accelerating voltage of about 60 kV. The sample was kept at -40 °C and the inlet system and nozzle were at room temperature. The camera pressure never exceeded 5×10^{-6} Torr during the experiment. Two plates for each camera distance were analyzed by the usual procedures.¹⁸ The averaged molecular intensities in the ranges 0.014-0.17 and 0.08-0.35 pm⁻¹ are presented in Figure 3.

Acknowledgment. Financial support by the Fonds der Chemischen Industrie is gratefully acknowledged.

Registry No. As F₅, 7784-36-3; AsClF₄, 94649-43-1; AsCl₂F₃, 109278-32-2; AsCl₃F₂, 95036-82-1; AsCl₄F, 87198-15-0; AsCl₅, 22441-45-8.

(18) Oberhammer, H.; Gombler, W.; Willner, H. J. Mol. Struct. 1981, 70, 273.

Contribution from the Department of Chemistry, Sogang University, Seoul, 121 Korea

Cationic Iridium(I) Complexes of Unsaturated Aldehydes and Their Catalytic Activities

Kyung Joon Yang and Chong Shik Chin*

Received September 4, 1986

The iridium complexes of unsaturated nitriles [Ir^IL(CO)- $(PPh_3)_2$]ClO₄ and $[Ir^{III}(H)_2L(CO)(PPh_3)_2]ClO_4$ (L = unsaturated nitriles) have been prepared and investigated with respect to their catalytic activities for the hydrogenation and isomerization of L.1 The rhodium(I) analogues [RhL(CO)(PPh₃)₂]ClO₄ have also been prepared and studied for L being unsaturated nitriles² and unsaturated aldehydes.³

In this paper, we wish to report the synthesis of iridium(I) complexes of unsaturated aldehydes, [Ir(trans-CH₃CH= CHCHO (CO) (PPh₃)₂ ClO₄ (1) and [Ir(trans-C₆H₅CH= $CHCHO)(CO)(PPh_3)_2]ClO_4$ (2), and their catalytic activities for the hydrogenation of trans-CH₃CH=CHCHO and trans-C₆H₅CH=CHCHO, respectively. Catalytic hydrogenation of CH₂=CHCHO with $Ir(ClO_4)(CO)(PPh_3)_2$ (3) is also included in this report.

Complexes 1 and 2 have been prepared according to eq 1. Attempts have been made to prepare a CH2=CHCHO complex of iridium without success, although the rhodium complex, [Rh(CH₂=CHCHO)(CO)(PPh₃)₂]ClO₄, was previously prepared.2

$$Ir(ClO_4)(CO)(PPh_3)_2 + L \rightarrow 3$$

$$[IrL(CO)(PPh_3)_2]ClO_4 \quad (1)$$

$$1, L = trans-CH_3CH=CHCHO$$

$$2, L = trans-C_6H_5CH=CHCHO$$

Experimental Section

Caution. Perchlorate salts of transition-metal complexes containing organic ligands are potentially explosive.⁴

Materials. $Ir(ClO_4)(CO)(PPh_3)_2$ was prepared by the literature method.⁵ CH₂=CHCHO and trans-CH₃CH=CHCHO (Aldrich) were distilled before use. trans-C₆H₅CH=CHCHO (Aldrich) was used as purchased

Physical Measurements. Electronic and infrared adsorption spectra were obtained with Shimadzu UV-240 and Shimadzu IR-440 instru-

- Park, S. H.; Park, H.-K.; Chin, C. S. Inorg. Chem. 1985, 24, 1120. Lee, M. K.; Kim, I. B. Chin, C. S. J. Organomet. Chem. 1985, 290, 115. Kim, I. B.; Chin, C. S. Polyhedron 1984, 3, 1151. See: J. Chem. Educ. 1978, 55, A355. Chem. Eng. News, 1983, 61 (Dec (4)), 4; 1970, 53, 55; 1963 (July 8), 41, 47 and ref 5.
- (5) Peone, J.; Vaska, L. Angew. Chem., Int. Ed. Engl. 1971, 10, 511.

Figure 1. Hydrogenation of CH2=CHCHO (37 mmol) to CH3CH2C-HO with $Ir(ClO_4)(CO)(PPh_3)_2$ (3) (0.1 mmol) (O) and of trans-CH₃CH=CHCHO (37 mmol) to CH₃CH₂CH₂CHO with [Ir(trans-CH₃CH=CHCHO)(CO)(PPh₃)₂]ClO₄ (1) (0.1 mmol) (or 3, 0.1 mmol) (\Box) at 25 °C under hydrogen (P_{H_2} + vapor pressure of the solution = 1 atm).

ments. ¹H NMR spectra were recorded on a Varian 60-MHz instrument (Model EM-360A). Conductance measurements were performed in the corresponding aldehydes with a Wiss-Tech LBR conductivity meter at 25 °C under nitrogen. Elemental analyses were carried out by Spang Microanalytical Laboratory, Eagle Habor, MI.

