Institute of Technology. **(b)** Whitaker Health Sci ences **Fund Predoctoral Fellow.** (c) Engelhard Corp.

(2) Abbreviations: cis- and trans-DDP, cis- and trans-diamminedichloro-

platinum(II); Me₂SO, dimethyl sulfoxide; en, ethylenediammine; dach, 1,2-diaminocyclohexane; HPLC, high pressure liquid chromatography; 1,2, diaminocyclonical chromatography; (D/N)_k, formal and bound drug-to-nucleotide ratios.

(3) Roberts, J. J.; Pera, M. P. In *Molecular Aspects of Anti-Cancer Drug*

^{(6) (}a) Amacher, D. E.; Paillet, S. C. *Mutat. Res.* **1980**, 78, 279. (b) Kohl, H. H.; Haghighi, S.; McAuliffe, C. A. *Chem.-Biol. Interact.* **1980**, 29, 327. (c) Pascoe, J. M.; Roberts, J. J. *Biochem. Pharmocol.* **1974** pasquale, M. A.; Yang, L. Y.; Barlogie, **B.;** Trujillo, J. M. Chem.-Biol. Interact. **1985,55,** 1. (g) Murthy, M. **S.;** Travis, J. D.; Erickson, L. C.; Khandekar, J. D.; Scanlon, E. **F.** Cancer Res. **1985,** *45,* 6232. (h) Robexts, J. J.; Friedlos, F. Cancer Res. **1987,** *47,* 31.

⁽⁷⁾ Cotton, F. **A,;** Wilkinson, G. Advanced Inorganic Chemistry, 4th *ed.;* Wiley: New York, 1980; p 950.

^{(8) (}a) Basolo, F.; Pearson, R. G. Mechanisms of Inorganic Reactions, 2nd
ed.; Wiley: New York, 1967. (b) Farrell, N. In Platinum, Gold, and
Other Metal Chemotherapeutic Agents; Lippard, S. J., Ed.; ACS
Symposium Series 20 1983; p 279.

the observed biological activity of *trans*-DDP. 9 The reaction of cis-DDP with Me₂SO to form cis-[Pt(NH₃)₂(Me₂SO)Cl]Cl (1-Cl) and, eventually, other products has been investigated by ¹⁹⁵Pt NMR spectroscopy.¹⁰ We now wish to report a study of the solvolysis reaction of trans-DDP in Me₂SO to form trans-[Pt- $(NH₃)₂(Me₂SO)Cl]Cl$ (2-Cl) and the structure determination of trans- $[Pt(NH₃)₂(Me₂SO)Cl](ClO₄)_{0.8}Cl_{0.2}$ by single-crystal X-ray diffraction methods. We also report a comparison of the reactions of trans-DDP, dissolved in either Me₂SO or aqueous buffer, with calf thymus DNA and with the synthetic oligonucleotide $d(GpTpG)$.

Experimental Section

Materials. cis- and trans-DDP were synthesized according to literature procedures¹¹ from K₂PtCl₄. Calf thymus DNA (Sigma) was extracted with chloroform/isoamyl alcohol, $24:1$ $(3x)$, and precipitated with ethanol (2x) before dialysis into 1 mM phosphate, containing 3 mM sodium chloride, at pH 7.4 (aqueous buffer) and quantitation by UV
spectroscopy ($\epsilon_{260} = 6600 \text{ M}_{\text{phos}}^{-1} \text{ cm}^{-1}$). d(GpTpG) was synthesized by the solution phosphotriester method,¹² purified by reversed-phase HPLC, and converted to the sodium salt by cation-exchange chromatography (Bio-Rad). The product was characterized by ¹H NMR spectroscopy and quantitated by UV spectroscopy $(\epsilon_{260} = 30300)^{13}$

Physical Methods. 'H NMR spectra were obtained **on** a Bruker WM 250 spectrometer, and positive chemical shifts are reported downfield from internal $Si(CH_3)_4$. IR spectra were obtained on a Beckman Acculab 10 spectrometer. Atomic absorption spectroscopy was performed **on** a Varian 1475 spectrophotometer with a GTA 95 graphite furnace and an automatic sample injector. HPLC was performed **on** a Perkin-Elmer Series 4 LC, using a Phenomenex Bondex C-18 column, and recorded with an LC-95 UV-vis spectrophotometric detector.

