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A simple formula is derived for the missing mode effect (MIME) frequency. The formula relates the distortions and frequencies 
of the individual modes, together with the overall damping factor, to the MIME frequency. The formula provides a quick and 
accurate method for calculating the MIME frequency without having to calculate the full Fourier transform of the overlaps to 
obtain the spectrum. Example calculations are presented for a variety of distortions, frequencies, and damping factors and are 
compared to the full calculation. Proper application of the formula and unusual cases are discussed. 

The missing mode effect (MIME) is a regularly spaced vibronic 
progression in a luminescence spectrum that does not correspond 
to any ground-state normal mode of vibration.2 Two or more 
modes conspire to give the appearance of a single progression in 
poorly resolved spectra. The same factors which cause a MIME 
in emission also apply to absorption spectra, but a MIME in the 
absorption spectra is more difficult to distinguish because the exact 
excited-state frequencies are usually not available. The MIME 
exists in the spectrum of many metal c ~ m p l e x e s , ~ - ~  but detailed 
analyses of the contributing modes have only been carried out for 
a small number of molecules. The analysis requires the calculation 
of the time dependence of the overlaps of each contributing mode 
and the Fourier transform of the product of all of the overlaps 
to obtain the spectrum in the frequency d ~ m a i n . ~ , ~  Whereas this 
calculation is straightforward (see eq l ) ,  it is very desirable to 
have a quick and accurate formula for predicting the MIME 
frequency for a given set of frequencies and displacements. This 
paper provides such a formula. 

The unabridged method for calculating the MIME spectrum 
(and thus the MIME frequency by inspection) also requires the 
frequencies and displacements of all of the participating modes, 
which are assumed to be harmonic. Given this information, a time 
dependent formula is computed (eq l),  which physically is the 
overlap between an “initial” wave packet 14) (the ground vibra- 
tional level of an excited electronic state) and that wave packet 
propagated on the lower electronic energy surface. The latter, 
moving wave packet Id ( t ) )  is not a stationary state of the lower 
electronic energy surface and so moves according to the time- 
dependent Schrodinger equation. The quantity of interest is the 
overlap of the initial wave packet with the time-dependent wave 
packet, ( d l d ( t ) ) .  For the case of a multiple-mode harmonic 
potential surface with equal vibrational frequencies in the initial 
and final states the overlap is’ 

where Wk and Ak are the frequency and displacement of the kth 
normal mode, r is the damping factor (vide infra), and Eo is the 
origin of the spectrum. This expression for the complete overlap 
is Fourier transformed to give the electronic absorption or emission 
spectrum in the frequency domain. The emission spectrum is given 

We remark that eq 2 is quite general; it does not rely upon 
particular assumptions about the potential energy surface. If we 
knew id(?)) for a complicated potential surface, eq 2 would give 
the luminescence spectrum. The available data for metal complex 
luminescence spectra do not support the choice of complicated 
forms for potential surfaces and are in any case fairly consistently 
treated by harmonic oscillators. Equation 1 is based on the 
simplifying harmonic oscillator model. The ground- and excit- 
ed-state modes are assumed to be the same to further simplify 
things. 

The overriding advantage of the Fourier transform method is 
the ability to calculate incompletely resolved spectra when many 
modes are involved. This can easily be done in circumstances 
where the direct Franck-Condon approach is inconvenient or 
impossible due to the large density of states. The MIME is a 
further distillation of the time-dependent approach, and it reveals 
why so many incompletely resolved spectra appear to be dominated 
by a single displaced mode. But such behavior is often just 
mimicry! 

The main purpose of this paper is to derive a formula that is 
simpler than the full overlap equation (eq 1) for calculating the 
MIME frequency. The results of using the simple formula are 
compared to those obtained by using the more rigorous calculation 
for many test cases. The importance of the various input quantities 
and illustrative examples are discussed. 