Preparation. Standard vacuum-line and Schlenk-type glassware were used in handling metal complexes. Complexes 1 and 2 are stable in the solid state in air and in solution under nitrogen at 25 °C.

[Ir(trans-CH₃CH=CHCHO)(PPh₃)₂]ClO₄ (1). Addition of trans-CH₃CH=CHCHO (1 mL, ca. 12 mmol) to a benzene solution (35 mL) of 3 (0.42 g, 0.50 mmol) under nitrogen at 25 °C immediately resulted in yellow crystals, which were collected by filtration, washed with benzene (20 mL), and dried under vacuum; yield 0.36 g (79% based on 1). Anal. Calcd for $IrC_{41}H_{36}O_6ClP_2$: C, 53.86; H, 3.97; Cl, 3.88; P, 6.78. Found: C, 53.71; H, 3.89; Cl, 3.99; P, 6.92. Molar conductance = 105 ohm⁻¹ $cm^2 mol^{-1}$ ([Ir] = 5.0 × 10⁻⁵ M in trans-CH₃CH=CHCHO).

[Ir(trans-C₆H₅CH=CHCHO)(CO)(PPh₃)₂]ClO₄ (2). This compound was prepared in the same manner described for 1. A 1-mL quantity (ca. 8.0 mmol) of trans-C₆H₅CH=CHCHO and 0.42 g (0.50 mmol) of 3 were used; yield 0.40 g (82% based on 2). Anal. Calcd for IrC46H38O6ClP2: C, 56.59; H, 3.92; Cl, 3.63; P, 6.34. Found: C, 57.01; H, 3.89; Cl, 3.71; P, 6.27. Molar conductance = $100 \text{ ohm}^{-1} \text{ cm}^2 \text{ mol}^{-1}$ ([Ir] = 5.0×10^{-5} M in trans-C₆H₅CH=CHCHO)

Hydrogenation of CH_2 =CHCHO with $Ir(ClO_4)(CO)(PPh_3)_2$ (3). A 37-mmol sample of CH₂=CHCHO and 0.1 mmol of 3 in a 25-mL round-bottomed flask were stirred at 25 °C under hydrogen (P_{H_2} + vapor pressure of the solution = 1 atm). A part (ca. 0.5 mL) of the reaction mixture was taken out and analyzed by ¹H NMR spectroscopy at intervals. Disappearance of CH_2 =CH signals of CH_2 =CHCHO at 5.5-6.1 ppm (or appearance of CH₃ signals of CH₃CH₂CHO at 0.7 ppm) was follwed to obtain the data given in Figure 1

Hydrogenation of trans-CH3CH=CHCHO with [Ir(trans-CH3CH= CHCHO (CO) (PPh₃)₂ ClO₄ (1) (or Ir(ClO₄) (CO) (PPh₃)₂ (3)). This reaction was carried out in the same manner described above, using 37 mmol of trans-CH₃CH=CHCHO and 0.1 mmol of 1 (or 3). After a certain period of time, the volatile materials were separated from the nonvolatile materials by using a dry ice/acetone bath trap. trans-CH₃CH=CHCHO and CH₃CH₂CH₂CHO in the volatile materials were analyzed by ¹H NMR spectroscopy. The nonvolatile materials (oily oligomers of trans-CH3CH=CHCHO and iridium complex) were dissolved in CDCl₃ and analyzed by ¹H NMR spectroscopy.

Bonding between Iridium and Unsaturated Aldehydes

L. Inorg. Chem. 1976, 15, 1485

Spectral data suggest that trans-CH₃CH=CHCHO in 1 and trans- C_6H_5CH — CHCHO in 2 are coordinated through the oxygen atom to iridium. It is well-known that the related fourcoordinated iridium(I) complexes, $IrA(CO)(PPh_3)_2$ (A = monodentate ligand coordinated through oxygen and nitrogen atom), show the three bands very similar to those for 1 and 2 (Table I) in the visible region.^{1,6} With the exception of $[Ir(C_2H_4)_{2^-}]$

Brady, R.; Flynn, B. R.; Geoffroy, G. L.; Gray, H. B.; Peone, J.; Vaska,

(6)

⁽¹⁾

⁽²⁾

^{0020-1669/87/1326-2732\$01.50/0 © 1987} American Chemical Society

Table I.	Spectroscopic Data for
[Ir(trans	-CH ₃ CH=CHCHO)(CO)(PPh ₃) ₂]ClO ₄ (1) and
Ir(trans	$-C_{\ell}H_{\ell}CH=CHCHO)(CO)(PPh_{1})_{2} C O_{\ell}(2)$