¹⁹⁵Pt NMR Studies. The kinetics of the solvolysis reactions of both cis- and trans- $[Pt(NH_3)_2Cl_2]$ in Me₂SO- d_6 were monitored by ¹⁹⁵Pt NMR spectroscopy using a Varian XL 200 spectrometer operating at 42.935 MHz. ¹⁹⁵Pt spectra were collected by using a sweep width of 80 kHz, a pulse width of 9 *ps,* and an acquisition time of 0.06 **s.** To follow the reaction of cis-[Pt(NH₃)₂Cl₂] with Me₂SO, 200 mg of the complex was dissolved in 3.0 mL of Me₂SO-d₆ (0.22 M). Spectra were accumulated for 7.5 min at various time intervals. In the case of the trans isomer, 25 mg of solid was dissolved in 3.0 mL of Me₂SO- d_6 (28 mM). Spectra were collected at either 4-min (at 26 and 33 °C) or 2-min (37, 40, and 49 °C) intervals. First-order rate constants were derived by monitoring the decrease in ¹⁹⁵Pt signal intensity for the reactants. Reactions were monitored within the temperature range $26 \le T \le 49$ °C, and activation parameters were derived from the Arrhenius plot of $\ln (k_1)$ $vs T^{-1}$.

W-Visible Spectroscopic **Studies.** Electronic absorption spectra were obtained **on** a Perkin-Elmer Lambda 7 UV-visible spectrophotometer interfaced with a PE 3600 data station. Temperature-controlled, jacketed cuvettes were used for kinetic experiments, and the temperatures within the cuvettes were monitored with a thermocouple. A 10-12 mg portion of cis- or trans-DDP was dissolved in 4 mL of Me₂SO and the spectrum recorded at regular time intervals through three reaction half-lives. First-order rate constants were derived by monitoring the increase in absorption at 276 nm for cis-DDP and 302 nm for trans-DDP. Reactions were studied within the temperature range 23 °C $\leq T \leq 46$ °C, and activation parameters were derived from Arrhenius plots of $\ln k_1$ vs. T^{-1} .

Preparation of *trans*-[Pt(NH₃)₂(Me₂SO)CIJCI (2-CI). trans-DDP (300 mg, 1 mmol) was dissolved in 10 mL of Me₂SO (Mallinckrodt) and stirred for 1.5 h at ambient temperature. The resulting nearly colorless solution was treated with 20 mL of ethanol, and diethyl ether was added until the solution became cloudy. After 24 h, the white microcrystalline product was filtered and washed with ethanol and diethyl ether. Isolated yield was 333 mg (88%). Anal. Calcd for PtCl₂SON₂C₂H₁₂: Cl, 18.75; **S,** 8.48; N, 7.41; C, 6.35; H, 3.20. Found: Cl, 18.90; **S,** 8.45; N, 7.40; C, 6.44; H, 3.21. IR (KBr pellet): 341 1 (m), 3226 (m), 3039 **(s),** 1556 (m), 1357 (m), 1314 (m), 1122 (s), 1021 (s) cm⁻¹. ¹H NMR (CD₃OD):
δ 3.52 (J_{Pt-H} = 23.9 Hz). ¹⁹⁵Pt NMR (Me₂SO-d₆): δ -3112 (vs.

- (9) Shooter, **K.** V.: Howse, R.; Merrifield, R. K.; Robins, A. B. Chem.-Biol. Inferact. **1972,** 289.
- (10) Kerrison, **S.** J. **S.;** Sadler, **P.** J. *J.* Chem. SOC., Chem. Commun. **1977,** 861.
- (1 1) (a) Dhara, **S.** C. Indian *J.* Chem. **1970.8,** 193. (b) Watt, G. W.; Cude, W. A. Inorg. Chem. **1968,** 7, 335.
- (12) Sproat, B. **S.;** Gait, M. J. **In** Oligonucleotide Synthesis: A Practical Approach; Gait, M. J., Ed., IRL: Oxford, England, 1984; p 83.
- (13) Fasman, G. D., Ed., CRC Handbook of Biochemistry and Molecular Biology; Nucleic Acids: CRC: Cleveland, OH, 1975; Vol. 1, p 589.