Simple Formula for the MIME Frequency 
The main idea of the MIME is that a partial recurrence at  t 

T~ is responsible for the appearance of a regularly spaced 
progression at  a frequency wM = ~ T / T ~ .  Our strategy is to find 
the maxima of I($ld(t))l corresponding to the first large recurrence 
time T ~ .  This will correspond to 

The condition on T~ is thus 

by although solutions to this equation will include minima in 1(41d(t))l 
as well as local maxima that may be very much smaller than the 
main recurrence at time T M .  Thus one strategy to find uM is to 
solve eq 4 for the various times t’ for which it has a solution and 

( 2 )  Z(o) = w 3 ~ ~ e - I w T ( 4 1 4 ( ~ ) )  d7 
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then to-examine I(q+#~(t))l to find the t’ = T~ corresponding to 
the large recurrence. To arrive at  a simpler formula, we notice 
that the arguments of sin ( W ~ T M )  should all be near some multiple 
of 2~ at  T ~ ,  especially in the large A modes. This is necessary 
for a healthy recurrence to happen at TM. Assuming that the kth 
mode is experiencing its nkth return visit (i.e. recurrence) near 

sin W k t  N W k t  - nk ( 5 )  

T M ,  that iS WkTM 2Tnk9 We have 
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Table I 
full calcn transcendental expression short expression 

w1 AI0 w2 A2a MIME,* cm-l (eq 4), cm-l (eq 6), cm-l r, cm-' n l  n2 
500 1.7 1100 1.7 550 550 549 130 1 2  
500 1.7 1100 1.7 550 550 927 130 1 1 C  
500 0.5 1100 1.7 1125 1124 1098 130 1 1 
525 1.8 700 1.68 637 638 630d 100 1 1  
600 1.8 750 0.45 629 628 630d 100 1 1  
203 2.5 302 2.5 277 276 274 48 1 1 
203 2.5 302 2.5 101 101 100 30 2 3  

'For convenience we transform to dimensionless normal coordinates, whence, e.g. Ak = (,mkWk!h)'/2!k. bThe complete spectrum was generated by 
calculating the wave packet dynamics on the multidimensional potential surface. The vibronrc spacings were determined by removing the broad 
envelope with an FT high pass filter and then measuring the spacing between the remaining peaks. <The erroneous choice of n2 = 1 is used here to 
illustrate the importance of the value of n. dNote the two different sets of distortions yielding the same MIME frequency. 
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Figure 1. Top: overlaps in the time domain for two modes with wl = 
500 cm-' and A I  = 1.7 (curve a), w2 = 1100 cm-I and A2 = 1.7 (curve 
b), and r = 130 cm-l. The maximum recurrence in the product occurs 
when nllW = 2 and nSw = 1 (curve c). Bottom: overlaps in the time 
domain under the same conditions as above except that A, = 0.5 (curve 
a) and AI = 2.0 (curve b). Note that the sharp recurrences of w1 dom- 
inate the overlaps giving WM = wl (curve c). The units of time are c/27r 
s, and E,, = 22000 cm-I. 

near t 7Mul (Usually, nk is 1; sometimes it is 0, 2 ,  or 3.) 
Equations 4 and 5 give ( w M  = 2 a / 4  

Results and Discussion 
Examples of calculations of the MIME frequency by using eq 

6 are given in the Table I and are compared to the MIME fre- 
quencies calculated by using the complete time-dependent overlap 
(eq 1) and the transcendental eq 4 .  Three quantities in eq 6 that 
are crucial not only to the calculation but also to the understanding 
of the MIME are nk, r, and A. Misapplication of any of these 
quantities, but especially nk, will lead to significant errors in the 
calculation of the MIME frequency. In the following sections, 
the meanings of these quantities and their effects on the MIME 
frequency are examined in detail for the simplest case of only two 
modes. 

The variable nk is an integer for each mode with nonzero 
displacement. It corresponds to the number of the mode's return 
visit when all of the other distorted modes are closest to having 
returned. As an example, for two modes at  1100 and 500 cm-' 
with comparable distortions, the 500-cm-' mode will have returned 
only once when the 1100-cm-' mode will have just finished its 
second return, giving nso0 = 1 and nllOO = 2. The plots of the 
overlaps in the time domain and the resulting spectrum in the 
frequency domain are shown in Figure 1 (top). from this plot 
it can be seen that the largest product of the overlaps is found 
when the second recurrence of the high-frequency mode overlaps 
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Figure 2. Left: overlaps in the time domain for two modes with wI = 
203 cm-', o2 = 302 cm-I, AI = 2.5, and A2 = 2.5. Top: r = 48 cm-l. 
Note that wM = 277 cm-l. Middle: r = 30 cm-l. Note that wM = 101 
cm-I. Bottom: r = 4 cm-I. Note that even here not all vibronic bands 
are resolved (eg. the 609 13 X 203) and 604 (2 X 302) cm-' Franck- 
Condon factors are still together. Right: Fourier transform of the 
overlaps (left) to the frequency domain. Eo = 22 000 cm-I. 