$[Ir(trans-C_6H_5CH=CHCHO)(CO)(PPh_3)_2]CIO_4 (2)$					
compd	electronic abs, ^a nm				
1 4 2 4	438 (630), 383 (2670), 329 (3760) 437 (610), 381 (2960), ca. 320 ^b				
	IR abs, ^c cm ⁻¹				
compd		$\nu(C=0)$	ν(C≡O)		
trans-CH ₃ CH=CHC 1 trans-C ₄ H ₄ CH=CH	сно сно	1689, 1642 1631, 1604 1674, 1626	2003		
2		1612, 1580	1981		
compd		¹ H NMR, ^d ppm			
trans-CH ₃ CH=CHCHO	9.58 (d, (m, C	CHO), 6.96 (m CHCHO), 2.02 ($(dd, CH_3CH), 6.14$		
1	8.31 (d, (m, C 1.80 (CHO), 7.50 (m CH ₃ CH), 5.46 (m (dd, CH ₃)	$h, PC_6H_5), 6.76$ m, CHCHO),		
trans-C ₆ H ₅ CH=CHCHO	9.67 (d, C.H.	CHO), 7.30 (m	$C_{6}H_{5}CH,$		
2	8.64 (d, C ₆ H ₅	CHO), 7.50 (m CH , PC_6H_5), ^f 6	n, C ₆ H₅CH, .02 (m, CHCHO)		

^aUnder nitrogen at 25 °C in CH₂Cl₂ solution. Extinction coefficients are given in parentheses. ^bShoulder due to the strong band near 300 nm. ^cNujol mull. ^dUnder nitrogen at 25 °C at 60 MHz, CDCl₃ solution. Chemical shifts are relative to Me₄Si. ^cMultiplets centered at 7.30 ppm. ^fMultiplets centered at 7.50 ppm.

 $(CO)(PPh_3)_2$, whose spectral data were not reported,⁷ there have been no reports on $[IrL(CO)(PPh_3)_2]^+$ in which L is coordinated through the π system of the olefinic group of L. The significant decreases in ν (C=O) of trans-CH₃CH=CHCHO and trans- $C_6H_5CH = CHCHO$ upon coordination to $Ir(CO)(PPh_3)_2^+$ also suggest that the unsaturated aldehydes in 1 and 2 are coordinated through the oxygen atom but not through the olefinic group. The ν (C=C) bands of the unsaturated aldehydes are obscured by the very strong absorption bands of $\nu(C=0)$ in all spectra of the free unsaturated aldehydes and iridium complexes. A strong and broad absorption band observed at 1100 cm^{-1} for 1 and 2 (not listed in Table I) is attributable to the tetrahedral (Td) anion ClO_4^{-5} and in agreement, 1 and 2 are 1:1 electrolytes as shown by the conductance measurements (see Experimental Section). The fact that the olefinic protons of trans-CH₃CH=CHCHO and trans-C₆H₅CH=CHCHO do not show significant changes in the chemical shifts upon coordination to $Ir(CO)(PPh_3)_2^+$ (see Table I) also suggests that the coordination of the unsaturated aldehydes in 1 and 2 does not occur through the π system of the olefinic group. It should be mentioned that the reactions of 3 with saturated aldehydes such as CH₃CH₂CH₂CHO and CH₃CH₂CHO did not afford the products analogous to 1 and 2. The isolated greenish products seem to be mixtures of 3 and a small amount of uncharacterized iridium complexes that do not contain the saturated aldehydes.

Catalytic Activities

It is known that the complexes $[IrL(CO)(PPh_3)_2]ClO_4$ (L = unsaturated nitriles coordinated through the nitrogen atom) react with H₂ to give dihydridoiridium(III) complexes $[Ir(H)_2L-(CO)(PPh_3)_2]ClO_4$ and that they catalyze hydrogenation of the unsaturated nitrile (L) to the corresponding saturated nitrile at elevated temperature (100 °C).¹ Reactions of 1 and 2 with H₂ would provide valuable information for the catalytic hydrogenation of *trans*-CH₃CH=CHCHO and *trans*-C₆H₅CH=CHCHO with 1 and 2, respectively. It has been found that $Ir(H)_2(ClO_4)-(CO)(PPh_3)_2^8$ is the only product of the reactions of 1 and 2 with H₂.