Table I. Experimental Details of the X-ray Diffraction Study of *trans*- $[Pt(NH_3)_2(Me_2SO)Cl] (ClO_4)_{0.8}Cl_{0.2}$

		(a) Crystal Parameters ^a at 23 °C		
a, Å	10.554(3)	z	4	
b, Λ	7.446(1)	space group	Pnma	
c, \mathbf{A}	14.161(2)	$\rho_{\rm calcd}$, g/cm ³	2.564	
$V. \AA$ ³	1111.79	ρ_{obsd} , g/cm^3	2.55(2)	
		(B) Measurement of Intensity Datab		
instrument		Enraf-Nonius CAD-4F _K -geometry diffractometer		
radiation		Mo K α (λ_{α} = 0.71073 Å), graphite monochromatized		
temp, °C	23			
takeoff angle, deg	2.3			
stds (measd every 1 h) ^c (422), (221), (051)				
no. of reflcns collcd	2168			
data collen range, deg $3 \le 2\theta \le 50$				
measd reflcns	$h.k, \pm l$			
(C) Treatment of Data ^d				
averaging, R _{av} $R,^e$	0.0198 0.0395	linear abs coeff 127 cm ⁻¹ no. of unique data no. of obsd data, $I > 2\sigma(I)$ R-		1056 799 0.0502

*^a*From a least-squares fit to the setting angles of 25 reflections with $2\theta \ge 40^{\circ}$. ^b For typical procedures, see: Silverman, L. D.; Dewan, J. C.; Giandomenico, C. M.; Lippard, **S.** J. Inorg. Chem. **1980,** *19,* 3379. ^cNo decay in intensities was observed. dF_0 and $\sigma(F_0)$ were corrected for background, attenuation, and Lorentz-polarization effects of X-radiation as described in footnote b. $^eR_1 = \sum ||F_0| - |F_c||/\sum |F_0|$. $^fR_2 =$ $[\sum w(|F_o|^2 - |F_c|^2)/\sum w|F_o|^2]^{1/2}.$

H₂PtCl₆). Electronic absorption spectrum (0.1 M HCl), λ_{max} (ϵ , M⁻¹ cm-'): 303 (152), 244 (736) nm.

Reaction of *trans*-DDP and *trans*- $[Pt(NH_3)_2(Me_2SO)CI]CI$ (2-Cl) with Calf Thymus DNA. Freshly prepared solutions $(1.0 \times 10^{-3} \text{ M})$ of trans-DDP in aqueous buffer, trans-DDP in MezSO, and 2-C1 in aqueous buffer were incubated at ambient temperature for exactly 5 min before reaction with calf thymus DNA. A 50- μ L portion of each solution was added to 10 mL of DNA solution $(1.0 \times 10^{-4}$ M in aqueous buffer) and allowed to react at 37 °C (final concentrations: $[DNA] = 1.0 \times 10^{-4}$ M; $[Pt] = 5.0 \times 10^{-6}$ M; $(D/N)_f = 0.05$). Aliquots of the reaction mixtures were removed at various times and quenched by addition of NaCl (0.5 M final concentration) and rapid cooling to $4 °C$. Unbound platinum was removed by dialysis at 4° C for 16 h against aqueous buffer. DNA concentrations were determined by UV spectroscopy and platinum concentrations by atomic absorption spectroscopy.

Reaction of *trans*-DDP and *trans*- $[Pt(NH_3)_2(Me_2SO)Cl]Cl$ (2-Cl) with d(GpTpG). Platinum-containing solutions were prepared and incubated as described above prior to reaction with d(GpTpG) in aqueous buffer, except that trans-DDP/Me₂SO was initially 10 mM to minimize the amount of Me₂SO added to the DNA reaction mixture (final concentrations: $d(GpTpG) = 1.0 \times 10^{-4} M$; [Pt] = $1.0 \times 10^{-4} M$). Reactions were allowed to proceed at 37 °C and were monitored by reversed-phase HPLC. Products were eluted with a 30-min gradient of $0-15\%$ CH₃CN in 0.1 M ammonium acetate, pH 6.8. The primary product of the reaction of trans-DDP with $d(GpTpG)$, a $G(1)-G(3)$ intrastrand cross-link with coordination at the N-7 positions of guanine,¹⁴ was confirmed by 'H NMR spectroscopy.