the first recurrence of the low-frequency mode. The MIME 
frequency of 549 em-' calculated by using the simple formula (eq 
6) is in excellent agreement with the value of 550 cm-I calculated 
by using the complete expression (eq 1). Note from the sample 
calculations in Table I that if the values of n had both erroneously 
been chosen to be 1, the MIME frequency calculated by using 
eq 6 would have been 927 cm-l, drastically in error. 

A second example of the importance of n is illustrated by the 
calculation of uM for W(CO)5(py). The observed MIME fre- 
quency is 550 + 10 cm-I. In this 18-mode problem, the simple 
formula would be expected to lose accuracy due to the breakdown 
in the assumption of u k 7 M  nk. The deter- 
mination of n is very critical in the calculation for a large number 
of modes. The correct value for nk is obtained by dividing each 
frequency by an initially assumed value for w M ,  choosing nk as 
the nearest integer, calculating wM, using the new uM to determine 
a new value for nk, and iterating until self-consistency is achieved. 
The best assumption for wM is the most highly distorted mode in 
a group of highly distorted modes. For the W(CO),(py) molecule 
this is the 434-cm-' mode, giving in only three iterations q,, = 
525 cm-I. The distortions and frequency used are given and 
explained in ref 5 and the self-consistent flk values are given in 
footnote 8. Any initial value for wM could have been chosen 
between 420 and 850 cm-' and still iterate to 525 cm-I. This 

2ank or u k / w M  

(8) Self-consistent wk(cm-l), Ak, and nk values at r = 72 cm-': 195, 1.42, 
0; 427, 1.01, 1; 434, 1.08, 1; 462.0.87, 1; 470,0.56, 1; 602.0.64, 1; 636, 
0.68, 1; 1012, 0.81, 2; 1073,0.37, 2; 1223,0.43, 2; 1489, 0.10, 3; 1607, 
0.39,3; 1651,0.18, 3; 1890,0.27,4; 1934,0.14,4; 1953,0.15,4; 1973, 
0.24, 4; 2075, 0.28, 4. 
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example demonstrates that, even in a complex molecule, the 
formula works quite well. 

The Gaussian damping factor r causes a quenching of the 
magnitude of the recurrence overlaps in the time domain. It 
physically represents relaxation into other modes, the bath, etc. 
In the calculations discussed here it can be considered to be a 
phenomenological line width factor. r is usually in the range of 
50-200 cm-' for metal complexes in condensed media. 

An example of conditions where r can have a major effect is 
given in the table. If w1 = 203 cm-' and w 2  = 302 cm-', the 
maximum of the product of the overlaps occurs when n, = 2 and 
n2 = 3. These conditions give wM = 101 cm-' (Figure 2, middle). 
However, r must be small enough for the overlap at these values 
of n to be significant. If r is larger, these higher recurrences will 
be damped out and only the first recurrence of each mode will 
have significant magnitude. In this case, only the product at nl 
= 1 and n2 = 1 is important and wM = 277 cm-I (Figure 2, top). 

It is also important to recognize that r cannot be too small. 
If it is small enough to allow a large number of recurrences to 
have significant amplitude, no MIME will be observed, but instead 
a highly resolved spectrum consisting of progressions in all of the 
displaced modes will be seen (Figure 2, bottom). 