Complex 1 catalyzes the hydrogenation of *trans*-CH₃CH= CHCHO to CH₃CH₂CH₂CHO at 25 °C (see Figure 1). The same results as shown in Figure 1 have been obtained by using 3 in place of 1. Complex 2 does not show catalytic activity for the hydrogenation of *trans*-C₆H₅CH=CHCHO even at 100 °C. The olefinic group of *trans*- C_6H_5CH =CHCHO may be too stable due to the extended conjugate system to undergo the hydrogenation reaction. It is interesting to see that complex 3 is active for the hydrogenation of CH2=CHCHO to give CH3CH2CHO at 25 °C (see Figure 1), although a CH₂=CHCHO complex of iridium has not been isolated from the reaction of 3 and CH_2 =CHCHO. Decarbonylation products (alkane and alkene) have not been detected in the reactions of CH2=CHCHO with 3 and trans-CH₃CH=CHCHO with 1 under N_2 and H_2 at 25 °C for several days. The hydrogenation of CH2=CHCHO is much faster than that of trans-CH₃CH=CHCHO and proceeds to completion without formation of oligomers whereas a considerable amount of nonvolatile oligomers is obtained during the hydrogenation of trans-CH₃CH=CHCHO with 1 at 25 °C. Approximately the same number of moles of trans-CH₃CH=CHCHO is converted into oligomers as is hydrogenated to CH₃CH₂CH₂CHO in the presence of 1 at 25 °C. A small amount of oligomers is also produced in the absence of H_2 : less than 1% of *trans*-CH₃CH=CHCHO is converted into oligomers when 37 mmol of trans-CH₃CH=CHCHO is stirred under N₂ at 25 °C for 48 h in the presence of 0.1 mmol of 1. The hydrogenation of CH₂=CHCHO with 3 is somewhat different from the results obtained with the rhodium complex, [Rh(CH2=CHCHO)- $(CO)(PPh_3)_2$ ClO₄, which converts more CH₂=CHCHO into the oligomers than to the hydrogenation product, CH₃CH₂CHO.⁵

The fact that the hydrogenation with 3 and 1 occurs at the olefinic group of CH_2 =CHCHO and *trans*-CH₃CH=CHCHO requires an interaction between the olefinic group of the unsaturated aldehydes and the iridium in some part of the catalytic cycle. It still remains uncertain whether the hydrogenation occurs by the well-established mechanism through the olefinic π -bonded complexes or by 1,4-addition of Ir-H to the unsaturated aldehydes.

Acknowledgment. We thank the Korea Science and Engineering Foundation and the Ministry of Education for their financial support.

Registry No. 1, 109150-66-5; **2**, 109124-71-2; **3**, 32356-67-5; CH₂= CHCHO, 107-02-8; *trans*-CH₃CH=CHCHO, 123-73-9.

Contribution from the Dipartimento di Chimica dell'Università di Venezia, 30123 Venice, Italy

Iron(II) Aryldiazene Complexes as Precursors of New Derivatives of the Type $[FeL(CO){P(OEt)_3}_4]^{2+}$: Synthesis and Characterization

Stefano Antoniutti, Gabriele Albertin, and Emilio Bordignon*

Received October 27, 1986

In previous reports¹ we described the synthesis of the first aryldiazene iron(II) derivatives of the type $[Fe(ArN=NH)-(CO)P_4]^{2+}$ [P = P(OEt)₃], which showed the ArNNH ligand to be a good leaving group in the complexes. The facile substitution of this ligand should therefore make the diazene compound a suitable starting material for the synthesis of new mono derivatives of iron(II) with unusual ligands. In this paper, as part of our studies on the chemistry of Fe(II) phosphite complexes,² we report an extensive study on the reactivity of the $[Fe(ArN=NH)-(CO)P_4]^{2+}$ cations with several ligands, which allowed the synthesis of aldehyde, sulfide, and arylhydrazine complexes containing the

⁽⁷⁾ Clark, H. C.; Reimer, K. J. Inorg. Chem. 1975, 14, 2133.

⁽⁸⁾ Vaska, L.; Peone, J. Suom. Kemistil. B 1971, 44, 317.

 ⁽a) Albertin, G.; Antoniutti, S.; Bordignon, E. J. Chem. Soc., Chem. Commun. 1984, 1688.
 (b) Albertin, G.; Antoniutti, S.; Lanfranchi, M.; Pelizzi, G.; Bordignon, E. Inorg. Chem. 1986, 25, 950.

Pelizzi, G.; Bordignon, E. Inorg. Chem. 1986, 25, 950.
 (2) (a) Albertin, G.; Bordignon, E. Inorg. Chem. 1984, 23, 3822. (b) Albertin, G.; Baldan, D.; Bordignon, E. J. Chem. Soc., Dalton Trans. 1986, 329. (c) Albertin, G.; Antoniutti, S.; Pelizzi, G.; Vitali, F.; Bordignon, E. J. Am. Chem. Soc. 1986, 108, 6627.