X-ray Crystallography. Crystals of $trans-[Pt(NH_3)_2(Me_2SO)Cl]$ - $(CIO₄)_{0.8}Cl_{0.2}$ were grown by slow evaporation of 2-Cl and 2 equiv of NaC104 from a solution of 2-propanol/water. A colorless crystal with approximate dimensions 0.1 1 mm **X** 0.10 mm **X** 0.09 mm was mounted with epoxy resin **on** the end of a glass fiber. Open-counter *o* scans of several strong, low-angle reflections revealed structureless profiles with acceptable peak widths $(\Delta \omega_{1/2} = 0.19^{\circ})$. Intensity data and unit cell parameters were measured with a single-crystal diffractometer, details of which are presented in Table I. The crystal was found to belong to the orthorhombic system, with either space group $Pn2_1a$ ($C_{2\nu}^2$, No. 33 in of which are presented in 1 able 1. The crystal was found to belong to
the orthorhombic system, with either space group $Pn2_1a$ ($C_{2\nu}^6$, No. 33 in
a nonstandard setting) or *Pnma* (D_{2n}^{16} , No. 62), as determined tematic absences in the data.¹⁵ The structure was successfully solved in the latter, centrosymmetric space group. The platinum atom was located from a Patterson map, and the remaining non-hydrogen atoms were found in subsequent difference Fourier maps. Neutral-atom scat-

.

(15) Hahn, T., Ed. International Tables for X-ray Crystallography; D. Reidel: Dordrecht, The Netherlands, 1983; Vol **A,** pp 224, 288.

⁽¹⁴⁾ van der Veer, J. **L.;** Ligtvoet, G. J.; van der Elst, H.; Reedijk, J. *J.* Am. Chem. SOC. **1986,** *108,* 3860.

Table II. Kinetic Data for the Solvolysis Reactions of cis- and trans-DDP in Me₂SO

	cis-DDP		trans-DDP		
7, °С	k_1 , s ⁻¹	$t_{1/2}$, min	k_1 , s ⁻¹	$t_{1/2}$, min	
¹⁹⁵ Pt NMR Spectroscopy ^a					
26	6.24 $(7)^{b} \times 10^{-5}$	185	$4.9(3) \times 10^{-4}$	24	
33	$1.35(3) \times 10^{-4}$	86	9.1 (5) \times 10 ⁻⁴	13	
37	$2.00(3) \times 10^{-4}$	58	1.3 (1) \times 10 ⁻³	9	
40	$2.88(4) \times 10^{-4}$	40	$1.7(1) \times 10^{-3}$	7	
49	6.6 (4) \times 10 ⁻⁴	18	\cdots		
UV-Visible Spectroscopy ^c					
23	4.36 (4) \times 10 ⁻⁵	265	4.84 (1) \times 10 ⁻⁴	24	
30	9.33 (4) \times 10 ⁻⁵	124	$9.10(1) \times 10^{-4}$	13	
37	$1.87(1) \times 10^{-4}$	62	1.60 (1) \times 10 ⁻³	7	
46	4.41 (2) \times 10 ⁻⁴	26	3.20 (2) \times 10 ⁻³	4	

^a Monitored by disappearance of the resonances at -2087 and -2086 ppm for cis-DDP and *trans*-DDP, respectively. ^b The numbers in par-
entheses refer to the errors in the last digit(s). ^cMonitored at 276 and 302 nm for cis-DDP and trans-DDP, respectively.

Table III. Final Positional Parameters of Non-Hydrogen Atoms in trans-[Pt(NH₃)₂(Me₂SO)Cl](ClO₄)_{0.8}Cl_{0.2}^a

atom	x	ν	z
Pt	0.14304(7)	0.2500	0.05681(5)
S.	0.1825(4)	0.2500	0.2098(3)
Cl ₁	0.1122(5)	0.2500	$-0.1046(4)$
C12	0.1499(4)	0.2500	0.5735(3)
O1	0.3171(11)	0.2500	0.2350(10)
O2	0.1478(14)	0.2500	0.4497(10)
O ₃	0.0823(19)	0.388(2)	0.5997(15)
O ₄	0.271(2)	0.2500	0.6002(17)
N1	$-0.0557(16)$	0.2500	0.0734(11)
N ₂	0.3322(13)	0.2500	0.0307(11)
\mathbf{C}	0.1095(11)	0.4392(17)	0.2650(8)
C13	0.1488(11)	0.1441(17)	0.4797(8)

^a Numbers in parentheses refer to errors in the last digit(s). Atoms are labeled as shown in Figure 1. Atom Cl2 is the perchlorate chlorine atom and Cl3 is the partially occupied chloride ion (see text).