The effect of the displacements Ak on the MIME frequency 
is apparent from eq 6. The displacements act as a type of 
weighting factor on the contributions of the normal modes to the 
MIME. In some situations, the value of A for one mode will be 
much larger than those for other displaced modes. In this case 
the MIME frequency will be very close to the frequency of the 
most highly displaced mode and may be indistinguishable from 
it in an experimental spectrum. This situation commonly arises 
in metal complexes where a metal-ligand bond is highly displaced 
while bond lengths within the ligand itself are only slightly 
changed. The origin of this effect is readily seen from eq 6. If 
Ak for one mode is much larger than the other a's, it will dominate 
the sums in both the numerator and the denominator and wM - 

The effect of having A for one mode much larger than the A's 
for the other modes on the overlaps in the time domain is shown 
in Figure 1 (bottom). In this example, Asoo = 0.5 while A l l m  = 
1.7. The overlap recurrences for the highly displaced high-fre- 
quency mode are sharp while those for the low-frequency mode 
with a small displacement are broad. The total product overlap 

wk. 

is thus dominated by the sharp recurrences of the low-frequency 
mode, and the spectrum in the frequency domain shows a spacing 
of 1125 cm-I. 

Five qualitative features of the simple formula (eq 6) are worth 
discussing. First, if all of the nk = 1, then the MIME frequency 
must fall between the highest and the lowest real frequencies. 
Second, it can happen that wM is lower than any of the individual 
frequencies. (This situation was illustrated above for wl = 302 
and w2 = 203 where W M  = 101.) Third, it is not possible for wM 
to be larger than the highest frequency wk except for a minor shift 
due to I'. Fourth, wM may correspond fortuitously to one of the 
wk values, but mode k may not even be displaced! Fifth, it is clear 
from eq 6 that many combinations of A's and 0's can give the 
same wM. Thus, wM can not be used to provide a unique deter- 
mination of the contributing modes nor their displacements. 

In several recently reported spectra: clusters of sharp phonon 
mode features are superimposed on the broader scale MIME 
frequency bands. These types of features should not be confused 
with the clusters of intramolecular bands, which, by virtue of the 
large r, are unresolved and form the MIME spacing. The fre- 
quencies of the phonon bands will either change or the bands will 
disappear when the condensed medium is changed from a single 
crystal to different types of glasses or matrices. The MIME 
features should not change (or only slightly change if the vibra- 
tional frequencies of the molecule are sensitive to the medium.) 

In summary, equally spaced vibronic peaks in poorly resolved 
luminescence spectra of large molecules in condensed media will 
usually be MIME peaks. They may be indistinguishable from 
a progression in one mode of the displacement if that mode is much 
larger than all other displacements. When r is small, a highly 
resolved spectrum containing bands from progressions in all of 
the displaced modes will be obtained and no MIME will be ob- 
served. When the MIME is present, the simple formula for the 
MIME frequency that was derived above gives a result that is 
very close to the result from the exact calculation but does not 
require calculations of overlaps or Fourier transforms. 
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The transition-metal complexes W(CO)5(2,3-DHT) (l), [Re(C0),(2,3-DHT)]SO3CF3 (3), PdC12(2,3-DHT)2 (4), and Ru(C- 
O)3C12(2,3-DHT) (5) containing S-bound 2,3-dihydrothiophene (2,3-DHT), a proposed intermediate in thiophene hydro- 
desulfurization, have been prepared and characterized. Variable-temperature IH NMR studies of complexes 1, 3, and 5 establish 
that the barrier to inversion of the coordinated sulfur increases with the oxidation state of the metal: W(0) < Re(1) < Ru(I1). 
In  the series of W(CO)s(L) complexes, where L = 2,3-DHT, 2,5-DHT, and tetrahydrothiophene (THT), the inversion barriers 
decrease in the order 2,3-DHT (48.5 kJ/mol) > 2,5-DHT (45.6) > THT (43.9), which is also the order of decreasing ring strain 
in the sulfur ligands. Thus, the less strained the ligand, the more easily it achieves the planar transition state required for inversion. 

Introduction 
Hydrogenation of thiophene to 2,3-dihydrothiophene (2,3-DHT) 

has been proposed as the initial step in the hydrodesulfurization 
(HDS) of In order to understand how 2,3-DHT 
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2.3-DHT 

might coordinate to metal ion sites on the HDS catalyst, we have 
prepared several of its transition-metal complexes. Little is known 
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