Table IV. Interatomic Distances (Å) and Angles (deg) for the trans-[Pt(NH₃)₂(Me₂SO)Cl]⁺ Cation (2)^a

$Pt-N2$	2.03(1)	$Pt-N1$	2.11(2)
$Pt-S$	2.204(4)	Pt –Cl1	2.307(5)
$S-O1$	1.46(1)	$S-C$	1.79(1)
$N2-Pt-N1$	175.9(6)	$N2-Pt-S$	89.6(5)
$N2-Pt-Cl1$	87.6(5)	$N1-Pt-S$	94.5(4)
$N1-Pt-Cl1$	88.3(4)	$S-Pt-Cl1$	177.2(2)
$O1-S-C$	108.2(5)	$O1-S-Pt$	114.9(6)
$C-S-O1$	108.5(6)	$C-S-C'$	103.8

^aSee footnote *a* in Table III.

tering factors and anomalous dispersion corrections for the non-hydrogen atoms were obtained from ref 16. Anisotropic thermal parameters were used for the non-hydrogen atoms. Hydrogen atoms were placed at their calculated positions, constrained to "ride" on the atoms to which they are attached, and assigned a common isotropic thermal parameter.

Full-matrix least-squares refinement was carried out on 75 variable parameters by using SHELX-76.¹⁷ Toward the end of the refinement, some residual electron density (2.2 e A^{-3}) was evident in the region of the counterion, which, up to that point, was believed to be a full-occupancy perchlorate group. Attempts to account for this peak in terms of ClO₄ disorder were unsuccessful. Since the observed crystal density of 2.55 (2) $g \text{ cm}^{-3}$ was lower than the 2.641 $g \text{ cm}^{-3}$ value calculated for trans- $[Pt(NH₃)₂(Me₂SO)Cl]ClO₄$, it occurred to us that not all of the chloride ion in 2-Cl had been replaced by perchlorate. A model was therefore introduced in which both ClO_4^- , with a partial occupancy of 0.80, and Cl⁻, with 0.20 occupancy, were refined. This model both resolved the

Figure 1. Structure of the trans- $[Pt(NH_3)_2(Me_2SO)Cl]^+$ cation, showing the 40% probability thermal ellipsoids and atom-labeling scheme.

Figure 2. Time-dependent ¹⁹⁵Pt NMR spectra of the solvolysis of (a) cis-DDP, recorded every 17.5 min, and (b) trans-DDP, recorded every 4 min, in Me₂SO-d₆ at 26 °C. Spectra were taken at 42.935 MHz and chemical shifts are reported relative to H_2PtCl_6 (δ 0).

residual electron density problem and gave a calculated crystal density $(2.564 \text{ g cm}^{-3})$ in agreement with that observed. The final difference Fourier map was clean (<1 e \AA^{-3}), and the refinement converged at R_1 = 0.0395 and R_2 = 0.0502.¹⁸ The function minimized was $\sum w(|F_0| - |F_0|)^2$ where $w = 1.3945/[{\sigma^2(F_0) + 0.000625(F_0)^2}]$ and the maximum parameter shift in the final refinement was 0.002σ .

Final non-hydrogen atom positional parameters are given in Table III, and bond lengths and angles within the cation are given in Table IV. Listings of observed and calculated structure factors, anisotropic thermal parameters, and final hydrogen atom positional and thermal parameters are available in Tables S1-S3, respectively, supplied as supplementary material. An ORTEP drawing showing the molecular geometry and atom-labeling scheme is given in Figure 1.

Results and Discussion

Kinetics of Solvolysis of cis- and trans-DDP in Me₂SO. The solvolysis reactions of both the cis and trans isomers of $[Pt(NH₃)₂Cl₂]$ in Me₂SO were monitored by ¹⁹⁵Pt NMR and UV-vis absorption spectroscopy. The kinetic data for both isomers conform to first-order rate equations, and the results are summarized in Table II. Activation parameters, obtained from plots

(18) $R_1 = \sum w||F_o| - |F_c||/\sum |F_o|$; $R_2 = [\sum w(|F_o| - |F_c|)^2/\sum w|F_o|^2]^{1/2}$.

 (16)

International Tables for X-ray Crystallography; Kynoch: Birmingham, England, 1974; Vol. IV, pp 99, 149.
SHELX-76: Sheldrick, G. M. In Computing in Crystallography; Schenck, H., Olthof-Hazenkamp, R., van Koningsveld, H., Ba (17)

of $\ln k_1$ vs. T^{-1} , were as follows: for *cis*-DDP, $\Delta H^* = 18.9$ (1) kcal mol⁻¹ and $\Delta S^* = -14.5$ (2) eu (optical spectroscopy) and ΔH^* = 19.8 (3) kcal mol⁻¹ and ΔS^* = -11.6 (3) eu (¹⁹⁵Pt NMR spectroscopy); for *trans*-DDP, $\Delta H^* = 15.5$ (1) kcal mol⁻¹ and ΔS^* $= -21.4$ (2) eu (optical spectroscopy) and $\Delta H^* = 16.9$ (3) kcal mol⁻¹ and $\Delta S^* = -17.7$ (4) eu (¹⁹⁵Pt NMR spectroscopy). Figure 2a shows the time-dependent ¹⁹⁵Pt NMR spectra of cis-DDP in Me₂SO- d_6 . The resonance due to cis-DDP (δ -2087) gradually diminishes $(t_{1/2} = 185 \text{ min at } 26 \text{ °C})$ with a concomitant increase in the resonance due to cis - $[Pt(NH₃), (Me₂SO)Cl]Cl$ (1-Cl). The chemical shift of the latter species (δ -3145) is in good agreement with that reported in the literature.¹⁰

At longer reaction times (3-24 h), five additional species were observed in the Me₂SO solution of cis-DDP by 195 Pt NMR spectroscopy. These products, which were identified in a previous NMR study of the reaction of Me₂SO with cis -[Pt($^{15}NH_3$)₂Cl₂],¹⁰ are [Pt(NH₃)₃Cl]⁺, [Pt(NH₃)₃(Me₂SO)]²⁺, *cis*-[Pt(NH₃)- $(Me₂SO)Cl₂$], *trans*- $[Pt(NH₃)(Me₂SO)Cl₂]$ and *trans*- $[Pt (NH₃)₂(Me₂SO)Cl$ ⁺. These complexes form as a result of ammonia exchange reacions, which are promoted by the large kinetic trans effect of the sulfur-bound Me₂SO ligand.^{8b}

The solvolysis of trans-DDP in Me₂SO proceeds more rapidly $(t_{1/2} = 24 \text{ min at } 26 \text{ °C})$ than that of *cis*-DDP and produces the analogous product, trans- $[Pt(NH₃)₂(Me₂SO)Cl]Cl$ (2-Cl). Figure 2b shows the time dependence of the ¹⁹⁵Pt NMR spectra. The resonance due to trans-DDP (δ -2086) diminishes as the resonance due to 2 (δ -3112) grows in. trans- $[Pt(NH_3)_2(Me_2SO)Cl]^+$ is the only product observed in solution by **195Pt** NMR spectroscopy, even after long reaction times (24-48 h). Apparently, ammonia exchange products do not result from cis labilization of the ammonia ligands in this case. The much faster rate of solvolysis for the trans isomer is due to the greater kinetic trans-labilizing effect of chloride versus ammonia.

The reactions of cis- and trans-DDP in Me₂SO were also monitored by UV-vis spectroscopy, and the observed rate constants (Table II) are in agreement with those of the ¹⁹⁵Pt NMR spectroscopic studies. The solvolysis reactions can be more accurately followed by UV-vis spectroscopy at temperatures above 35 "C owing to the acquisition times required for 195Pt NMR spectroscopy.

Synthesis of *trans*-[Pt(NH₃)₂(Me₂SO)Cl]Cl (2-Cl). In order to demonstrate unequivocally that 2 forms in the reaction of *trans-DDP* and $Me₂SO$, this compound was synthesized on a preparative scale and characterized by chemical analysis and by IR and NMR spectroscopy. The reaction of trans-DDP and Me2S0 produces 2 in high yield (88%). In complexes of divalent platinum with $Me₂SO$, the latter usually coordinates through its sulfur atom.¹⁹ In the present case, sulfur coordination is confirmed by the observed $195Pt-H$ coupling for the CH₃ protons on the Me₂SO ligand (δ 3.52, ${}^{3}J_{\text{Pt-H}}$ = 23.9 Hz) and by the characteristic ¹⁹⁵Pt NMR chemical shift $(\delta -3112)$.¹⁰ The S-O stretch is observed at 1122 cm^{-1} in the IR spectrum, shifted to higher energy than in the free ligand (1050 cm^{-1}) . This result is again consistent with sulfur coordination.²⁰

Solid-State Structure of *trans*-[Pt(NH₃)₂(Me₂SO)Cl]-**(ClO₄)**_{0.8}Cl_{0.2}. The cation 2 lies on a crystallographically imposed mirror plane that contains the platinum and all of its coordinating atoms, C11, S, N1, and N2 (Figure 1). The arrangement of the ligands around the platinum atom does not deviate substantially from the idealized square-planar geometry; the largest angle (Nl-Pt-S) is 95". The N1 ammonia ligand is in van der Waals contact with the methyl groups of the $Me₂SO$ ligand (N1–C = 3.5 **A),** and the 95" angle may be a consequence of the intramolecular packing.

The Me₂SO ligand is bonded to the platinum through its sulfur atom, as expected from the spectroscopic evidence presented above.

Figure 3. Time dependence of the binding to calf thymus DNA of trans-DDP dissolved in buffer (A), trans-DDP in MezSO *(O),* **and** $trans$ [$Pt(NH₃)₂(Me₂SO)Cl$]Cl (\blacksquare), plotted as the ratio of bound plat**inum per nucleotide, (D/N),.**

The **Pt-S** distance of 2.204 (4) **A** is well within the range reported for other Me₂SO-Pt complexes.¹⁹ The environment around the sulfur atom is nearly tetrahedral with angles ranging from 104 to 115°, again in good agreement with previously reported values. The Pt-Cl distance of 2.307 (5) **A** is also normal. Although Me₂SO exerts a relatively large trans influence, it does not appear to have a major effect on the trans Pt-Cl bond length, which is 2.30 **A** in trans-DDP itself.21

Reaction of trans-DDP and trans- $[Pt(NH_3)_2(Me_2SO)Cl]^+$ **(2) with DNA.** In order to determine the effect on reaction rate of trans-DDP binding to DNA when Me₂SO is used to dissolve the platinum complex, DNA-bound platinum was measured as a function of time when the following species were allowed to react with calf thymus DNA dissolved in aqueous buffer: (1) trans-DDP in aqueous buffer (1.0 mM) (abbreviated trans-DDP/buffer); (2) trans-DDP dissolved in Me₂SO (1.0 mM) (abbreviated trans-DDP/Me₂SO); (3) 2 dissolved in aqueous buffer (1.0 mM). All dissolved compounds were incubated for 5 min at 25 °C prior to 200-fold dilution into the 0.1 mM DNA reaction mixture, producing a formal drug-to-nucleotide ratio, (D/N) ₆, of 0.05. Aliquots from the reaction mixtures were quenched at different time intervals, the unbound platinum was removed by dialysis, and the level of bound platinum, $(D/N)_b$, was determined by atomic absorption spectroscopy. As is evident from Figure 3,2 binds to DNA significantly more rapidly than *trans-DDP*/buffer. At short time intervals, the difference is threefold, leveling off to a twofold difference at longer time periods. This result may be explained by the greater labilization of the chloride ligand trans to $Me₂SO$ in 2. The trans-DDP/Me₂SO reaction rate is intermediate, as would be expected for a mixture of trans-DDP and trans-[Pt- $(NH_3)_2$ Me_2 SO)Cl]Cl.

Reaction of trans-DDP and trans-[Pt(NH₃)₂(Me₂SO)Cl]⁺ (2) **with d(GpTpC).** We also investigated the reactions of trans-DDP and 2 with the oligonucleotide d(GpTpG). This reaction is particularly relevant, since one of the major adducts formed when trans-DDP binds to DNA is an intrastrand cross-link of two guanines separated by an intervening nucleotide.22 Reactions between d(GpTpG) and trans-DDP/buffer or trans-DDP/Me₂SO at 37 "C were monitored by reversed-phase HPLC (Figure **4).** The major reaction product (species **111)** when trans-DDP was dissolved in aqueous buffer is the 1,3-bis(guanine) adduct, in which the platinum is coordinated to the **N-7** positions of the two guanine bases.14 We have previously isolated this product and confirmed its identity by ¹H NMR spectroscopy.²³ This species accounts for 92% of the products after 42 h. An intermediate species I1 (5% at 42 h), which is probably a monofunctional Pt-DNA ad-

- **(22) Pinto, A. L.; Lippard, S. J.** *Proc.* **Natl.** *Acad. Sci. U.S.A.* **1985,** *82,* .. **4616.**
- **(23) Gibson, D.; Sundquist, W. I.; Lippard, S. J., unpublished results.**

⁽¹ 9) Melanson, R.; Rcchon, F. D. Inorg. *Chem.* **1978,17,679 and references cited therein.**

^{(20) (}a) Cotton, F. A,; Francis, R.; Horrocks, W. D., Jr. *J. Phys. Chem.* **1960,** *64,* **1534. (b) Braddock, P. D.; Romeo, R.; Tobe, M. L. Inorg.** *Chem.* **1974,** *13,* **1170.**

⁽²¹⁾ *Spec. Pub1.-Chem. SOC.* **1958,** *11.*

Figure 4. HPLC traces showing the time course of the appearance and disappearance of species formed in the reactions with $d(GpTpG)$ of (a) trans-DDP dissolved in buffer and (b) trans-DDP dissolved in Me₂SO at 37 °C. Labels are as follows: I, d(GpTpG); II, intermediate species; III, *trans*-[Pt(NH₃)₂[d(GpTpG)]]; IV, unidentified product.

duct, is observed and disappears as the reaction progresses beyond 42 h (data not shown).

The reaction of d(GpTpG) with trans-DDP/Me₂SO, however, does not proceed nearly as cleanly (Figure 4b). A number of products are evident after 47 h, and $trans-[Pt(NH₃)₂[d(GpTpG)]]$ accounts for only 17% of the total adducts formed. The other HPLC-detectable products were also observed when **2,** dissolved in aqueous buffer, was allowed to react with d(GpTpG).

These results clearly reveal that when trans-DDP is dissolved in Me₂SO, even for a time as short as 5 min, and subsequently allowed to react at 37 \degree C with d(GpTpG), the majority of products obtained result from the formation of **2** in solution, which subsequently reacts with the oligonucleotide. At earlier time points, **2** is seen to react more quickly than trans-DDP with d(GpTpG), as was the case for the reactions with calf thymus DNA.

Implications for Biological Work. The results presented demonstrate that the reaction of trans-DDP in $Me₂SO$ measurably alters the subsequent rate of DNA binding, as well as the spectrum of Pt-DNA adducts formed. This effect is significant even when trans-DDP is dissolved in Me₂SO for only 5 min, which would almost certainly be the case in a typical experiment. At the physiological temperature of 37 \degree C, the half-life of trans-DDP in Me₂SO is 8 min, rather than the recently reported value of 19 min.^{6h} Moreover, the reaction of trans-DDP with Me₂SO undoubtedly continues even after dilution of the initial $Me₂SO$ solution in aqueous buffer.

It is interesting that in several of the biological studies⁶ in which Me₂SO was used to dissolve the platinum complexes, unusual activities were observed for trans-DDP. For example, trans-DDP that had been dissolved in $Me₂SO$ was reported to be cytotoxic and to retard TA3Ha tumor cell growth in combination with hypothermia treatment.^{6g} Such results may be due to the formation and subsequent reaction of trans-[Pt($NH₃$)₂(Me₂SO)Cl]⁺, rather than the reaction of *trans-DDP* itself. The *trans-*[Pt- $(NH₃)₂(Me₂SO)Cl$ ⁺ complex might be expected to form primarily monofunctional DNA adducts, similar to those made by [Pt- (dien)Cl]⁺. The strong cis-labilization effect of $Me₂SO⁸$ however, could conceivably result in **loss** of an ammonia ligand with concomitant bifunctional DNA coordination with cis stereochemistry.

Finally, although use of $Me₂SO$ as a solvent is especially problematic for *trans*-DDP, $Me₂SO$ also reacts at an appreciable rate with cis-DDP, especially at the higher temperatures (Table **11),** and should react even faster with the commonly studied cis-DDP analogues $[Pt(en)Cl_2]$ and $[Pt(dach)Cl_2]$. We therefore conclude that the affinity of platinum for sulfur donor ligands makes Me₂SO unsuitable for use in biological studies of the mechanism of action of platinum antitumor drugs and that the results of biologically related experiments employing this solvent for *cis-* and, especially, trans-DDP must be viewed with caution.

Acknowledgment. This work was supported by U.S. Public Health Service Grant CA-34992 from the National Cancer Institute and by a research grant (to S.J.L.) from Engelhard Corp.

Registry No. 2-Cl, 62850-81-1; cis-[Pt(NH₃)₂Cl₂], 15663-27-1; $trans-[Pt(NH₃)₂Cl₂], 15663-27-1.$

Supplementary Material Available: Listings of anisotropic thermal parameters (Table S2) and hydrogen atom parameters (Table S3) for $2-(C1O₄)_{0.8}Cl_{0.2}$ (2 pages); a table of observed and calculated structure factors for $2-(C1O₄)_{0.8}Cl_{0.2}$ (Table S1) (4 pages). Ordering information is given on any current masthead page.